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ABSTRACT
Software quality depends not only on production code but also
on the quality of test code. Among the factors that compromise
this quality, test smells stand out, poor implementation patterns
in tests that negatively affect the readability, maintainability, and
reliability of the test suite. Although tools such as tsDetect and
JNose support test smell detection, they operate post-hoc, requiring
the code to be complete and analyzed outside the development
environment. Other tools, like RAIDE, offer detection within the
IDE via plugins; however, the analysis is not instantaneous and still
occurs after the code is written. These reactive approaches result in
delayed feedback and significantly increase the refactoring effort.
In this context, we propose AriesLinter, a static analysis tool that
can be integrated into major development environments and is
capable of detecting test smells in real time, as the test code is being
written. Built on top of the Checkstyle infrastructure, AriesLinter
automatically detects 10 of the most recurrent test smells reported
in the literature and commonly found in Java projects. The tool is
cross-platform and compatible with multiple IDEs. By anticipating
the detection of poor patterns and embedding it into the natural
workflow of developers, AriesLinter acts proactively, reducing the
likelihood of test smells being introduced into the codebase and
fostering a culture of continuous attention to test quality.
Demo video: https://youtu.be/Cj6mQGGHlvk
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1 Introduction
In software engineering, the pursuit of software quality is a contin-
uous endeavor that spans not only production code but also test
code. Among the elements that compromise test code quality, test
smells stand out as significant factors. Test smells are poor design
and implementation patterns in test code that reduce readability,
maintainability, and trust in the test suite [14]. These anti-patterns
may lead to brittle tests, hinder code evolution, and increase the
long-term cost of software maintenance [10].

Modern software development increasingly recognizes test code
quality as equally critical as production code quality [1, 22]. Test
smells - problematic patterns in test implementation - directly un-
dermine test effectiveness and maintainability [9, 10]. Empirical
evidence shows these suboptimal patterns increase test flakiness
by 40% and significantly raise maintenance costs in large-scale

projects [9, 21]. The persistence of test smells in codebases presents
particular concern, with studies documenting an 80% probability
of smells remaining uncorrected even 1,000 days after introduction
[7, 21]. This persistence stems from three key factors: unrealistic
time pressures in development cycles [20], insufficient awareness
of test quality best practices [10], and the historical prioritization
of production over test code [7].

Numerous types of test smells have been cataloged over the
years [11], and tools have been developed to detect them in sev-
eral programming languages, including Python [5], JavaScript [15],
Scala [8], and Java [22]. Despite the availability of these tools, most
existing solutions operate under a post-hoc analysis model. Tools
like tsDetect [16] and JNose [22] perform detection only after the
code has been fully implemented andmanually submitted for review.
Others, such as RAIDE [19], improve on integration by functioning
as IDE plugins but still rely on manual triggering and post-editing
analysis. These delayed feedbackmechanisms substantially increase
refactoring effort and reduce developer productivity.

In contrast, early detection mechanisms—such as linters—are
increasingly adopted in modern development environments due
to their ability to provide real-time, in-editor feedback [3]. Linters
analyze code as it is written, identifying violations of predefined
rules, thereby preventing issues from being committed in the first
place [4]. Their tight integration into IDEs makes them the first line
of defense against the introduction of code and test anti-patterns.

However, although linters are widely available for production
code, there is still a gap in the availability of equivalent tools specif-
ically designed for test smells—especially those that offer real-time
detection. This gap motivated the creation of AriesLinter, a light-
weight and extensible linter for detecting test smells in tests written
in Java. Built on top of the CheckStyle infrastructure, AriesLinter
provides real-time static analysis and is compatible with IDEs such
as Visual Studio Code1 and IntelliJ IDEA2. It also includes a Maven
plugin that prevents the project from being compiled while test
smells are present.

AriesLinter currently detects 10 of the most frequent and dis-
ruptive test smells reported in the literature, providing developers
with continuous feedback during the test development process. By
embedding test smell detection directly into the development work-
flow, AriesLinter shifts quality control from a reactive to a proactive
paradigm, helping developers maintain high test code quality and
reducing the cost of future maintenance.
1https://code.visualstudio.com/
2https://www.jetbrains.com/idea/

https://code.visualstudio.com/
https://www.jetbrains.com/idea/
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Current test smell detection approaches exhibit fundamental
limitations in feedback timing and workflow integration [1, 17].
Existing tools predominantly employ post-hoc analysis models re-
quiring completed code and manual execution, resulting in delayed
feedback cycles [1, 19, 22]. This reactive paradigm proves partic-
ularly costly, with late-stage refactoring requiring up to 3× more
effort than immediate corrections [9]. The effectiveness of detection
heuristics depends more on implementation choices and workflow
integration than on theoretical capabilities [17]. Immediate feed-
back during development sessions has proven crucial for reducing
smell introduction rates [13, 20], while developer education alone
shows limited impact without tool support [10, 20].

These findings motivate AriesLinter’s core innovations:
• Real-time detection during active development
• Deep IDE integration matching developer workflows
• Balanced test smell coverage (10 critical smells) optimizing
precision/recall tradeoffs

The tool specifically addresses the "quality awareness gap", where
68% of developers inadvertently introduce smells despite under-
standing test quality principles. By embedding detection in the
coding workflow, AriesLinter transforms test quality from a ret-
rospective concern to an integral part of the development process
[9, 17].

2 Background
This background section establishes the necessary context for un-
derstanding AriesLinter by discussing the fundamental concepts of
static code analysis and linting tools.

2.1 Linter
The evolution of static code analysis began with Stephen C. John-
son’s original lint utility developed at Bell Labs during the late
1970s [2]. Designed specifically for the C programming language,
this foundational tool introduced the paradigm of detecting "bugs
and obscurities" through static pattern matching of source code [2].
Over four decades of technological advancement, linting tools have
expanded far beyond their original capabilities, now supporting
multiple programming paradigms and sophisticated analysis tech-
niques while retaining the core principles established by Johnson’s
work [2, 12].

Modern linters operate through a multi-stage static analysis
process that begins with lexical analysis, where source code is de-
composed into interpretable tokens [12]. This token stream then
undergoes syntactic analysis to construct an Abstract Syntax Tree
(AST), forming a structural representation of the program’s logic
[2, 12]. The final phase applies configurable rulesets to this AST,
evaluating code quality against predefined patterns and heuristics
without requiring actual program execution [12]. This architecture
enables comprehensive detection of diverse code quality issues
ranging from basic syntax violations and type system inconsisten-
cies to more subtle logical redundancies and security vulnerabilities
[2, 12].

The theoretical foundation of linting tools positions themuniquely
within the compilation pipeline [12]. Functioning asmeta-compilers,
linters prioritize defect detection over code generation, adopting
more flexible analysis models than traditional compilers [2]. Unlike

compilers that must reject invalid code, linters tolerate non-fatal
errors during analysis to support gradual code quality improve-
ment [12]. This tolerance, combined with configurable rule severity
levels, explains why modern linters have become indispensable in
professional software development workflows [2, 12]. Their value
increases significantly when integrated directly into Integrated
Development Environments (IDEs), where they provide real-time
feedback during the coding process itself [2]. Contemporary im-
plementations extend beyond basic style checking to incorporate
sophisticated program analysis techniques, including data flow
analysis and pattern-based vulnerability detection, while maintain-
ing the original vision of preventing defects before code execution
[2, 12].

Figure 1 illustrates this architecture by presenting the five core
stages of a modern linter. The process begins with the source code,
which is passed through lexical and syntactic analysis to produce
an Abstract Syntax Tree (AST). The AST is then evaluated by a
configurable rule engine that detects violations based on pattern
matching and static heuristics. Finally, the issue reporter delivers
structured feedback directly to the developer. This pipeline enables
real-time, in-editor analysis and supports proactive quality assur-
ance in contemporary development environments.

Figure 1: Conceptual architecture of a modern linter.

2.2 CheckStyle
Checkstyle was originally developed in 2001 by Oliver Burn as an
automated verification tool for Java coding standards, designed to
enforce consistency and improve code readability [6]. Over two
decades, it has evolved into one of the most widely-adopted static
analysis tools in the Java ecosystem, serving both individual devel-
opers and large enterprise teams [6].

As a specialized Java linter, Checkstyle’s core functionality in-
volves automated verification of code compliance against config-
urable style rules and coding standards [6]. Its modular architecture
enables extensible rule customization through:

• Predefined checks for common Java conventions
• Configurable severity levels
• Custom rule development via AST parsing

The tool’s current maintenance involves an active open-source
community, with the original creator no longer directly contributing
[6]. Modern implementations support:

• IDE integration (IntelliJ, VS Code)
• Build tool plugins (Maven, Gradle, Ant)
• Continuous integration pipelines

Figure 2 illustrates the overall architecture and workflow of
Checkstyle, including its interaction with style rules, Java source
code, and the generation of feedback.
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Figure 2: Overview of Checkstyle architecture and analysis
flow.

2.3 Test Smells
Test Smells (TS) are suboptimal design or implementation choices in
test code that can negatively affect code readability, comprehension,
and maintainability[17, 20]. Their presence often results in less
effective tests, which may fail to detect bugs in the production
code[10, 16]. Moreover, they increase the cost of maintaining the
test suite and often serve as early indicators of poor programming
practices in the codebase[19].

The term Test Smell originates from the broader concept of
Code Smell and refers to symptoms in test code that[9, 18], while
not preventing test execution, can degrade the ability to detect
regressions, inflate maintenance effort, and erode developers’ trust
in the test suite [10]. As with code smells, test smells are not bugs
themselves but rather signs of structural weaknesses that can lead
to future failures.

Refactoring test smells has a positive impact on test code qual-
ity: negative attributes such as code size, coupling, and complex-
ity are significantly reduced, while positive qualities like readabil-
ity, reusability, and maintainability are greatly enhanced[7]. Ad-
dressing test smells early—particularly in agile development en-
vironments—can reduce long-term maintenance costs by up to
threefold[9].

Test smells are frequently introduced in the initial versions of
test code and tend to persist over time. Studies show that there is
an 80% probability a test smell will remain unaddressed even after
1,000 days of its introduction[21].

3 AriesLinter
AriesLinter was created to fill a gap in the state of the art, bringing
the benefits of real-time static code analysis. As the code is written,
it is analyzed — a functionality also known as a linter. Our library
was developed based on CheckStyle, a static code checker for the
Java language.We chose CheckStyle due to its wide range of plugins
for execution and integration with the main IDEs available on the
market.

The advantage of using a linter lies in the detection of errors as
the code is being written, allowing for early assessment of code
quality and preventing problematic code from being committed
to repositories — and especially from being included in a system
release.

When analyzing the state of the art, we could not find a linter
focused on detecting Test Smells in Java. In fact, there are several
good tools for test smell detection, including tsDetect [16] and
JNose [22]. However, both require additional steps to be used after
the code has been written. Moreover, tsDetect is a command-line
level tool, which further hinders its usability.

It was in this context that the idea to create a tool that addresses
this gap emerged. From its conception, we decided that it should
follow a few principles: it should run in the most widely used
IDEs, be easy to install, simple to use, provide clear messages, and
be fast during test writing. Therefore, we developed our tool as a
module of CheckStyle — alreadywell-established in Java application
development and supported by various stable plugins for most IDEs.

Thus, AriesLinter is an extension of CheckStyle, aimed at an-
alyzing Java projects, specifically those with tests written using
the JUnit framework. It enables the analysis of test code quality
through the detection of test smells during the coding process itself.
The tool identifies classes, methods, and lines affected by a specific
test smell in real time.

As explained in the background section, CheckStyle is a linter
for Java code available as a plugin in various IDEs, such as Visual
Studio Code. Since AriesLinter is built upon CheckStyle, it can be
configured in any environment where the CheckStyle plugin is
available.

Our tool detects 10 types of test smells, which we describe below:

(1) Conditional Test Logic: It occurswhen a test method contains
one or more control statements, whereas it should be simple
and execute all statements.

(2) Default Test: When an IDE automatically generates a tem-
plate to be modified for a test, but the developer leaves the
example without making any changes.

(3) Exception Handling: It occurs when a test method for which
pass or failure depends on the production/test method to
throw an exception instead of using the testing framework
constructs.

(4) Verbose Test: A test method with more than 30 lines.
(5) Ignored Test: It occurs when developers suppress test meth-

ods from running using the tags @Ignore or @Disabled.
(6) Magic Number Test: It occurs when assert statements in

a test method contain numeric literals as parameters that
cannot provide their meaning.

(7) Sensitive Equality Test: Occurs when the toString method is
used within a test method.

(8) Redundant Print: It occurs when a test method contains print
statements.

(9) Sleepy Test: Explicitly causing a thread to sleep can lead
to unexpected results as the processing time for a task can
differ on different devices.

(10) UnknownTest: It occurs when a test method does not contain
assertions. As a result, JUnit shows the test method as passing
unless the statements raise an exception in the test method.

The selection of test smells implemented in the tool was guided
by two main criteria. First, we considered smells that are already
detected by well-established tools in the literature, such as tsDetect
and JNose, aiming to align our approach with recognized practices.
Second, during the internal testing phase, we implemented the
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Figure 3: Architecture of AriesLinter.

detection of all smells that were technically feasible. However, we
chose to retain only those whose detection did not achieve 100%
accuracy in our test suite. This decision aimed to maximize the
tool’s value as a support for the test review process, prioritizing
smells that are relevant in both the literature and industry.

As previously discussed in the background section, Checkstyle
is a Java linter available as a plugin for various IDEs, such as Visual
Studio Code and Intellij IDEA. Because AriesLinter is built on top of
Checkstyle, it can be configured in any development environment
that supports the Checkstyle plugin.

Regarding its test smell detection capabilities, AriesLinter lever-
ages Checkstyle’s abstract syntax tree (AST) construction mecha-
nism to analyze source code and identify smells. Each test smell is
defined through a dedicated detection module, which implements
the specific algorithm used to flag the corresponding code pattern.

Figure 3 presents the overall design of AriesLinter, highlighting
its main components and how they interact to perform real-time
test smell detection.

3.1 Usage Examples
As previously discussed, AriesLinter can be used in any IDE that
supports the Checkstyle plugin. To demonstrate this cross-IDE
compatibility, we present usage examples in the most popular Java
development environments.

Figure 4 shows a test smell detection case using AriesLinter in
Visual Studio Code. The test method should_be_verbose_test_0
is underlined in red, indicating a violation detected by the linter.
The IDE highlights the issue and displays the message "Verbose Test
detected: method with 33 lines", providing concise feedback about
the nature of the detected test smell. Notably, the issue is flagged
in real time, even before the developer saves or runs the code.

Figure 4: Verbose Test detection in VSCode

In Figure 5, we observe a similar case within IntelliJ IDEA. Again,
the test method is underlined, and a tooltip message clearly reports
the detection: "Verbose Test detected: method with 31 lines." This
reinforces AriesLinter’s consistent behavior across different IDEs,
maintaining the same user experience and detection feedback.

Figure 5: Verbose Test detection in IntelliJ (inline view)

Figure 6 provides a broader view of how AriesLinter integrates
with IntelliJ’s Checkstyle plugin panel. In the left sidebar, the Check-
style scan results are accessible via a dedicated tab. The "Rules"
dropdown shows that the selected ruleset is "AriesLinter". The
panel displays the detection of three verbose test methods in the
file VerboseFixture.java, with each entry providing line-specific
feedback, such as the number of lines and the exact smell type.
This allows developers to quickly locate and fix problematic test
methods.

Figure 6: Verbose Test detection in IntelliJ (Checkstyle panel)

In Figure 7, we now see the detection of a Magic Number. The
line where the smell is identified is underlined in red, and an er-
ror message is displayed with a brief description: "Magic Number
detected: use a variable with a self-explanatory name."

Figure 7: Magic Number detection in VSCode (in line view)

In Figure 8, still using an example in VSCode, we can observe the
detection of the Ignored Test smell. Upon analysis, we see the entire
test highlighted in red, indicating a syntax-related issue, along with
a context-aware error message: "Ignored test detected: method with
an ’@Ignore’ annotation."
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Figure 8: Ignored Test detection in VSCode (in line view)

4 Related Works
The literature presents several tools for test smell detection, each
with distinct characteristics. In this section, we will analyze some
existing solutions and their limitations, always in comparison with
AriesLinter.

First, we have tsDetect3, a well-established open-source tool
for detecting test smells in Java code [16]. Developed by an inter-
national research team, it was designed to integrate test quality
verification into modern code reviews. Implemented as a command-
line JAR file, tsDetect operates through three sequential phases: test
file detection (identifying unit test files), test file mapping (linking
tests to corresponding production classes), and test smell detec-
tion (identifying 21 distinct smell types using JavaParser for AST
construction). The tool generates CSV reports with binary results
indicating the presence of smells. While it demonstrates high detec-
tion accuracy, tsDetect has critical limitations: it requires complete
code for analysis, involves complex setup procedures with signifi-
cant time overhead, and lacks integration with IDEs.

Next, we consider JNose4, an extension of tsDetect developed by
Brazilian researchers [22], which introduced a web-based graphical
interface with code coverage metrics. The tool processes projects
in three stages: input configuration, project analysis (operating
in ClassTest, TestSmell, or Evolution modes for different perspec-
tives), and CSV report generation. JNose improved upon tsDetect
by offering more intuitive interaction and faster processing times.
However, it maintains similar constraints, requiring fully imple-
mented test code and operating outside development environments,
which demands manual intervention to execute analyses.

Finally, we have RAIDE5, an Eclipse plugin [19] specialized in
detecting and refactoring two specific smells (Assertion Roulette
and Duplicate Assert). Its workflow combines test class detection,
smell identification through Eclipse views, and semi-automated
refactoring with change previews. Although RAIDE advances IDE
integration by operating within Eclipse and supporting automated
fixes, its applicability remains narrow due to Eclipse exclusivity,
limited smell coverage, and the requirement for manual approval
of each refactoring operation.

To conclude the section, Table 1 presents a systematic compari-
son between the existing tools and our proposed solution, Aries-
Linter.

5 Conclusion
This work presented AriesLinter, a static analysis tool designed
to detect test smells in real time during the development of auto-
mated tests in Java. Built as an extension of the Checkstyle plugin,
3https://testsmells.org/
4https://testsmells.org/pages/testsmelldetector.html
5https://raideplugin.github.io/RAIDE/

Table 1: Comparative Analysis of Test Smell Detection Tools

Feature tsDetect JNose RAIDE AriesLinter
Detection Timing Post-hoc Post-hoc Post-hoc Real-time
IDE Integration None Web Interface Eclipse-only Multi-IDE
Automated Correction No No Partial No
Test Smells Detected 21 21 2 10
Analysis Trigger Manual Manual Manual Continuous
Setup Complexity High Medium Medium Low
Feedback Latency Hours-minutes Minutes Minutes Seconds
Refactoring Support No No Yes No
Language Support Java Java Java Java

AriesLinter distinguishes itself from traditional approaches by in-
troducing a proactive perspective on test quality assurance, shifting
the detection of anti-patterns from post-development analysis to
the moment the test code is written.

Themotivation behind the tool is grounded in empirical evidence
from the literature, which highlights the persistence and harmful
impact of test smells in codebases, as well as the limitations of exist-
ing tools in terms of response time, usability, and integration with
modern development environments. In this context, AriesLinter
emerges as a proposal to mitigate the "quality awareness gap"—a
phenomenon in which developers, despite knowing test best prac-
tices, still introduce smells due to the lack of adequate tools that
offer timely feedback.

Throughout the development of AriesLinter, we adopted guid-
ing principles such as ease of use, lightweight integration, and
multi-IDE support, ensuring not only technical effectiveness but
also practical viability for adoption in everyday development work-
flows. The tool currently detects 10 recurring types of test smells,
using specialized detection algorithms built on top of Checkstyle’s
abstract syntax tree (AST).

However, we acknowledge that the journey toward continuous
improvement in test quality does not end here. As future work,
we highlight four main directions: (i) expanding the coverage of
smells, including more complex and context-dependent categories;
(ii) incorporating automated fix mechanisms and contextualized
refactoring suggestions; (iii) conducting controlled empirical stud-
ies and evaluations in industrial environments to measure the tool’s
impact on developer productivity and the long-term quality of the
test suite; and (iv) performing a new comparative analysis of Aries-
Linter with other tools, such as SonarLint and customized Check-
Style rules for test code, in order to provide a broader and more
contextualized view of the tool’s capabilities.

Ultimately, AriesLinter represents more than a technical con-
tribution: it proposes a paradigm shift in which test code quality
ceases to be a retrospective concern and becomes a continuously
monitored, addressed, and valued aspect from the earliest stages of
software development.

ARTIFACT AVAILABILITY
The authors declare that the research artifacts supporting the find-
ings of this study are accessible at:
https://zenodo.org/records/17058187

The AriesLinter source code is licensed under the MIT license
and is available on GitHub at https://github.com/viRafael/arieslinter.
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