
A Framework based on a Pattern Language
for Business Resource Management

Rosana T. Vaccare Braga1

Paulo Cesar Masiero2

ICMC-Universidade de São Paulo
C. P. 668 – 13560-970 – São Carlos – SP – Brazil

{rtvb,masiero}@icmc.sc.usp.br

Abstract

A framework based on a pattern language for Business Resource Management is under
construction to be used for developing systems in the information systems domain. Business
resources include assets and services, as products and repairs. By management we mean their
trade, rental and maintenance. A pattern language has been developed for aiding in the analysis of
systems for business resource management. It includes fourteen patterns for identifying the
resource, quantifying it, renting, trading and maintaining it, reserve it, quote the trade, quote the
maintenance, check its delivery, allowing several items to be dealt with in the same transaction,
paying for the transaction, identifying the transaction executor, and identifying maintenance tasks
and parts. One of the patterns is included, corresponding to trading the resource. A class model
shows its structure (classes and relationships), and an application example shows the roles played
by each participant class. An example of the pattern language usage for a car repair shop system
is presented, together with an object model that shows the patterns used and the roles played by
their participant classes. The present development stage of the framework is mentioned.

Keywords: analysis patterns, pattern languages, frameworks, business systems, business
resources, reuse

1 Financial support from FAPESP grant 98/13588-4
2 Financial support from CNPq and FAPESP

1 - Introduction

Software Patterns document a relation between a certain context, a design problem, and a
solution, describing a decision point in the development of an application [3]. Its main purpose is
to promote reuse at different abstraction levels: from analysis to design and implementation of
software systems. Pattern languages consist of related patterns organized as a tree or graph
structure, representing the sequence of decisions in time leading to the complete design, so that a
pattern language becomes a method that guides the development process [3]. Integration of
design patterns to form pattern languages is considered a challenging and time consuming
activity [8], but provides the greatest payoff for pattern based software development.

Frameworks are reusable designs of all or part of a software system described by a set of
abstract classes and the way instances of those classes collaborate [7]. A bi-directional
relationship exists between frameworks and pattern languages for a specific application domain
[3]. A framework allows the implementation of an application designed following a pattern
language and a pattern language offers the rules for the use of framework elements [5] and for its
extension.

Various analysis patterns have been presented recently, including patterns for business
systems [1, 2, 6, 13]. Several frameworks are available to support system infrastructure areas, as
operating systems, user interfaces and communications [3]. However, frameworks to support
enterprise applications that begins to appear are usually proprietary, as for example, IBM San
Francisco [12] and Enterprise Resource Planning [3]. Such frameworks are becoming strategic
assets for organizations across all business sectors.

In this doctoral research, we present a pattern language [10, 11] and a framework to deal
with business resource management applications, a particular domain of information systems.
The pattern language resulted from the experience of more than ten years of systems
development practice for medium and small business in this domain. It is composed of several
patterns, some of which are specific applications of recurring patterns proposed in the literature
[1, 2, 6]. However, our pattern language stays on a higher abstraction level than those patterns, as
it is applicable to a more specific domain and contains the semantics inherent to a family of
applications in the domain. It provides inexperienced developers with substantial material to
develop new systems, because it guides them during system analysis, providing alternative
solutions as necessary.

Based on this pattern language, we are now building a framework for systems in the business
resource management domain. The goal of the framework is to provide the developer with most
of the code that he or she needs to instantiate a particular application of this domain.

The paper is organized as follows. In Section 2 an overview of the pattern language is
provided. In Section 3 it is shown how the pattern language can be applied to a car repair shop
system. In Section 4 the present implementation of the framework is mentioned. In Section 5 the
conclusions are presented.

2 - The Business Resource Management Pattern Language

Our pattern language was designed to help software engineers to develop applications in
which business transactions such as resource rental, trade or maintenance need to be logged.
Thus, the problem domain includes applications like video rentals, library services, medical

attendance, hotel operation, retail stores, and repair shops, among others. Business systems that
involve financial aspects, like banks and insurance companies, are not covered by the present
pattern language. Resource rental focuses primarily on the satisfaction of a certain temporary
need of a product or service like a videotape or a physician time. Resource trade focuses on the
transference of property of a product, as for example a product sale. Resource maintenance
focuses on the maintenance of a certain product, using labor and parts to perform it, as in an
electric appliance repair shop.

The language is formed by fourteen patterns, whose use depends on the characteristics of the
application. Figure 1 shows the dependencies among the patterns and the order in which they are
generally applied, denoting the main patterns with a thicker line. The patterns are grouped
according to their purpose, as illustrated in Figure 1: Group 1 patterns are basically concerned
with the identification of the business resources; Group 2 patterns deal with the business
transactions performed by the system; and Group 3 patterns take care of details associated to
most business transactions. To apply the pattern language for a particular system, the user has to
follow the patterns of Figure 1, beginning with pattern 1 and using the instructions contained in
the “Following Patterns” section to proceed. The result is the system class diagram.

QUANTIFY THE RESOURCE (2)

RESERVE THE
RESOURCE (4)

RENT THE RESOURCE (3) TRADE THE RESOURCE (5)

CHECK RESOURCE
DELIVERY (7)

MAINTAIN THE RESOURCE (8)

PAY FOR THE RESOURCE
TRANSACTION (13)

ITEMIZE THE RESOURCE
TRANSACTION (12)

IDENTIFY THE TRANSACTION
EXECUTOR (14)

QUOTE THE
TRADE (6)

QUOTE THE
MAINTENANCE (9)

IDENTIFY MAINTENANCE
TASKS (10)

IDENTIFY MAINTENANCE
PARTS (11)

IDENTIFY THE RESOURCE (1)

Section
2.2

Business
Transactions

Section
2.1

Business
Resource

Identification

Section
2.3

Business
Transaction

Details

Figure 1: Dependencies among patterns
Figure 2 shows in detail one of the patterns of the pattern language, using UML (Unified

Modeling Language) [4] to express its structure. The full pattern language can be found
elsewhere [10, 11].

3 - An Application Example

Applying the Pattern Language for modeling a car repair shop system, patterns 1, 2, 5, 11,
12, 13 and 14 were used for the Repair sub-system, where “car” is the resource being managed,
and patterns 1, 2, 4, 10, 11, 12, 7 and 10 were used for the Purchase sub-system, where “part” is
the resource being managed. The object model produced is shown in Figure 3. The tags show the
role played by the class it points to. They contain labels like “P#n: role”, where “n” is the pattern
number and “role” is the role played by the class in that pattern. For example, in Figure 3, class

Pattern 4: TRADE THE RESOURCE

Context
Your application deals with trade of resources, which

may involve resources sold and/or purchased. You have
already identified and quantified these resources. Resource
trading may be thought of as a resource property
transference, in which a resource owned by one party
becomes owned by another party. In a sale, if the resource is
not available in stock, then the customer can fill in a request
that will be granted when possible. In a purchase a request is
made to the supplier who delivers the resource within a
certain period.

Problem
How do you manage the resource trades made by your

application?

Forces
• It is essential to log trade information, because it can be

used to generate important reports on resources demand
and organization gains (most systems in this domain are
concerned with profits).

• The additional storage space and processing time
required to log trade information has to be balanced by
against possible gains in system functionality when
evaluating costs versus benefits.

Structure
 Figure 12 shows the TRADE THE RESOURCE pattern.

*
*

is related to

* 1

Resource Trade
number
trade date
status
observations
?do the trade
?cancel the trade
!#calculate earnings
!#get non-delivered trades

Resource
. . .

!get trades by resource

0..10..1

Source-Party
code
name
!get trades by source-party

makes asks for

Destination-Party
code
name
!get trades by destination-party

 Figure 12: TRADE THE RESOURCE pattern

Participants
Resource Trade: represents all the details involved on

trading the resource. The attribute status denotes the trade
stage: pending, partially fulfilled, or fully fulfilled. When the
MEASURABLE RESOURCE sub-pattern has been applied earlier,
then an attribute quantity is added to denote a non-unitary
resource trade.

Resource: as described in previous patterns.
Source-Party: represents the original resource owner, for

example, in the case of a sale it is the organization department or
branch that sells the resource, and in the case of a purchase it is
the supplier organization. This class is optional for small sale
systems where there are no departments or branches.

Destination-Party: represents the final resource owner, for
example, in the case of a sale it is the customer buying it, and in
the case of a purchase it is the organization department or
branch buying the resource. This class is optional for small
purchase systems where there are no departments or branches.

Example
Figure 13 shows an instantiation of the TRADE THE

RESOURCE pattern for an Inventory Control system.

Following patterns
A trade is followed by a delivery and can be preceded by a

quotation. So, now, try to use the patterns QUOTE THE TRADE (7)
and CHECK RESOURCE DELIVERY (9). Also look at Section 2.3
patterns, which are useful for modeling other trade details.

* *

is related to

* 1

Purchase
number
purchase date
status
observations
?do the purchase
?cancel the purchase
!#calculate earnings
!#get non-deliv. purch.

Product
barCode
description
cost
quantity in stock
re-supply level
!get purchases by product

11

Supplier
code
location
!get purchases by supplier

makes
asks for

Store-branch
code
name
!get purchases by branch

Source-Party Destination-Party

Resource
Trade Resource

Figure 13: Instantiation of the TRADE THE RESOURCE pattern

Figure 2: Example of a pattern: TRADE THE RESOURCE [11]

“Purchase” represents the “Resource Trade” participant of pattern 4 (“Trade the Resource”),
shown in sub-Figure 12 of Figure 2.

4 – The Framework

A framework is being developed based on the pattern language. After identifying the
possible hot-spots, i.e., variable aspects of the application domain, the framework class hierarchy

1

1

1..*

*

contains
contains

*

attends

1*

contains

*

1..*

1

*

contains 1

is made by

asks for

produces

is a

1

1Customer
code
name
!get repairs by
customer

Car repair
entry date
exit date
faults presented
?open maintenance
?close maintenance
!#get pending maintenances
!#calculate total labor
!#calculate total spent with parts

1..* Installments to receive
due date
payment date
installment number
value
situation
!#coming installments
!#overdue payments
?register payment
!#payments done

Part used in repair
quantity
cost
. . .

*

Repairman
code
name
commission percentage
salary
specialty
!#get repairs by repairman
!#list commisions paid

made in

* 1

Car
license number
color
status
!#list by model

Car model
code
description
. . .

has
* 1

Labor Task
problem to solve
labor description
hour spent
cost
?schedule tasks

is a

is logged by

is sent to

produces

has
is a *Part

code
name
status
quantity in stock
!#list by name

1

Part Category
code
description

*
Request

request date
situation
observations
?make request
?cancel request
!#get non-attended requests

1

1Supplier
Code
Name
. . .

*
Purchase

date
observations
?purchase
?cancel purchase
!#get non-delivered purch.

1..* Installments to pay
due date
payment date
installment number
value
situation
!#coming installments
!#overdue payments
?register payment
!#payments done

1

1..*

Requested Item
quantity
value
. . .

1..*

Purchased Item
quantity
value

*

Stock keeper
code
name
. . .

1

P#8:
Destination-

Party

P#1: Resource
P#2(Single Resource): Resource P#1: Resource-Type

P#8: Resource Maintenance
P#10,13 and 14: Resource Transaction

P#11: Part used in
Maintenance

P#13: Payment

P#10:
Maintenance Task

P#10: Transaction
Executor

P#5: Source-Party

P#6: Trade Quotation
P#12: Resource Transaction

P#5: Resource Trade
P#12, 13 and 14:

Resource Transaction

P#13: Payment

P#13: Transaction Executor

P#12: Transaction
Item

P#1: Resource
P#2(Measurable Resource): Resource

P#11: Part
P#1: Resource

Type

has Measure Unity
idCode
description

P#2: Measure Unity

* 1

Figure 3: Application of the Pattern Language to a simple Car Repair Shop

is being designed and classes and methods are being implemented, using VisualWorks [9]. We
are following the same order of the pattern language to implement the framework, in an
evolutionary life cycle. Initially, we have implemented the classes of patterns 1 and 2, obtaining a
little framework for registering business resources. We have instantiated it to resources such as
products, books, cars, etc. Next, we have implemented pattern 3 and instantiated the framework
for simple applications such as video rental, car rental and product rental. At present, we are
implementing pattern 4.

5 - Conclusions

The application of the pattern language eases the analysis of new cases, supplying a
guideline for it to be more disciplined, with the assurance that the main aspects of the system are

covered. More experiments are planned using newly graduated students with no professional
practice and with other domain experts, in order to get some feedback to improve the pattern
language usability, quality and completeness, as well as to evaluate gains in reusability and
productivity. These experiments will compare the effort to develop a system from scratch, that is,
using existing modeling approaches such as UML, Fusion, etc., and using our pattern language.

The framework being implemented is of type white-box, i.e., its instantiation is done by
creating subclasses of certain abstract classes. To know which classes to subclass, a
documentation of the framework was done, including a cookbook and object models
corresponding to each implemented pattern. The pattern language is used in parallel with the
cookbook – actually, they are mutually complementary, as the developer follows the pattern
language to obtain the application object model and uses the cookbook to define which classes to
instantiate. Next, we plan to do an experiment to transform this part of the framework into a
black-box one. This will ease its usage, as the developer will be able to choose the components of
his/her application in order to obtain most of the design and code necessary for the
implementation.

We are also investigating the relation between pattern languages and frameworks – more
specifically, we are interested in how a pattern language can be used to help in the framework
design and instantiation. Intermediate results show that some sections of the patterns are a rich
source for finding the framework hot-spots, and that wizards can be built for the framework
instantiation, following the same order of the pattern language’s patterns.

References

[1] Boyd, L. Business Patterns of Association Objects. In “Martin, R.C.; Riehle, D.; Buschmann, F. (eds) Pattern
Languages of Program Design 3, Addison-Wesley, 1998”, p. 395-408.

[2] Coad, P.; North, D.; Mayfield, M. Object Models: Strategies, Patterns and Applications, Yourdon Press, 2nd

edition, 1997.
[3] Fayad, M. E.; Johnson R. E. Domain-Specific Application Frameworks – Frameworks Experience By

Industry, Wiley, 2000.
[4] Eriksson, H-E; Penker, M. UML Toolkit, Wiley Computer Publishing, 1998.
[5] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns – Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1995.
[6] Johnson, R. ; Woolf, B. Type Object. In “Martin, R.C.; Riehle, D.; Buschmann, F. (eds.) Pattern Languages of

Program Design 3, Addison-Wesley, 1998”, p. 47-65.
[7] Roberts, D.; Johnson, R. E. Evolving Frameworks: A Pattern Language for Developing Object-Oriented

Frameworks, In “Martin, R.C.; Riehle, D.; Buschmann, F. (eds) Pattern Languages of Program Design 3,
Addison-Wesley, 1998”, p. 471-486.

[8] Schmidt, D. C.; Fayad, M.; Johnson, R. E. (guest editors). Software Patterns. Communications of the ACM,
V. 39, nº10, p. 36-39, October 1996.

[9] Cincom Systems, Inc. VisualWorks 5i.1, http://www.cincom.com/visualworks/
[10] Braga, R.T.V.; Germano, F.S.R.; Masiero, P.C. A Pattern Language for Business Resource Management,

proc.of 6th Pattern Language of Programs Conference (PLoP’99), Monticello-IL, EUA, v.7, p. 1-34, Aug 99.
[11] Braga, R.T.V.; Germano, F.S.R.; Masiero, P.C. A Pattern Language for Business Resource Management

Systems, submitted to the Journal of Brazilian Computer Society, 20p., 2000. Available for FTP at:
http://www.icmc.sc.usp.br/~rtvb/pat_lang_jbcs.zip.

[12] Fayad, M. E. , Schmidt, D. C. Johnson, R. (eds.) Implementing Application Frameworks: Object-Oriented
Frameworks at Work, John Wiley & Sons, 1999.

[13] Fowler, M. Analysis Patterns. Addison-Wesley, 1997

