
Towards a Scenario Based Project Management Paradigm

MÁRCIO DE OLIVEIRA BARROS
marcio@cos.ufrj.br

THESIS SUPERVISORS: CLÁUDIA MARIA LIMA WERNER
and GUILHERME HORTA TRAVASSOS

COPPE / UFRJ – Computer Science Department
Caixa Postal: 68511 - CEP 21945-970 - Rio de Janeiro – RJ

Fax / Voice: 5521 590-2552

Abstract

Complex software development is a risky job. The number of unsuccessful projects
largely surpasses the number of successful developments. Many studies relate this situation to
non-technical problems, especially to inadequate project management. This thesis intends to
develop a scenario based project management paradigm, which is based on separately
describing a software project expected behavior and potential problems that can affect this
behavior. Risk management, formal process modeling, and simulation support the proposed
project management paradigm.

The scenario based project management approach conveys a risk management process,
which organizes risk-related information as scenarios and describes a technique to apply this
information upon a development project. System dynamic models of software development
projects are used to support risk analysis and evaluation. Each development project defines
and maintains a project model, which is described by its project elements, such as activities,
developers, and artifacts. The project model can be integrated to separately defined scenario
models, which affect the software project original behavior. The integration of scenario
combinations within the project model allows project behavior estimation over several
different situations.

Keywords: Risk management, project management, software process modeling

1 Motivation

The state of practice and contemporary literature report the persistence of a recurrent
problem in software development: most projects use more resources than planned, take more
time to be concluded, provide less functionality and less quality than expected. Software
unsuccessful stories, especially for large development projects, can be found in several case
studies and experiments documented over the last decades (Neumann, 1995) (Charette, 1996).

Two different philosophical paradigms relate factors that are responsible for the
continuing software faults in industry. The first one relates software development problems to
technological limitations, augmented by the increasing complexity of current software
projects. The second philosophical paradigm transfers the responsibility to management
problems, bad communication, and difficulties in handling the uncertainties that are present in
innovative, complex or large software projects (Royce, 1998).

The techniques currently applied to software project management, such as work
breakdown structures, PERT/CPM charts, and Gantt diagrams, are based on a set of
assumptions, necessary for their accuracy (Charette, 1996). These assumptions require a
project behavior to be known from the beginning. The development of projects for innovative
application domains, the need for domain integration to achieve several objectives, ambiguity,
complexity, discontinuity, diseconomy of scale, nonlinearities, and complex feedback loops
are characteristics of large projects. These characteristics undermine the assumptions of
traditional techniques. Invalidation of these assumptions, and consequently of these
techniques, creates demand for new management paradigms and technologies.

Scenario based project management intends to define a new paradigm for project
management. It assumes that a project manager defines and documents an expected behavior
for a project process. Since this behavior can be affected by unexpected events during project
development, the manager can test its sensibility to several combinations of such events,
getting feedback, by simulation, about those activities that can represent a possible risk in the
context of the process. Events are described as scenarios, being associated to the project
application domain, artifacts created or used, resources consumed, and developers roles.
These different project features are generically called project elements. Scenarios can be
reused by several projects. Scenario based project management is strongly supported by risk
management, formal process modeling and simulation techniques.

This paper is organized in five sections. The first section comprises this motivation.
Section 2 presents the scenario based software project management paradigm. Section 3
compares the proposed approach to related works. Section 4 presents the expected
contributions and research methodology. Finally, section 5 presents on going work.

2 The Scenario Based Software Project Management Paradigm

The following statement briefly describes the traditional view of software project
management: plan the flight and fly the plan. This guideline is deeply rooted in the
assumptions taken by the currently applied software management techniques. It presumes a
single route from early system requirements to the final deployable software product. We
advocate that uncertainties, presented along the development process, must be considered in
the development plan as alternative routes. We define the scenario based software project
management paradigm as a set of techniques that allow a project manager to define a model
and several different scenarios for a software development project. These scenarios can be
plugged to the project model in order to reveal their impact upon its behavior.

The proposed approach to software project management is based on risk management,
project modeling, simulation, and quantitative project tracking. Risk management is applied
to identify events that may cause prejudice to the project under development. Project

modeling is used to formally describe project known facts, potential problems, and problem
resolution strategies. Simulation allows the evaluation of problems and their resolution
strategy impact upon project expected behavior. Finally, quantitative project tracking allows
periodic project behavior reevaluation, as new information about its status is available.

Scenario based project management paradigm is centered on two artifacts: the project
model and scenario models. The project model defines the project expected behavior, while
scenarios describe alternative routes that the project may follow, due to unexpected events.
Such models are represented using system dynamics, which is a modeling technique and
language to describe complex systems focusing on their structural aspects (Forrester, 1991).
This technique identifies and models cause-effect relationships and feedback loops. These
relationships are described by using flow diagrams composed by four basic elements: stocks,
rates, flows and processes. Stocks represent elements that can be accumulated or consumed
over time. Its level, that is, the number of elements in the stock, describes a stock at a given
moment. Rates describe stock variations, mathematically formulating their raises and
depletions in an equation. Processes and flows complement complex rate equations and
calculate intermediate model variables.

The project model is based on a modified version of the Abdel-Hamid and Madnick’s
(1991) system dynamic project model. It is intended for operational management, that is,
tracking the project and updating its expected behavior, as new information about its status is
available. The enhancements made to the original model include uncertainty representation,
providing a high-level project representation, capturing the differences among elements of the
same category, and separating facts from policies.

Uncertainty representation allows model parameters to express the uncertainties of their
values. Project model parameters can be represented as probability mass functions (Vose,
1996), instead of strictly defined numbers. As the parameters are uncertain, so will be the
model results. Those are also described as probability distributions, which are estimated
through Monte Carlo simulations (Vose, 1996).

The original Abdel-Hamid and Madnick’s model is composed of hundreds of equations,
which are very hard to understand and adapt. This representation level makes modeling a new
software project a very difficult task, since the modeler must carefully examine each equation
for its validity in the new development effort. Scenario based project management defines a
higher-level project representation, based on
descriptive process models, which can be translated
to a system dynamics model. The later is used for
simulations, while the first is used to describe a new
project without having to handle directly with flows
and rates. The high-level representation is based on
a software project four vertices spatial figure (Figure
1), a geometric analogy that highlights the model’s
four major features: its activities, developers,
artifacts, and resources.

The original model treats uniformly all project elements of the same category. For
instance, all experienced developers are supposed to have the same productivity and all
activities are supposed to take the same time to develop. We assume that this model
simplification is due to system dynamics inherent incapability to describe element attributes.
However, we believe that, if such a model is to be used for operational management, it must
capture the differences among its developers, activities, and artifacts. The presented high level
representation handles these differences, representing them as project element attributes and
generating proper system dynamics equation for them.

Figure 1 – The software project spatial
representation

Activities

Developer
s

Resources

Artifacts

Finally, the information within a project model can be classified into two categories:
facts and policies. Facts represent information about real world elements, such as developers,
and artifacts, and their relationships. Policies are theories and management actions, which
change the real world elements’ behavior. Most models do not clearly define the borderline
between facts and policies. Policies are embedded within facts, their behavior and structure
being distributed along hundreds of equations. The project model attempts to separate facts
from policies, regarding the latter to scenarios that can be integrated to the model. This
separation yields several benefits, such as less complex and more readable models, and
general reusable policies that can be applied to a wider range of models.

Scenarios represent the generic and reusable management actions, theories, strategies,
policies, and procedures, which can be enacted upon a software project. They can be plugged
to the project model, modifying it to represent their consequences and respective expected
behavior deviation. The project model describes the scenario integration interface, which is
based on the project elements presented in Figure 1, their attributes and relationships.
Scenarios can add new attributes to project elements, analyze the values of their attributes,
and modify these values, changing their dynamics.

Characterizing the risks faced by a project as scenarios, we define a risk management
process based on documenting risks through scenarios, reusing these scenarios along several
projects, and simulating scenario combinations for risk evaluation within a particular project.
These activities imply two different concerns in the risk management process. First, risks are
identified and documented using scenarios. Next, risks are reused along several projects,
allowing the simulation of their impact upon project behavior. These different concerns
resemble a generic reuse process framework, which is based on two sub-processes: one to
develop reusable artifacts and the other for application development based on reusing
previously crafted artifacts. Applying the generic process framework to the proposed risk
management process, we divided it into two sub-processes: one for risk identification, the
other for risk reuse during application development. The reusable artifact shared by both
processes, called risk archetype, conveys information about a software risk, including
scenarios for its impact evaluation and for resolution strategies.

3 Related Works

The scenario based project management approach can be compared to operational
project management models. The proposed project model conveys more information than the
work breakdown structure or the PERT/CPM chart, which focus on a project activity network,
ignoring other project elements, such as developers, resources, and artifacts. The proposed
project model accounts for those elements, allowing scenarios to describe their dynamic
characteristics, such as developers’ motivation, team exhaustion, and error propagation among
artifacts. More sophisticated operational models, such as DesignNet (Liu and Horowitz, 1989)
and ProNet (Christie, 1995), also characterize those project elements. However, their static
representation and fixed attributes limit the analysis to predetermined dynamic characteristics.
Scenarios let the manager define new attributes or modify previously defined attributes,
adding new dynamic characteristics to the project model as scenarios are integrated to it.

When compared to other system dynamic software project models, four features
differentiate the proposed project model. The first one is the high-level representation, which
allows a more suitable project description than system dynamics equations. Secondly, due to
high-level representation, the model can handle attributes for each project element,
differentiating elements of the same category. Previous system dynamics models, such as
SLICS (Lin and Levary, 1989) and SEPS (Lin et al., 1997), generally assume that all elements
of the same category are equal. Thirdly, uncertainty representation allows the description of

model parameter values as probability distributions, instead of crisp numbers. Finally, the
project model defines a scenario integration interface, which allows the model to be
extensible. Tvedt (1996) presents a system dynamics model, which allows an organization to
evaluate the implementation of process improvement alternatives over its development
process. Although the model was developed to be extensible, it has to be modified each time a
new process improvement model is to be evaluated. In the proposed approach, a scenario
would define the improvement model, being integrated to the project model without
modifications to the later.

4 Expected Contributions and Research Methodology

The expected contributions of this work are:
• a risk management process definition that uses dynamic models to evaluate the impact of

software project risks and their resolution strategies;
• a high-level project model description that can be translated to system dynamics, and;
• the integration of such project model to separate scenario models.

We describe these as contributions because our assumption is that they allow the
construction of reusable models of software engineering theories, management actions,
policies, and procedures, which can be integrated to an application specific project model in
order to evaluate software project behavior under several different hypotheses combinations.

Besides, the proposed high-level representation can leverage future work on software
project modeling, acting as a complexity reduction technique, since we assume that it frees
the modeler for dealing with several low-level equations.

The current stage of the project is as follows: a language to represent system dynamics
models has been developed. This language allows the definition of stocks, rates, and
processes. The equations representing such elements can express their uncertainties using
gaussian and uniform probability distribution functions. Other distributions, such as Poisson
and beta, will be incorporated to the model, since these techniques seem to be useful to
project management. Moreover, a sort of simulation mechanisms, including time-based,
Monte Carlo, and parameter variation simulation has also been developed, which can be used
to evaluate system dynamics models. Results taken from this tool, its language, and
simulation mechanisms are presented in (Barros et al, 2000b) and (Barros et al, 2000c).

A system dynamic metamodel, which is based on entities and their relationships, is under
development. Entities convey parameters, state variables, and auxiliary behavior. The
metamodel can be instantiated to a model, where parameter values are defined, implicit
behavior from state variables and auxiliary behavior is replicated for each entity, and entity
relationships are resolved. The instantiated model is translated to system dynamics, in order to
be simulated. The metamodel will allow the proposed high-level representation for software
projects, being instantiated for each new application to be developed. A language to support
the metamodel representation and a translator to system dynamic equations will be available.
We intend to evaluate the language by first developing simple models, such as stochastic
PERT nets, and progressively develop more complex ones, culminating with the proposed
project model. To support these activities some modifications were proposed to the Abdel-
Hamid and Madnick’s model, which are detailed in (Barros et al, 2000a).

We have also defined a first proposal for the scenario based project risk management
process, describing in some detail the activities of its sub-processes, and the artifacts they
produce and consume. The risk archetype information structure was defined and some initial
examples were provided (Barros et al, 1999).

Finally, we plan to run some case studies in order to evaluate the feasibility of such
techniques. Those case studies are intended to apply the techniques in real projects. A first

case study is scheduled to occur by the end of August/2000, where the techniques will be
applied to a software project, which aims to specialize a financial risk management software
package for a large Brazilian enterprise. We expect this case study to provide some concrete
examples of risk archetypes and illustrate their relationships with specific project elements, as
for instance, the application domain. We also expect to observe during the case study useful
information that allow us to refine the techniques and, when the system dynamic metamodel
is finished, to develop some scenario models. Moreover, we hope to be able to raise some
points that allow us to identify a set of criteria that can be used to evaluate the proposed
approach. By doing so, we plan to run, if possible, a second study to analyze the effects of the
refinements resulted from the first case study.

5 On Going Work

This paper describes a Sc.D. research project that is under development at the Computer
Science and Systems Engineering Department at COPPE/UFRJ, aiming at the definition of a
software project management paradigm based on risk analysis and system dynamic models.
Separate models represent known facts about the software project and exceptional events,
management policies, procedures, and theories that can affect the project. We have presented
the current status of the research, the methodology applied within its development, and some
case studies that we intend to execute for its validation.

References
Abdel-Hamid, T., Madnick, S.E. (1991) Software Project Dynamics: an Integrated Approach , Prentice-Hall

Software Series, Englewood Cliffs, New Jersey
Barros, M.O., Werner, C.M.L., Travassos, G.H. (1999) “Risk Analysis: a Key Success Factor for Complex

System Development”, IN: XII International Conference Software & System Engineering and its
Applications, Paris, FR (December)

Barros, M.O., Werner, C.M.L., Travassos, G.H. (2000a) “Applying System Dynamics to Scenario Based
Software Project Management”, IN: The Proceedings of the 2000 International System Dynamics
Conference, Berghen, NW (August)

Barros, M.O., Werner, C.M.L., Travassos, G.H. (2000b) “ILLIUM: Uma Ferramenta de Simulação de Modelos
Dinâmicos de Projetos de Software”, IN: The Proceedings of the Tools Section of the XIV Brazilian
Symposium on Software Engineering , João Pessoa, BR (October), in portuguese

Barros, M.O., Werner, C.M.L., Travassos, G.H. (2000c) “Using Process Modeling and Dynamic Simulation to
Support Software Process Quality Management”, Submitted to: The Proceedings of the WQS’2000 –
Workshop de Qualidade de Software, João Pessoa, BR (October)

Charette, R.N. (1996) “Large-scale Project Management is Risk Management”, IEEE Software, Vol. 13, No. 4,
pp 110-117, (July)

Christie, A. (1995) Software Process Automation: The Technology and Its Adoption , Springer-Verlag
Publishing, Berlin

Forrester, J.W. (1991) “System Dynamics and the Lessons of 35 Years”, Technical Report D-4224-4, Sloan
School of Management, Massachusetts Institute of Technology

Lin, C.Y., Levary, R.R. (1989) “Computer-Aided Software Development Process Design”, IEEE Transactions
on Software Engineering , Vol. 15, No. 9, pp 1025-1037 (September)

Lin, C.Y., Abdel-Hamid, T., Sherif, J.S., (1997) “Software-Engineering Process Simulation Model (SEPS)”,
Journal of Systems and Software, Vol. 37, pp. 263-277

Liu, L., Horowitz, E. (1989) “A Formal Model for Software Project Management”, IEEE Transactions on
Software Engineering, Vol. 15, No. 10, pp. 1280-1293 (October)

Neumann, P.G. (1995) Computer Related Risks, Addison-Wesley Publishing Company, Reading, Massachusets
Royce, W. (1998) Software Project Management: A Unified Framework , Addison-Wesley Publishing Company,

Reading, Massachusets
Tvedt, J.D., 1996, “An Extensible Model for Evaluating the Impact of Process Improvements on Software

Development Cycle Time”, Tese de D.Sc., Arizona State University, Tempe, AZ
Vose, D. (1996) Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modeling, John Wiley & Sons,

Inc, New York

