
Heur istics for Automatic Detection
of Design Patterns in Object-Or iented Software

André Luis Castro de Freitas 1

Ana Maria de Alencar Price 2

1 Centro Federal de Educação Tecnológica de Pelotas & Universidade Católica de Pelotas
Pelotas - RS

afreitas@atlas.ucpel.tche.br
2 Universidade Federal do Rio Grande do Sul

Porto Alegre - RS
anaprice@inf.ufrgs.br

Abstract

 Design patterns summarize the experience of expert designers. Patterns are not
invented, rather they are extracted from existing systems. The extracting process of patterns
had involved the observation of a number of systems designs, looking for patterns across
those systems. A design pattern is a reusable implementation model or architecture that can be
applied to solve a particular recurring class of problem. In general, it is hard to recognize a
pattern use in real-world software systems, unless you know what you are looking for and go
carefully and methodically searching for a particular pattern. This paper is about the problem
of detecting the essence of design patterns. By pattern essence we mean those collaborations
between classes that characterize each one of the patterns. Heuristics have been created to
identify and apply design patterns to object-oriented programs. The rules are based on the
structural realtionship between classes and objects. It is implemented a tool in Smalltalk that
automatizes detection and identification of design patterns in object-oriented applications. The
tool intendes to be a validation prototype for the buit in heuristics. The development of the
examples allows patterns comparison, showing advantages and tendencies in using one or
another type of collaboration between classes and objects. Patterns studies stimulate facil ities
during the building of object-oriented programs. The patterns also help in the definition of
good designs. We understand that a good design is a software that follows the fundamental
concepts of the object-oriented paradigm including those rules stated by recognized.

Keywords: Software Engineering, Object-Oriented Design, Design Patterns, Smalltalk.

1 Introduction

 Methodologies for developing object-oriented software and programming languages
has evolved during last years. Both of them aim to reduce the problems of software
maintenance. However these methodologies fail in providing suitable support for
understanding the addressed systems. According to [ARA 93] in general, the methodologies
for object-oriented software development fail in providing suitable formal concepts to reflect
the mapping between project and implementation.
 It is necessary to consider that the development of good quality object-oriented
software is not a task that can easily be accomplished by inexperienced designers on object-
oriented technology. In general, the design of object-oriented systems is definitively more
complex of being accomplished than the design of systems that are based on the procedural
technology. The reason for that complexity mainly comes from the high interaction among the
objects created during run time.

Possibly the best idea brought from the object-oriented design community in an
attempt to solve these problems, has been the notion of design patterns. Design patterns have
the potential to represent the common abstractions that experienced object-oriented designers
use to solve design basic problems in a way that can be understood and util ized by a novice
designer.

Formally codifying these solutions and their relationships lets us successfully capture
the body of knowledge which defines our understanding of good architectures that meet the
needs of their users [APP 00].

1.1 Motivation

 The development of good quality software is a constant concern among researchers of
the software engineering area. According to Agarwal [AGA 95], software production is
considered a recent technology in comparison to other industrial activities. Software
maintenance still consumes a lot of effort and it presents a high final cost.
 The model defined in [AGA 95] is a help for the understanding of the process of
software development guided to objects. It evaluates the maintenance efforts spend in the
system and it manages an optimizing process. The work presents techniques for the defining
the system structures (entities and relationships) during the stages of software development.

The proposal described in [JIA 96] is characterized by the capture and dynamic
simulation of relationships among objects. The work mentions a series of steps for systems
modeling. These steps are not sequential, and there is a great iteration and relationship among
them. That work shows a formal representation that is mentioned to characterize knowledge
domain, which turns more practical and necessary the transformation processes during the
modell ing phase.
 More specific works in the area of design patterns are also in process. Seemann [SEE
98] shows how to recover design information from Java source code. The tool takes a pattern-
based approach and proceeds in a step by step manner deriving several layers of increasing
abstraction. A compiler collects information about inheritance hierarchies and method call
relations. It also looks for particular source text patterns coming from naming conventions or
programming guidelines. The author build up two inheritance structures for classes and
interfaces and their interrelation. The work uses the term references that means a class has an
attribute of the type of the second class. This relationship may be either an association or
aggregation.

 Bansiya [BAN 98] proposes a tool that automates detection, identification and
classification of design patterns in C++ programs. The tool can identify most structural and
some behavioral patterns. Object-oriented languages such as C++ enphasize the structural
relationship between classes and objects and provide such powerful capabili ties as
polymorphism, which lets child classes override the parent class while using and manipulating
objects of the child classes as objects of the parent-class types. The proposal consists of a
series of pattern algorithms illustrated through a case study of a drawing tool kit.
 The use of tools, either automatic or manual, by designers during the development of
object-oriented software design is of great importance to help to reduce the inherent
complexity of the understanding process. These tools aid the designer in the construction of
models, through analysis mechanisms, exploration and visualization of the information in
different abstraction levels.

1.2 Objectives

Reverse engineering intends to extract the specification of complex software systems.

A definition of what reverse engineering is about in [CHI 90] is: “Reverse engineering is the
process of analyzing a subject system to identify the system's components and their inter-
relationships, and to create representations of the system in another form at higher levels of
abstraction” .

For maintenance, reuse, and reimplementation, designers frequently need to examine
source code to understand the software system. The ability to learn and understand software
system from source code is greatly enhanced by visualizing the systems at higher levels of
abstraction, rather than seeing them nebulous collections of classes and methods
implementation. [BAN 98]
 Visualizing object-oriented programs as a system of interacting patterns requires
detecting, indentifyng and classifying groups of related classes in program code. These
visualizations represent known patterns that perform an abstract task and are not necessarily
known pattern solution. Aiming to support the development process of object-oriented
software, this work proposes identifying design patterns essence. Heuristics have been created
for identifying and applying design pattern to object-oriented programs. These heuristics are
applied by a tool implemented in Smalltalk that automates identification of design patterns in
object-oriented applications.
 This paper is organized as follows: Section 2 presents characteristics of Design
Patterns and class collaborations. Section 3 shows an automatic identification tool for design
patterns. The tool aggregates the characteristics described in Section 2. In Section 4 there is
the conclusion enfhasizing the paper contribution.

2 Design Patterns

 A design pattern is a reusable implementation model or archicture that can be applied
to solve a particular recurring class of problem. The pattern describe how methods in a single
class or sub hierarchy of classes work together. More often, it shows how multiple classes and
their instances collaborate [GAM 94].

2.1 Relationships Between Objects

 This approach focuses on the abil ity of identifying structural and functional key
relationships between classes and objects. The structural relationships of interest for pattern
identification are inheritance, aggregation and use. While inheritance is easy to identify,
aggregation and uses can have several forms of implementation. Typically, in Smalltalk, the
aggregation and uses relationships are detected by looking for attribute declarations in classes
only at runtime, when the objects are being created and manipulated [ALP 98].
 Among the basic strategies for using the association mechanism there is a need of
defining an attribute in each class that can store or make reference to all the others related
objects. In order to keep these attributes updated there must exist methods of addition and
removal of objects.

2.2 Heur istics for Automatic Detection

The proposed heuristics are expressed by logic clauses with the intention of presenting
them in a formal way their use in a tool of design specification. There is a data dictionary
which stores information regarding the classes involved in the application. The dictionary was
built in the form of tables and the access to information is done by relational calculus [ELM
89].

Relational calculus is a non procedural language which allows a group of tuples to be
defined as expressions of the type { t | P(t)} meaning that for each tuple t the predicate P(t) is
true: t ε Result → P(t). A variable tuple (VT) represents to each instant a tuple T of a certain
relationship R. The formula P(t) can present more than a variable.
 For example, the main method below represents a fragment of the identified structure
for the Composite pattern in a design. The Composite pattern allows you to build complex
objects by recursively composing similar objects in a treelike manner. The pattern also allows
the objects in the tree to be manipulated in a consistent manner, by requiring all the objects in
the tree to have a common superclass or interface [JON 99].

VerifyRelationshipComposite
level = 0
level_indicator = nil
relationship_indicator = nil

∀ Objetos_Em_Teste ∈ Dictionary
{ objetoTeste | objetoTeste ∈ Objetos_Em_Teste }
 { objetoVerificado | ∃ objeto ∈ Objetos (
 objeto[Nome_Objeto] =

 objetoTeste[Nome_Objeto]
 objetoVerificado = objeto) }

VerifyHierarchy: objetoVerificado

IF level > 1
 IF all (level_indicator of same attribute =

Verdadeiro)
 IF all (relationship_indicator of same attribute

> 1)
 IndicateComposite

VerificaHierarchy: objetoVerificado

level = level + 1
∀ Associações ∈ Dictionary
{ objetoAssociação | ∃ associação ∈ Associações (
 associação[Nome_Objeto] = nomeObjeto[Nome_Objeto]
 objetoAssociação = associação) }

// Call objects with relationship
 ...

3 The Tool

 This section presents a tool which automatizes the detection, identification and
classification of design patterns in Smalltalk programs. The tool identifies some structural
patterns by using the proposed heuristics. The present stage of the tool shows how to get the
characteristics of an object related to its relationships and functions. This object can be

visualized and on it can be identified some patterns such as Composite, Decorator and
Observer when they are found in the relationships of the object being analysed. We also want
to adapt the study of other patterns to the tool.

In Figure 1, the tool presents the description of the object which is being analysed in
its main window. The class attributes are visualized in the same screen. The user can select
which attribute he wants to evaluate. The respective content wil l be presented for each
attribute.

Example application

| listaDinheiroVivo listaMonetario listaBens |

listaDinheiroVivo := AtivoComposite new.

listaDinheiroVivo adicionaAtivos: (Garantia tipo: 'reais' valor: 5000.00).

listaDinheiroVivo adicionaAtivos: (Garantia tipo: 'dolares' valor: 10000.00).

listaMonetario := AtivoComposite new.

listaMonetario adicionaAtivos: (Garantia tipo: 'aplicacoes' valor: 5000.00).

listaMonetario adicionaAtivos: (Garantia tipo: 'conta corrente' valor: 1200.00).

listaMonetario adicionaAtivos: (Garantia tipo: 'poupanca' valor: 2300.00).

listaMonetario adicionaAtivos: (listaDinheiroVivo).

listaBens := AtivoComposite new.

listaBens adicionaAtivos: (Garantia tipo: 'imoveis' valor: 150000.00).

listaBens adicionaAtivos: (Garantia tipo: 'se-moventes' valor: 45000.00).

listaBens adicionaAtivos: (listaMonetario).

listaBens teste.

^listaBens valor

FIGURE 1 - First Comunication Window

 The Visualiza option allows to check the structure of the objects involved in the
application as well as the class diagram. Only the objects which are marked as a reference in
their description will be visualized in the structure. The window bellow shows the classes
diagram that represents an application being analised. If a diagram follows the any predefined
heuristics a pattern indication will be done. Figure 2 shows the Composite pattern where a
hypothetical object is related to objects by Garantia or AtivoComposite. Therefore the
realtionships happens to the Ativo superclass.

FIGURE 2 - Composite Pattern Diagram

4 Conclusion

 The goal of this work is to give examples of how to use mechanisms for detection
design patterns. Heuristics have been defined for design patterns to help in the construction of
new projects because they are suitable to direct the development of activities which are based

Composite
diagram

Object class in
Analysis

Object Instance
Attributes Contents

Object Class
Attributes Contents

Object Instance
Attributes

Object Class
Attributes

Object
Superclasses

and Class

Object sent to tool

on designers personal experience. However to use design patterns does not lead us to obtain
definite answers to the problems at issue. On the other hand it has established some ideas to
optimize the construction of object-oriented software.
 The tool is still being built but it has already has implemented the identification of
some patterns from a reported code. We believe that the logical consistency validation
proposed by the tool is being to increased gradually with new tests. The more case studies are
done for patterns of real projects the bigger the samplings will be to certify the tool.
 This study is a step that represents an effort of researching towards the creation of
techniques for design optimization. It is still necessary to compare this study with those tools
mentioned in the section 1.1. Those tools present common objectives and therefore their
results wil l come to contribute significantly to this research. Other aspects need to be studied
such as investigating changes at the system structure level when it is necessary to include a
pattern and to check if a pattern insertion is really needed.

4.1 Future Research

 The approach to identifying design patterns relies on reducing known patterns to the
minimum necessary and identifiable structures required by the design solution. However, an
approach based solely on pattern structures is not complete because they are not suffciently
unique. Several patterns tend to use similar basic structures. Thus, to reduce erroneus
identifications its necessary to extend the approach by looking for design heuristics and by
using empirical data for resolving the presence of patterns and pattern-like solutions. The
heuristics and empirical data wil l be extract from design and implementation metrics, that
evaluate the structure and functional characteristics of classes and relationships.

References

[AGA 95] AGARWAL R.; LAGO, P. PATHOS - A Paradigmatic Approach to High-level Object-oriented

Sofftware Development. ACM SIGSOFT Software Engineering Notes, New York, v.20, n. 2,
p.36-41, Apr. 1995.

[ALP 98] ALPERT, S. et al. The Design Patterns - Small talk Companion. Reading: Addison-Wesley, 1998.
[APP 00] APPLETON, B. Patterns and Software: Essential Concepts and Terminology
 Disponível por WWW em http://www.enteract.com/~bradapp/ (jun 2000).
[ARA 93] ARANGO, G. et al. A Process for Consolidating and Reusing Design Knowledge. In: IEEE

INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 13., 1993, Baltimore.
Proceeding... California: IEEE Press, 1993.

[BAN 98] BANSIYA, J. Automating Design-Pattern Identification. Dr.Dobb’s Journal. New York, v.23, n. 6,
p.20-26, Jun. 1998.

[CHI 90] CHIKOFSKY, E.; CROSS, J. Reverse Engineering and Design Recovery: A Taxonomy. IEEE Software,
New York, v. 7, n.1, p. 13-17, 1990.

[ELM 89] ELMASRI, N; NAVA THE, S.B. Fundamentals of Database Systems. Redwood City: Benjamin
Cummings, 1989.

[GAM 94] GAMMA, E. et al. Design Patterns: Reusable Elements of Object Oriented Design. Reading: Addison-
Wesley, 1994.

[JIA 96] JIAZHONG, Z.; ZHIJIAN W. NDHORM: An OO Approach to Requirements Modeling. ACM
SIGSOFT Software Engineering Notes, New York, v.21, n. 5, p.65-69, Sept. 1996.

[JOH 99] JOHNSON, R. Design Patterns. Departament of Computer Science at University of Illinois in Urbana
Champaign. Disponível por WWW em http://st-www.cs.uiuc.edu/cgi-
bin/wikic/wikic?DesignPatterns (dez. 1999).

[SEE 98] SEEMANN, R.; WOLFF JÜRGEN. Pattern-Based Design Recovery of Java Software. In: SYMPOSIUM
ON FOUNDATIONS OF SOFTWARE ENGINEERING, 6., 1998, Orlando, FL USA.
Proceedings... New York: ACM Press, 1998.

