Heuristicsfor Automatic Detedion
of Design Patternsin Objed-Oriented Software

André Luis Castro de Freitas?
AnaMaria de Alencar Price?

' Centro Federal de Educagio Temoldgica de Pelotas & Universidade Catdlica de Pelotas
Pelotas - RS
afreitas@atlas.ucpel .tche.br
? Universidade Federal do Rio Grande do Sul
Porto Alegre- RS
anaprice@inf.ufrgs.br

Abstract

Design patterns simmarize the experience of expert designers. Patterns are not
invented, rather they are extraded from existing systems. The extracting process of patterns
had involved the observation d a number of systems designs, looking for patterns across
those systems. A design pattern is a reusable implementation model or architecture that can be
applied to solve a particular reaurring class of problem. In general, it is hard to recognize a
pattern use in real-world software systems, unlessyou knov what you are looking for and go
carefully and methodcally searching for a particular pattern. This paper is abou the problem
of detecting the essence of design patterns. By pattern essence we mean those collaborations
between classes that characterize each ore of the patterns. Heuristics have been created to
identify and apply design petterns to olject-oriented programs. The rules are based onthe
structura realtionship between classes and oljeds. It isimplemented a tod in Smalltalk that
automatizes detection and identification o design patternsin oljed-oriented applications. The
tod intendes to be avalidation prototype for the buit in heuristics. The development of the
examples allows patterns comparison, showing advantages and tendencies in using ore or
ancther type of collaboration between classes and oljects. Patterns gudies dimulate facilities
during the building of object-oriented programs. The patterns aso help in the definition o
good dsigns. We understand that a good design is a software that foll ows the fundamental
concepts of the objed-oriented paradigm including those rules sated by recognized.

Keywords: Software Engineaing, Objed-Oriented Design, Design Patterns, Smalltalk.

1 Introduction

Methoddogies for developing object-oriented software and programming languages
has evolved duing last years. Both of them aim to reduce the problems of software
maintenance. However these methoddogies fail in providing suitable suppat for
understanding the addressed systems. According to [ARA 93] in general, the methoddogies
for object-oriented software development fail in providing suitable formal concepts to reflea
the mapping between projed and implementation.

It is necessary to consider that the development of good quaity object-oriented
software is nat a task that can easily be accomplished by inexperienced designers on ohect-
oriented techndogy. In general, the design o object-oriented systems is definitively more
complex of being accomplished than the design of systems that are based onthe procedural
techndogy. The reason for that complexity mainly comes from the high interadion among the
objects created during runtime.

Possibly the best idea brought from the object-oriented design community in an
attempt to solve these problems, has been the notion d design patterns. Design patterns have
the patential to represent the common abstractions that experienced olject-oriented designers
use to solve design basic problems in a way that can be understood and uilized by a novice
designer.

Formally codifying these solutions and their relationships lets us successully capture
the body of knowledge which defines our understanding of good architedures that meet the
needs of their users[APP 0Q].

1.1 Motivation

The development of good quality software is a constant concern among researchers of
the software engineeing area. According to Agarwal [AGA 95, software production is
considered a recent techndogy in comparison to aher industrial activities. Software
maintenance still consumes alot of effort and it presents a high final cost.

The model defined in [AGA 95] is a help for the understanding of the process of
software development guided to oljeds. It evaluates the maintenance efforts gend in the
system and it manages an optimizing process. The work presents techniques for the defining
the system structures (entities and rel ationships) during the stages of software devel opment.

The propcsal described in [JA 96] is charaderized by the cgpture and dynamic
simulation d relationships among objects. The work mentions a series of steps for systems
modeling. These steps are not sequential, and there is a great iteration and relationship among
them. That work shows a formal representation that is mentioned to characterize knowledge
domain, which turns more pradical and recessary the transformation processes during the
modelling phase.

More specific works in the area of design patterns are also in process. Seemann [SEE
98] shows how to recover design information from Java source code. The todl takes a pattern-
based approach and procedals in a step by step manner deriving severa layers of increasing
abstraction. A compiler collects information abou inheritance hierarchies and method call
relations. It aso looks for particular source text patterns coming from naming conventions or
programming guidelines. The author build up two inheritance structures for classes and
interfaces and their interrelation. The work uses the term references that means a dass has an
attribute of the type of the second class This relationship may be dther an association a

aggregation.

Bansiya [BAN 98] propcses a tod that automates detedion, identificaion and
classification d design patterns in C++ programs. The tod can identify most structural and
some behaviora patterns. Object-oriented languages such as C++ enphesize the structural
relationship between classes and ohects and povide such powerful capabilities as
polymorphism, which lets child classes override the parent classwhile using and manipulating
objects of the cild classes as objects of the parent-class types. The propcsal consists of a
series of pattern agorithmsillustrated through a case study of adrawing toadl Kit.

The use of todls, either automatic or manual, by designers during the development of
object-oriented software design is of great importance to help to reduce the inherent
complexity of the understanding process. These tods aid the designer in the construction o
models, through analysis mechanisms, exploration and visudizaion d the information in
different abstraction levels.

1.2 Objectives

Reverse engineeing intends to extrad the specification o complex software systems.
A definition o what reverse engineering is abou in [CHI 90] is: “Reverse engineering is the
process of analyzing a subject system to identify the system's comporents and their inter-
relationships, and to creae representations of the system in ancther form at higher levels of
abstraction”.

For maintenance, reuse, and reimplementation, designers frequently need to examine
source code to uncerstand the software system. The ability to learn and understand software
system from source code is grealy enhanced by visualizing the systems at higher levels of
abstraction, rather than sedng them nebulous collections of classes and methods
implementation. [BAN 98]

Visuaizing object-oriented programs as a system of interacting patterns requires
deteding, indentifyng and classifying goups of related classes in program code. These
visualizations represent known peatterns that perform an abstract task and are not necessarily
known pattern solution. Aiming to suppat the development process of object-oriented
software, this work propases identifying design patterns essence Heuristics have been created
for identifying and applying design pettern to oljed-oriented programs. These heuristics are
applied by atod implemented in Smalltalk that automates identification o design patternsin
object-oriented applications.

This paper is organized as follows. Sedion 2 presents characteristics of Design
Patterns and class collaborations. Section 3 shows an automatic identification tod for design
patterns. The tod aggregates the characteristics described in Section 2 In Section 4thereis
the anclusion enfhasizing the paper contribution.

2 Design Patterns

A design pettern is a reusable implementation model or archicture that can be applied
to solve a particular recurring class of problem. The pattern describe how methods in asingle
class or sub herarchy of classes work together. More often, it shows how multiple classes and
their instances collaborate [GAM 94].

2.1 Relationships Between Objeds

This approach focuses on the ability of identifying structural and functional key
relationships between classes and oljects. The structural relationships of interest for pattern
identification are inheritance, aggregation and wse. While inheritance is easy to identify,
aggregation and wses can have several forms of implementation. Typically, in Smalltalk, the
aggregation and uses relationships are detected by looking for attribute declarations in classes
only at runtime, when the objeds are being created and manipulated [ALP 98§].

Among the basic strategies for using the aciation mechanism there is a nead of
defining an attribute in each class that can store or make reference to all the others related
objects. In order to keep these attributes updated there must exist methods of addition and
removal of objeds.

2.2 Heuristics for Automatic Detection

The propaosed heuristics are expressed by logic dauses with the intention o presenting
them in a forma way their use in atod of design spedfication. There is a data dictionary
which stores information regarding the dasses involved in the gplicaion. The dictionary was
built in the form of tables and the accessto information is dore by relational calculus [ELM
89].

Relational cdculusisanon pocedural language which alows agroup d tuples to be
defined as expressons of the type {t | P(t)} meaning that for each tuple t the predicate P(t) is
true: t € Result - P(t). A variable tuple (VT) represents to each instant atuple T of a certain
relationship R. The formula P(t) can present more than avariable.

For example, the main method kelow represents a fragment of the identified structure
for the Composite pattern in a design. The Compaosite pattern allows you to buld complex
objects by recursively composing similar objeds in a treelike manner. The pattern also allows
the objects in the tree to be manipulated in a mnsistent manner, by requiring all the objectsin
the treeto have a @mmon superclassor interface [JON 99].

VerifyRelationshipComposite

level =0 VerificaHierarchy: objetoVerificado
level_indicator = nil
relationship_indicator = nil level = level +1
O AssociagOes O Dictionary
0 Objetos Em_Teste O Dictionary { objetoAssociagéo | Dassociagio [Associagdes (
{ objetoTeste | objetoTeste [] Objetos Em_Teste } asciacdo[Nome_Objeto] = nomeObjeto[Nome_Objeto]
{ objetoVerificado | Cobjeto [Objetos (objetoA ssociago = associacdo) }
objeto[Nome_Objeto] =

objetoTeste[Nome_Objeto] /I Call objects with relationship
objetoVerificado = objeto) }
VerifyHierarchy: objetoVerificado

IFlevel > 1 |
IF al (level_indicator of same attribute =
Verdadeiro)
IF al (relationship_indicator of same dtribute
>1)
IndicateComposite

3TheTod

This ction pesents a tod which automatizes the detedion, identificaion and
classification d design patterns in Smalltalk programs. The tod identifies some structural
patterns by using the proposed heuristics. The present stage of the tool shows how to get the
charaderistics of an oljed related to its relationships and functions. This object can be

visualized and onit can be identified some patterns such as Composite, Decorator and
Observer when they are foundin the relationships of the object being analysed. We dso want
to adapt the study of other patternsto the todl.

In Figure 1, the tod presents the description d the object which is being analysed in
its main window. The dass attributes are visualized in the same screen. The user can select

which attribute he wants to evaluate. The respective content will be presented for each
attribute.

] Automatic Identification Tool

File Identity Verify Visualize

[O[]

Example gplication
| listaDinheiroVivo listaMonetario listaBens |

Obiject/Class SuperClasses/Class listaDinheiroVivo := AtivoComposite new.

ject Pl Objed listaDinheiroVivo adicionaAtivos (Garantiatipo: reais valor: 5000.00).
Objed classin AtoComposite | Superclasses | listaDinheiroVivo adicionaAtivos: (Garantia tipo: 'dolares valor: 10000.00).
nstance Attibutes andClass | jigamonetario = AtivoCompoasite new.

Conterts | DrderedCollection [a Garantia a Garanti

tizss | OuderedCallection

ativ

‘@ Reference

a Garantia

a Garanti
an AtivoComp

Class Attributes

Objed Instance
Attributes Contents

Objed Instance

Attributes

Contents | teste

Objed Class

listaMonetario adicionaAtivos (Garantiatipo: ‘aplicacoes valor: 5000.00).
listaMonetario adicionaAtivos: (Garantiatipo: ‘conta corrente' valor: 120000).
listaMonetario adicionaAtivos: (Garantiatipo: ‘poupanca valor: 2300.00).
listaMonetario adicionaAtivos: (listaDinheiroVivo).

listaBens := AtivoComposite new.

listaBens adicionaAtivos: (Garantiatipo: 'imoveis vaor: 15000.00).

cass [ByteSting |77 Retarenca W listaBens adicionaAtivos: (Garantia tipo: ‘se-moventes valor: 45000.00).
;‘e - #] o listaBens adicionaAtivos: (li staM onetario).
:19 ijed Class listaBensteste.

Attributes Contents I

MistaBens valor

L_Attributes

FIGURE 1 - First Comunication Window

The Visualiza option allows to check the structure of the objects invaved in the
application as well as the class diagram. Only the objeds which are marked as a reference in
their description will be visualized in the structure. The window bellow shows the dasses
diagram that represents an application keing analised. If a diagram foll ows the any predefined
heuristics a pattern indicaion will be dore. Figure 2 shows the Composite pattern where a
hypatheticd object is related to oljects by Garantia or AtivoComposite. Therefore the
realtionships happens to the Ativo superclass.

] Detection Window
File

[_[O]x]

Visualize

+
Composite
diagram
+
- L4

FIGURE 2 - Composite Pattern Diagram
4 Conclusion

The goal of this work is to give examples of how to use mechanisms for detedion

design petterns. Heuristics have been defined for design petternsto help in the @nstruction o
new projeds because they are suitable to dred the development of activities which are based

on designers personal experience However to use design petterns does not lead us to oltain
definite answers to the problems at issue. On the other hand it has established some ideas to
optimize the wnstruction d olject-oriented software.

The tod is gill being built but it has already has implemented the identification o
some patterns from a reported code. We believe that the logical consistency vaidation
propased by the tod is being to increased gradually with new tests. The more cae studies are
dore for patterns of real projects the bigger the samplings will be to certify the todl.

This study is a step that represents an effort of researching towards the aeation o
techniques for design optimization. It is dill necessary to compare this study with those todls
mentioned in the section 11. Those tods present common oljectives and therefore their
results will come to contribute significantly to this research. Other aspeds need to be studied
such as investigating changes at the system structure level when it is neaessary to include a
pattern and to check if a pattern insertionisredly neeled.

4.1 Future Research

The approach to identifying design petterns relies on reducing known peatterns to the
minimum necessary and identifiable structures required by the design solution. However, an
approach based solely on pettern structures is not complete because they are nat suffciently
unique. Several patterns tend to use similar basic structures. Thus, to reduce earoneus
identificaions its necessary to extend the approadh by looking for design heuristics and by
using empiricd data for resolving the presence of patterns and pettern-like solutions. The
heuristics and empiricd data will be extrad from design and implementation metrics, that
evaluate the structure and functional charaderistics of classes and relationships.

References

[AGA 95] AGARWAL R.; LAGO, P. PATHOS - A Paradigmatic Approach to Highlevel Object-oriented
Sofftware Development. ACM SIGSOFT Software Engineering Notes, New York, v.20, n. 2,
p.36-41, Apr. 1995.

[ALP 98] ALPERT, S. et al. The Design Patterns - Smalltalk Companion. Reading: Addison-Wesley, 1998.

[APP 0Q] APPLETON, B. Patterns and Software: Eseential Concepts and Terminology
Disporivel por WWW em http://www.enterad.com/~bradapp/ (jun 2000).

[ARA 93] ARANGO, G. e a. A Process for Consolidating and Reusing Design Knowledge. In: |IEEE
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, 13., 1993, Baltimore.
Procedling... California: IEEE Press 1993.

[BAN 98] BANSIYA, J. Automating Design-Pattern Identification. Dr.Dobb’s Journal. New York, v.23, n. 6,
p.20-26, Jun. 1998

[CHI 90] CHIKOFSKY, E.; CROSS, J. Reverse Engineaing and Design Recovery: A Taxonomy. | EEE Software,
New York, v. 7,n.1, p. 13-17, 1990.

[ELM 89] ELMASRI, N; NAVATHE, SB. Fundamentals of Database Systems. Redwood City: Benjamin
Cummings, 1989.

[GAM 94] GAMMA, E. et al. Design Patterns: Reusable Elements of Object Oriented Design. Reading: Addison-
Wesley, 1994.

[JIA 96] JAZHONG, Z.; ZHIJAN W. NDHORM: An OO Approach to Reguirements Modeling. ACM
SIGSOFT Software Engineering Notes, New York, v.21, n. 5, p.65-69, Sept. 1996.

[JOH 99 JOHNSON, R. Design Patterns. Departament of Computer Science at University of Illinois in Urbana
Champaign. Disporivel por www em http://st-www.cs.uiuc.educgi-
bin/wikic/wikic?DesignPatterns (dez. 1999).

[SEE 98] SEEMANN, R.; WOLFF JURGEN. Pattern-Based Design Recovery of Java Software. In: SYMPOSIUM

ON FOUNDATIONS OF SOFTWARE ENGINEERING, 6., 1998 Orlandg FL USA.
Procedalings... New York: ACM Press 1998.

