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ABSTRACT
Performance testing plays a critical role in maintaining software
quality by ensuring systems meet their expected efficiency and
responsiveness. However, defining precise test oracles for perfor-
mance testing remains a significant challenge. As a result, many
software projects lack reliable performance test oracles, hindering
the development of comprehensive test suites. Approximate test
oracles have emerged as a promising alternative, offering practical
means of validation in the absence of exact specifications. In this
work, we explore the use of n-version testing, a technique tradition-
ally used for fault detection through the comparison of multiple
system versions, as a foundation for constructing approximate per-
formance test oracles. Our approach leverages the performance
history of recent versions of the system under test (SUT) to define
an acceptable performance range. Testers configure key parameters
such as the number of prior versions to consider, the strategy for
computing reference performance, and the tolerance margin. When
the current version’s performance falls outside the derived toler-
ance band, an alert is raised to trigger further investigation. In our
preliminary investigation using a real-world proprietary software
system (an image gallery application), we used historical perfor-
mance data to demonstrate that our proposed approach would have
been capable of detecting a known performance bug, previously
confirmed by the development team.
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1 Introduction
The continuous improvement of software is necessary to ensure it
remains useful and attractive to users. Keeping software active and
up-to-date in the market is not easy, requiring increasingly frequent
updates—without compromising performance, of course. However,
recent studies warn that constant software updates carry an almost
certain risk: performance regression. Some studies have even found
that most failures encountered today are related to performance
rather than functional bugs [5]. Mapping these failures is essential,
but fixing them is challenging. In general, perceptions of good or
bad performance are subjective, requiring that the definition of
requirements and expected inputs/outputs be as precise as possible.

A practice that should be indispensable in the software devel-
opment process is the periodic execution of tests to ensure sys-
tem stability with each new implementation. Testing is crucial for
early error detection, reducing the occurrence of unplanned costs.
However, in many projects, running test cycles with every new
implementation is not feasible.

An alternative to streamline test execution is automation. The
core artifact of this activity is the test case, which typically defines
three stages: input data, execution actions, and expected output
data. Yet, in many cases, output data poses challenges in confirming
the success or failure of the System Under Test (SUT). According
to Barr et al. [2], “automating the generation of expected outputs is a
problem that, one might argue, has been less solved than automating
input generation”. This statement highlights a weakness in auto-
mated testing outputs. In performance testing, expected outputs
may incorrectly classify results since attributes like CPU, memory
processing, and RAM can interfere with outcomes. One practice
that aids in correctly defining expected outputs is the use of Test
Oracles. A test oracle is a document or software that enables testers
to evaluate whether a given test case execution has passed or failed,
that is, whether its produced output matches the expected output
(defined in the oracle) [4]. Thus, a key challenge in applying test
oracles to automated testing is ensuring the output conforms to
expectations.

If the creation/automation of Test Oracles is already a challenge
for functional testing, it stands to reason that for non-functional
aspects such as Performance, output definitions are even more
complex. In performance testing, system efficiency metrics can
reveal degradation errors [11], such aswhen a server fails to respond
under high concurrent request loads. Thus, it follows that one of
the key challenges in modern software projects with continuous
integration is ensuring that performance quality is preserved, as
well as establishing mechanisms to detect output deviations caused
by Performance regression. A common practice in such projects is
relying on testers to certify the software, using test results to build
evidence that legitimizes the system’s performance.

In many project contexts, testers face the daunting task of man-
ually verifying the system’s expected behavior for all test cases [1],
making the validation process significantly more time-consuming.

Given this scenario, it is essential to adopt an approach that
enables greater objectivity in test execution while reducing person-
nel effort and improving result accuracy. Thus, we propose that
creating an approximate test oracle focused on Performance testing
(a non-functional property), based on the N-version testing method,
is a promising approach. The combination of N-version testing +
Test Oracle falls under the category of Derived Test Oracles, which
utilize artifacts such as documentation, system executions, or prop-
erties of the system under test (or other versions of it) [2].

For this study, we selected regression testing as the most effective
approach for creating efficient test oracles to detect Performance-
related errors. Regression testing aims to identify whether new
software implementations compromise existing functionality [16].
It relies on the implicit assumption that the previous version can
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serve as an oracle for existing functionality. Therefore, this oracle
helps establish reliable guidelines for projects lacking clearly de-
fined performance metrics, enhancing precision and consistency in
software quality assessment.

The remainder of this paper is organized as follows. Section 2
provides the necessary background on performance, performance
regression, test oracles, regression testing, and N-version testing.
Section 3 outlines the methodology employed in our study. Section 4
describes the experimental context, the artifacts used, the steps
followed for executing the tests, and our prelimnary results. Finally,
Section 5 summarizes our findings and concludes the paper.

2 Background
2.1 Performance
Performance is a non-functional requirement that pertains to soft-
ware quality attributes. It measures the ability of a system or appli-
cation to efficiently respond to user requests, considering criteria
such as response time, computational resource usage, and scalabil-
ity. According to Liao [10], performance evaluates the effectiveness
of a software system through various metrics, including response
time, throughput, and CPU utilization. Thus, regardless of the in-
tended purpose of a given software, it must deliver rapid responses
without excessive hardware resource consumption, ensuring user
satisfaction and system scalability.

Studies indicate that non-functional aspects are more likely to
exhibit field failures in large-scale software than functional aspects
[6]. Among these, performance demands particular attention due
to its potential impact, often determining an application’s success
or failure. Consequently, performance analysis should be incorpo-
rated from the early stages of software development, as late-stage
optimization changes tend to be costlier and less effective [3].

As a common and critical type of performance issue, perfor-
mance regressions occur when a system’s new version remains
functionally correct but delivers a degraded user experience (e.g.,
slower response times) and/or consumes additional resources (e.g.,
memory leaks) compared to previous versions. Such regressions
can reduce user satisfaction, increase operational costs, and lead to
field failures [10].

2.2 Performance Regression
Performance regression occurs when a new version of software
performs worse than a previous version in terms of response time,
which is the interval between a request and its respective response,
throughput, which measures the number of operations completed
per unit of time, resource consumption or scalability. This can com-
promise the user experience and increase the system’s operating
costs. According to Smith [12], “a performance regression occurs
when modifications to the software result in a worsening of efficiency,
even without apparent functional change”.

Basically, any change to a version, a function or a bug fix can
inadvertently introduce new problems. One of the main practices
for identifying potential flaws is to apply regression testing to the
software. The aim of regression testing is to ensure that modifica-
tions do not affect software features that already work efficiently.
Although a new version may appear to be functionally sound, it

may suffer from degraded performance, such as increased resource
utilization or other efficiency drawbacks [7].

In view of the studies analyzed, a viable solution proposed by
this work is to define an approximate performance test oracle, as a
result of regression tests, to guide the team in identifying potential
regression errors. We identified that the use of Oracles as a control
tool for performance regression is still being explored in a timid
way in software testing studies. We therefore intend to show the
efficiency and assertiveness of this approach in regression testing.

2.3 Test Oracle
The test oracle can be defined as a mechanism that establishes ac-
ceptable thresholds for response times and resource consumption.
For instance, in a web system required to respond within 200ms for
95 percent of requests, the oracle can be programmed to automati-
cally flag any values exceeding this threshold as performance test
failures. In software performance testing, this oracle serves to vali-
date whether performance requirements are being met by defining
acceptance criteria for key metrics such as response time, through-
put, and resource utilization. By comparing current results against
previously established benchmarks, the oracle enables objective
performance evaluation. Crucially, it can detect performance regres-
sions by identifying when a new software version demonstrates
degraded performance compared to previous versions, providing an
automated means to verify that updates maintain expected perfor-
mance standards. This approach transforms subjective performance
assessment into a measurable, repeatable testing process.

The oracle can also support automation and continuous moni-
toring by automatically validating load and stress tests, or by being
integrated into CI/CD pipelines to prevent the deployment of ver-
sions with performance issues. Another key strength of oracles is
their ability to identify bottlenecks. By defining expected values
for CPU usage, memory consumption, and latency, the oracle helps
detect resource usage anomalies.

According to Barr et al. [2], test oracles can be classified into
three categories: Specified test oracles, which evaluate all behavioral
aspects of a system against formal specifications (i.e., they rely on
documentation). Derived test oracles, which are based on artifacts
from which an oracle can be derived—such as a previous version
of the system. Implicit test oracles, which detect "obvious" failures,
such as program crashes.

Since this research aims to identify performance regression
through N-version testing, the most appropriate category for this
study is the derived test oracle. A derived test oracle distinguishes
correct from incorrect system behavior based on information de-
rived from various artifacts (e.g., documentation, system executions)
or properties of the system under test, including other versions of
it. Within this context lies the Regression Test Suite, which serves
as a practical implementation of this approach.

2.4 Regression Testing
Regression testing is a software testing approach that verifieswhether
source code changes - such as implementing new features, fixing
defects, or refactoring activities - have introduced faults into pre-
viously working system components. This technique is based on
the implicit principle that the previous software version can serve
as an oracle to validate existing functionality. As emphasized by
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Sommerville [13], “regression tests ensure that software modifications
do not adversely affect previously validated system behaviors”

Regression tests are executed through test cases that detail each
step to be performed and the expected behavior in a given context.
These test cases consist of two fundamental elements: on one hand,
the input data required to exercise the program under test; on the
other, a test oracle that allows verifying the correctness of test
execution, as explained by Xie [15]. When applied to performance
evaluation, the results obtained from running regression test cycles
serve as a crucial indicator of software stability, enabling assess-
ment of whether performance parameters were maintained or if
degradation occurred following system modifications.

2.5 N-version Testing
Therefore, a promising approach to verify whether code behavior
from previous versions remains consistent with its implementation
is the use of N-version testing. This method detects functional
problems shared between a new system version and its predecessors,
serving as a precursor to derived test oracles. In this technique, N
different software versions are independently developed to perform
the same function. These versions are then executed in parallel,
with their outputs compared to detect inconsistencies. The primary
objective of this approach is to enhance software reliability and
robustness while minimizing the impact of failures introduced by
implementation errors.

3 Proposed Approach
Performance metrics can be measured in different ways, even for
the same metric, and the measurement method directly influences
how the data is described and analyzed. In the literature [8, 9, 14],
two primary approaches to measuring performance metrics are
identified: Point-in-Time Measurement and Time-Series Measure-
ment.

• Point-in-TimeMeasurement: Captures the value of a met-
ric at a specific moment in time, typically used to assess the
system’s state after a specific action or event.
Example: “Memory usage was 1.3 GB right after the file was
loaded.”

• Time-Series Measurement: Involves collecting a sequence
of metric values at regular or irregular intervals over time,
enabling the analysis of trends, patterns, and dynamic be-
havior.
Example: “Memory usage was monitored every second for 5
seconds during the test, resulting in a time-series plot.”

Regardless of the measurement type (point-in-time or time-
series), our approach, leveraging n-version testing to define ap-
proximate performance oracles, follows the same four-step pro-
cess. An overview of the proposed approach is shown in Figure 1.

Step 1 – Preparation: Define Metric and Collect Historical Data
The performance metric of interest is specified, and historical data
is collected across 𝑛 prior versions of the SUT. The performance
expert selects how many versions to include (e.g., the last 10 or 20).

Step 2 – Preparation: Establish Reference Performance Using the
collected historical data, a Reference Performance baseline is
computed.

For point-in-time metrics, this could be a single value (e.g., aver-
age or median) or a range (e.g., minimum and maximum values).

For time-series metrics, a curve can be derived representing the
average or median value at each time point across the 𝑛 versions;
minimum and maximum curves can also be computed to represent
the range of behavior at each time step.

This step incorporates principles from N-version Testing, treat-
ing each prior version as an independent source of performance
behavior.

Step 3 – Preparation: Define Tolerance Margin A Tolerance Mar-
gin is applied to the reference performance to form an approximate
oracle. This margin can be defined using standard deviation, fixed
thresholds, or percentages over the baseline (mean, median, min,
or max). The margin specifies acceptable deviation before signaling
a performance regression.

Step 4 – Execution: Run Test and Compare Results The test case is
executed on the current version of the SUT using the same measure-
ment method applied to previous versions. The resulting metric is
then compared against the reference performance and its tolerance
margin:

• If the observed value falls within the margin, the system is
assumed to behave as expected.

• If the value is outside the margin, an alert is raised, indi-
cating a potential performance regression requiring further
investigation.

Next, we demonstrate this four-step process with two illustrative
examples: one using a point-in-time metric and another using a
time-series metric. Please note that the possible combinations of
parameters (i.e., number of historical versions, the reference perfor-
mance, and the tolerance margin) are diverse. These combinations
depend on factors such as the type of system, the dynamics of the
project, and the specific scenario being tested. Therefore, we em-
phasize the importance of involving an expert with experience in
the software’s performance requirements and characteristics.

3.1 Example with Point-in-Time Measurement
This example illustrates how our four-step approach is applied
when dealing with point-in-time performance metrics, specifically
Memory usage for our example (see Figure 2).

In Step 1 (Define Metric and Collect Historical Data), memory
usage was selected as the performance metric of interest. Data was
collected at a specific point in time, immediately after a defined
software operation (e.g., load a file), for 10 previous versions of the
SUT (Figure 2a).

In Step 2 (Establish Reference Performance), a reference value
was computed by calculating the mean memory usage across the
10 historical versions. This value represents the expected memory
consumption at that specific point in the operation (Figure 2b).

In Step 3 (Define Tolerance Margin), a tolerance range was
derived by applying a margin of two standard deviations above and
below the reference mean. This range defines acceptable variability
and acts as an approximate performance oracle (Figure 2c).

In Step 4 (Run Test and Compare Results), memory usage was
measured for the current version of the SUT (version 11) using
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Figure 1: Four-step approach for defining approximate performance oracles based on N-Version testing
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The dashed blue line represents the average, the shaded purple area indicates the tolerance margin and the black dot in the graph (d) indicates the performance in version 11.

Figure 2: Example of applying the four-step approach to point-in-time Memory usage data across 10 software versions

the same method. The observed value was compared to the previ-
ously defined tolerance range. Since the result exceeded the upper
limit of the range, an alert was raised, indicating a potential perfor-
mance regression in memory consumption that warrants further
investigation (Figure 2d).

3.2 Example with Time-Series Measurement
This example illustrates how our four-step approach is applied
when dealing with time-series performance metrics, specifically
CPU utilization for our example (see Figure 3).

In Step 1 (Define Metric and Collect Historical Data), CPU usage
was chosen as the performance metric of interest. Measurements
were taken every 0.5 seconds over a 5-second period, across 10
previous versions of the SUT (Figure 3a).

In Step 2 (Establish Reference Performance), a reference curve
was computed by calculating the mean CPU usage at each time
interval across the 10 versions. This reference curve represents the
expected behavior over time. Although it is also possible to define
minimum and maximum bounds, in this example, we opted to use
only the average curve as the reference performance (Figure 3b).

In Step 3 (Define Tolerance Margin), the tolerance area was
constructed by adding and subtracting 1 standard deviation from
the reference curve at each time point. This creates a bounded area

representing acceptable variability based on historical behavior
(Figure 3c).

Finally, in Step 4 (Run Test and Compare Results), the same
test was executed on the current version of the SUT (version 11),
collecting CPU usage at the same time intervals. The resulting curve
was compared against the tolerance area. Data points falling outside
the defined bounds indicate a potential performance regression and
signal the need for further investigation to determine the cause of
the deviation (Figure 3d).

4 Preliminary Assessment
For the experimental context of this study, we opted for discrete
data collection, as the analyzed action is specific and involves only
recording the execution time of a particular system operation. The
obtained data was then organized into charts illustrating all stages
of this analytical framework.

For the execution of this experiment, an industrial application
was selected. While confidentiality restrictions prevent us from
disclosing the application’s identity, we emphasize that it is widely
used for image editing in both desktop and mobile environments.
This application was chosen specifically because it has documented
records of performance regression bugs in its project management
tool, making it a suitable model for collecting and analyzing per-
formance results. The study scope reflects real-world conditions
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Figure 3: Example of applying the four-step approach to time-series CPU usage data across 10 software versions

faced by users operating in continuous integration environments,
enabling a more practical evaluation. The error scenario selected
for reproduction corresponds to an actual, previously reported and
fixed issue in the application, ensuring data authenticity and ana-
lytical relevance.

The error description indicates that when selecting a thumb-
nail image to enlarge its view, the time to fully display the image
reached 15.6 seconds—in stark contrast to previous versions where
this process never exceeded 2 to 3 seconds. This reference value was
subjectively estimated by the testing team without concrete vali-
dation or pre-established metrics. Notably, the development team
promptly acknowledged the issue. However, the debate centered
on defining an acceptable response time, as no formal performance
requirement existed for this functionality.

The lack of clearly defined performance requirements or key
performance indicators (KPIs) in this project motivated the interest
in establishing an approximate performance test oracle, using the
historical performance of prior software versions as a reference.
In this context, we identified that applying the n-version testing
method could be an effective approach for measuring consistent
output data, enabling a comparative and systematic assessment of
the application’s behavior across its different versions.

4.1 Preparation
To apply our approach in a preliminary evaluation of a real-world
application, we selected an issue that identified a version with a
previously confirmed performance regression problem. After re-
serving this version as a reference, we retrieved the ten preceding
versions of the application and applied our approach in successive
execution steps.

The performance issue manifested when enlarging a 1920x1080
pixel image (227 KB in size). The loading time for this image, which
in preliminary versions varied between 2 and 3 seconds, increased
to 15 seconds in the regressed version. Notably, resolving this bug re-
quired extensive discussion among testers, developers, and project
leaders, as no established performance metrics existed to define
acceptable response times for this (or any) application operation.
Given this absence of criteria, the adopted solution used previous
versions’ execution times as the performance benchmark.

Our approach was implemented in the replication scenario as
follows: In Step 1 (Define Metric and Collect Historical Data), ten
previous system versions were selected to collect the ’response time’
metric after operation execution (Figure 4a). In Step 2 (Establish
Reference Performance), the collected data were used to derive the
performance baseline (Figure 4b). Subsequently, in Step 3 (Define

Tolerance Margin), a tolerance margin was defined based on two
standard deviations from the reference line, as illustrated in Figure
4c. Finally, in Step 4 (Run Test and Compare Results), the test was
executed on the target version, which exhibited a known latency
issue, and the results were plotted on the same graph (Figure 4d),
enabling clear analysis of the anomalous behavior displayed by this
version.

The combination of parameters (10 historical builds, the average
as the performance reference, and 2 standard deviations for the
tolerance margin) was defined by a test specialist, a member of the
project being evaluated. The specialist considers this combination
to be a balanced and realistic metric for the scenario being tested.

Based on the results obtained thus far, we begin our analysis of
the oracle’s relevance and effectiveness in identifying performance
failures in projects lacking clear requirements definition for such
parameters.

4.2 Execution
We automated the test using Python within Visual Studio Code
(VSCode), conducting all experiments sequentially on a single ma-
chine to minimize external interference that could compromise
results. The test procedure involved: (1) launching the application
via Windows navigation bar search; (2) locating a specific image
using the application’s search field; and (3) selecting the thumb-
nail from search results. An automated script then recorded the
response time until full image display.

The sequential visualization in Figure 4 demonstrates a empiri-
cal approach to performance regression detection. The four-panel
structure systematically progresses from raw data collection (a) to
statistical benchmarking (b-c) and anomaly detection (d), effectively
operationalizing the concept of metric-driven quality control.

The figure 4(a) provides a visual representation of the historical
distribution of response times, enabling the identification of vari-
ability and performance trends. This step is crucial for establishing
a baseline—a reference performance pattern derived from empirical
data.

The figure 4(b) presents the calculation of the overall mean re-
sponse time. This value serves as a global reference metric, repre-
senting the typical behavior of the system throughout the evaluated
versions. In practice, this mean may be integrated as an acceptance
criterion in regression testing, reinforcing traceability and perfor-
mance predictabilit.

The figure 4(c) introduces a tolerance band based on the stan-
dard deviation of the general mean (±2𝜎). By visually emphasizing
this margin, the figure illustrates an acceptable variation range
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The dashed blue line represents the average, the shaded purple area indicates the tolerance margin and the black dot in the graph (d) indicates the performance in version 11.

Figure 4: Applying the four-step approach to point-in-time Response Time in a real application with known performance bug

in response times, reflecting the natural capability of the develop-
ment process. This approach prevents false alarms due to minor
fluctuations and focuses attention on significant deviations, thus
promoting a more robust performance verification process.

The figure 4(d) illustrates the introduction of a new performance
measurement (V11), directly compared against the previously es-
tablished tolerance range. The V11 value lies outside the standard
deviation band, indicating a serious performance regression.

The figure clearly demonstrates how the definition of statisti-
cal thresholds can support technical decision-making in software
evolution. Using performance benchmarks and tolerance margins
as quantitative criteria not only facilitates automated performance
testing, but also strengthens governance over software quality. Ver-
sions with values outside the defined range become candidates
for inspection, supporting a continuous improvement culture and
preventing the silent introduction of performance-related defects.

This preliminary evaluation seems to support the use of toler-
ancemargins for comparative assessments. Awell-defined tolerance
margin serves as an effective gauge for: (1) prioritizing issues, (2)
evaluating inconsistency severity, (3) enabling preemptive resolu-
tions, and (4) reducing unplanned corrective costs.

5 Conclusion and Future Work
The obtained results prompt a discussion about the importance
and effectiveness of test oracles in detecting performance issues.
These initial findings highlight the value of establishing test oracles
for requirements lacking defined metrics, helping teams monitor
performance variations. It is crucial to clarify that this experiment
does not categorically classify results outside the established tol-
erance range as performance errors; rather, it signals that such
inconsistencies warrant detailed analysis before potential defects
are identified too late.

To further validate this approach, we plan to apply n-version
testing to open-source applications with documented performance

issues in their repositories. Additionally, we intend to expand the
analysis to include other performance metrics such as energy con-
sumption, network usage, data transfer rates, and temperature mea-
surements. The acceptable tolerance margin could also be modeled
using alternative statistical approaches, including the addition of
confidence intervals to reference calculations and the incorporation
of non-parametric methods.

Should the results confirm our hypothesis, this approach would
make the test oracle highly recommendable for performance-sensitive
applications, continuous integration pipelines, and systems with
frequent iterative updates.
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