
Towards to an Embedded Edge AI Implementation
for Longitudinal Rip Detection in Conveyor Belt

Emerson Klippel∗† , Ricardo Augusto Rabelo Oliveira† , Dmitry Maslov‡ , Andrea Gomes Campos Bianchi†,

Saul Emanuel Delabrida Silva† , and Charles Tim Batista Garrocho†
∗ Vale Company, Paruapebas, Brazil

emerson.klippel@vale.com
† Computing Department, Federal University of Ouro Preto Ouro Preto, Minas Gerais, Brazil

rrabelo@gmail.com, andrea@ufop.edu.br, saul@sdelabrida.com, ctgarrocho@gmail.com
‡ TinkerGen, Seeed Studio, Shenzhen, China

dmitrywat@gmail.com

Abstract — The use of deep learning on edge AI to detect
failures in conveyor belts solves a complex problem of iron ore
beneficiation plants. Losses in the order of thousands of dollars
are caused by failures in these assets. The existing fault
detection systems currently do not have the necessary
efficiency and complete loss of belts is common.

Correct fault detection is necessary to reduce financial
losses and unnecessary risk exposure by maintenance
personnel. This problem is addressed by the present work with
the training of a deep learning model for detecting images of
failures of the conveyor belt. The resulting model is converted
and executed in an edge device located near the conveyor belt
to stop it in case a failure is detected.

The results obtained in the development and tests carried
out to date show the feasibility of using Edge AI to solve
complex problems in a mining environment such as detecting
longitudinal rips and stimulate the continuity of the work
considering new scenarios and operational conditions in the
search for a robust and replicable solution.

Keywords— Artificial intelligence, deep learning, edge
computing

I. Introduction

Conveyor belts are one of the most utilized resources in
iron ore industrial plants, easily reaching up to dozens of
kilometers in a mid-sized plant. The main component of a
conveyor belt is its vulcanized rubber belt with its internal
structure made of fabric (canvas) or steel cables.

The conveyor belt is very sensible to piercing and sharp
elements, this being critical especially where load transfer
from one belt to another occurs.

In some cases, the cut may lead to the complete loss of
the asset with impacts on the maintenance costs, production
losses, and exposure to health and safety hazards of the
workers. Fig. 1 shows an example of a real conveyor belt rip
by an element present in the iron ore being transported.

Rip detection instruments can be categorized in two
groups, electromechanical and electronic integrated in the
conveyor belts. The electromechanical have as their main
advantage its installation and maintenance costs but have
low sensibility and efficiency, primarily for their
dependence on direct interaction with the tear or its effects
on the sensor element. The electronics integrated to the belt

have good efficiency of detection but they have high cost
and low flexibility.

Fig. 1. Example of longitudinal rip in the conveyor belt.

The specific contribution of this work is the study to use
deep learning algorithms being executed in the device edge
to detect belt failures from real-time images of its surface.

In our project, all image processing and decision making
will be carried out on the device edge, without any
dependence on centralized processing, which is the
difference compared to other solutions based on the
detection of image failures but with centralized processing.

In this sense, this work presents an Edge artificial
intelligence (AI) approach for an industrial context. More
specifically, is used deep learning in an embedded device in
a decentralized way with the manipulation of information in
real-time and local decision making combined with
restrictions of energy consumption, cost, and dimensions.

II. T HEORETICAL R EFERENCE

The constant development of AI algorithms has enabled
it to perform complex tasks previously feasible only by
humans and allowing the creation of applications for daily
use.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A. Deep Learning
At the same time the models acquired the ability to

perform practical tasks, their complexity increased. Modern
models have dozens of layers and thousands of neurons
leading to millions of trainable parameters. It can be said
that the confluence of these millions of trainable parameters,
massive amounts of data, modern training techniques, and
specialized processors led to deep learning. Deep learning
algorithms are widely used in image classification and
detection [1].

In the classification and detection of images, models
must have a high learning capacity. This feature is achieved
by using deep layers in deep convolutional network models.
Deep learning is composed of a set of technologies for
optimization such as dropout, rectified linear units (ReLU)
activation functions, and convolutional neural network
architectures. Another important technology applied in deep
learning is the transfer of knowledge. This technique allows
the use of previously trained models that will be refined in
the final training process [2].

The typical workflow of the deep learning process is
shown in Fig. 2. Once the problem to be solved is defined,
the development will pass through three stages: the first is
the collection, preparation, and validation of the data for
training; the second is the process of learning with the
choice of the model, the task to be performed, training
method and training; the last stage is the validation of the
model with an analysis of its performance considering
perceived errors, model bias, spurious correlations [3].

Fig. 2. Deep learning workflow [3].

B. Edge AI
The need for local information processing leads to the

demand for distributed computing. The Edge computing
paradigm is born out of this need and at a high level can be
divided into Device Edge, Enterprise Edge, Far Edge, and
Near Edge.

Device edges are the closest to the real world, being the
Internet of Things (IoT) with the capacity to collect
information from the environment, analyze and take actions
without the need to exchange data with a centralized system
[4].

The confluence of AI with Device Edge created the
concept of Edge AI. Edge AI is in its early stages, attracting
many companies and researchers to its study and application
development. Considering the restrictions on energy
consumption, processing power and memory size existing in
Device Edge, development efforts have focused on

framework design, model adaptation and processor
acceleration [5].

The design of the frameworks and adaptation of the
models are mainly addressed by the manufacturers of these
devices. In our studies, we verified the existence of solutions
such as the software of the Google Coral platform [6], the
nncase compiler [7], and the OpenVino toolkit from Intel
[8].

Neural network accelerators are processors designed and
optimized for performing deep neural network operations.
These are built considering the energy consumption,
processing speed, and memory size restrictions available on
device edges. Neural network accelerators have as their
main objective inference and not training. The optimization
of its operation is achieved through specific processing and
memory architectures for operation with deep neural
networks [9].

III. R ELATED W ORKS
Many works and studies have been carried out to use

deep learning algorithms for intrusion detection, fire
detection, structural failures, machine defects, product
quality verification.

Detection of defects on the surface of conveyor belts is
proposed with the use of computer vision combined with
laser light to detect tears in the belt conveyor [10]. The
images were captured using a CMOS flat matrix installed in
the lower region of the belt. The laser image on the captured
belt in real-time was treated with suitable filters and in the
simulations carried out the system was able to detect tears
quickly and accurately.

Longitudinal rip in conveyor belt detection with the
combined use of sounds and images reached an accuracy of
86.7% in laboratory simulations [11]. The images obtained
from the belt are processed with the application of filters,
binarization, and extraction and bit counting associated with
the existence of a tear or not. In parallel, a microphone array
captures the noise produced by the belt, which is processed
using Mel-Frequency Cepstral Coefficients (MFCC) and
Gaussian Mix Model - Universal Background Model
(GMM-UBM). This processing identifies the possible
signature of the tear on the belt. The audio and video
identifications are combined to produce the result of a belt
with or without a tear.

A study for the use of convolutional neural networks and
images for the detection of dirt in mechanical structures of
conveyor belts has been developed with promising results
[12]. In this study, two network architectures were used at
RsNet18 and VGG16. These were trained from 73
photographs of the clean and dirty belt structure. The
accuracy results for identifying the presence of dirt or not
was 81.8% for the ResNet18 architecture and 95.5% for the
VGG16.

Failure detection situations with visual characteristics
similar to the belt tear are addressed using the frameworks
YOLO (You Only Look Once) and Faster R-CNN (Faster
Region Convolutional Neural Network) [13]. In this study,
the models were trained in the identification of defects in the
street asphalt. The image dataset was obtained from Google
Street images. Each defect in the image was classified as
belonging to 1 out of 9 categories, classified manually by a

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

specialist. The total number of classified images was 7,237.
The results were satisfactory for both the YOLO-v2 and
Faster R-CNN networks with precision results equal to 93%
and 75%, respectively and F1 (Overall Accuracy) with
values of 84% and 65%, respectively.

IV. D EEP L EARNING A PPLICATIONS IN E DGE AI
The SiPEED board was used to implement the damage

detector using deep learning on Edge AI. SiPEED presented
the best cost-benefit relation compared to the other existing
platforms available at the beginning of this work. The
SiPEED model used is illustrated in Fig. 3, while the
technical specifications in Table I was used to choosing the
board.

TABLE I. C ROSS -P LATFORM C OMPARISON .

Parameter Raspberry Pi 3 Jetson Nvidia
Nano

SiPEED
MAiX BiT

Processor ARM Cortex –
A53 Quad-core a57 K210 – RISC

– V
Clock (GHz) 1.2 1.43 0.40
RAM (GB) 1 4 0.008

AI resources NA GPU KPU
OS /

Language
Raspian /
Python

Ubuntu / SDK
JetPack uPython

Power rating
(W) 15 10 5

Costs (US$) 75.00 194.00 21.00

Fig. 3. SiPEED MAiX BiT

A. SiPEED Architecture
The SiPEED platform was developed from the K210

Kendryte, a System on Chip (SoC) aimed at computer vision
and hearing applications, has an integrated convolutional
neural network accelerator. Fig. 4 shows the K210 block
diagrams.

SiPEED boards can be programmed using C or
Micropython programming languages. C SDK and
Micropython firmware both have a specific set of libraries
for manipulation of convolutional neural networks,
computer vision, and sound or voice. When flashed with
Micropython firmware, SiPEED boards can be programmed
using MaixPy IDE, an integrated development environment
derived from OpenMV, that allows connection to the device,
code execution, and debugging with visual feedback.

Fig. 4. Block diagram of K210

The K210 neural network accelerator is called
Knowledge Processor Unit (KPU) and is a processor for
convolution operation, batch normalization, activation, and
pooling operations. It can detect objects and faces in
real-time, Fig. 5 shows the K210 Kendryte KPU block
diagram.

Fig. 5. Block diagram of KPU

The KPU supports a wide range of tensor operations
used in common network architectures, such as Conv2D,
DepthwiseConv2D, MaxPool2D, Relu6, and others(20+ in
total). Model compilation to K210 format(.kmodel) is
performed using nncase software developed by the K210
manufacturer. The manufacturer of the K210 is the Chinese
company Canaan Creative.

B. Training Framework
The aXeleRate framework was used in training the deep

learning model implemented in Edge AI. aXeleRate is based
on Keras-TensorFlow and consists of a set of scripts
optimized to be executed in a jupyter notebook running on
the Google Collaboratory platform [14].

AXeleRate has a modular structure, allowing users to
combine different frontend architectures with a variety of
feature extractors, such as MobileNet, NASNetMobile,
ResNet, and others. Frontend defines the format of data
output by model - in aXeleRate users can choose between a
classifier, YOLOv2 detector, and SegNet-basic semantic
segmentation network. The data in front of the images are
preprocessed and fed into the feature extractor part of the
network. The resulting feature vectors are used by the
network frontend to classify the image, output the bounding
boxes or segmentation masks, depending on the type of
frontend.

The main feature of aXeleRate is the automatic
conversion of trained models to the necessary format for
later use on Edge AI devices. The Edge AI devices
ecosystem is currently very fragmented, each device
requires the model to be converted into its own format in

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

order to accelerate inference. The conversion is done using
different tools that are often not compatible with each other.
For example, K210 uses nncase converter, Nvidia Movidius
chips use OpenVINO toolkit and Google Edge TPU uses a
proprietary model compiler.

The process of using aXeleRate is shown in Fig. 6 with
the main steps indicated by the blue circumferences The first
step consists of loading the images from the dataset stored in
Google Drive for training in the TensorFlow-Keras
framework (indication 1). After training, the model is
delivered in .h5 format, for classifiers (indication 2). Next,
the .h5 model returns to TensorFlow (indication 3), to be
converted to .tflite format (indication 4), and then to be
compiled in nncase. The nncase compiler performs the
compression, parameterization, and compilation of the
model to the .kmodel format (indication 5). The .kmodel
model is executed by the KPU from the device's SD card
(indication 6).

Fig. 6. Training and compilation with aXeleRate

C. Deep Learning Model Selection
We selected the MobileNet deep learning model from

those compiled by nncase. This architecture is efficient in
terms of fine-grained recognition, accuracy, and low
computational cost [15]. Version 0.75 MobileNet-224 v1
was used in the project. The comparison between the
different versions of MobileNet and the fine-grained
recognition benchmark, in this case Inception v3, is shown
in Table II. The Stanford Dogs dataset was used to assess
this capacity of the compared networks.

TABLE II. M ODEL C OMPARISON U SING S TANFORD
D OGS , A DAPTED F ROM [15]

Model Top 1
 Accuracy

Million Parameters

Inception v3 84% 23.2
1.0 MobileNet-224 83.3% 3.3

0.75 MobileNet-224 81.9% 3.3
1.0 MobileNet-192 81.9% 1.9

V. M ETHODOLOGY
This section describes the training methodology for the

deep learning algorithm, building the Edge AI prototype and
field tests for the study.

A. Edge AI prototype construction
The prototype was built with the SiPEED board to carry

out field tests and capture images of the conveyor belt. A
prototype was built from the SiPEED board to obtain photos
of the belt and field tests. The prototype is shown in Fig. 7.

Fig. 7. Edge AI prototype.

For the tests, three Python scripts were developed. The
first to capture photos in the field with 224x224 resolution
and storage on the SD card. The second for testing the
model from the validation dataset previously stored on the
SD card. The third for damage classification tests in the field
with storage of the classified photos with this situation on
the SD card.

B. Training the Deep Learning Model
The data set was developed to train the deep learning

model. For the dataset 291 photos of the damaged belt (tear)
and 291 photos of the normal belt were taken. The damage
simulations were carried out by the maintenance team and
pictures of these situations were taken with the belt stopped
and in motion.

The photos were taken with SiPEED itself using the
224x224 resolution appropriate to the MobileNet input
format. Examples of these images are shown in Fig. 8.

Data augmentation techniques were applied to increase
the number of images available for training bringing the
total number of images to 873 images with tears and 873
without. The images of each class were divided into training
images 794 and 79 verification images.

 (a) (b)

Fig. 8. Images of conveyor belt: (a) Without tear. (b) With tear.

The 0.75 MobileNet architecture was configured as a
classifier, with 224 inputs, 2 fully-connected layers with 100
and 50 neurons, and a dropout of 0.5. The training was
carried out using aXeleRate. Thirty training rounds were
carried out and the learning rate adopted was 0.001. The
initial weights of the model were based on training the
model with an ImageNet dataset.

C. Experiments
To analyze the results, confusion matrices were used at

the same time as the precision (1), recall (2) and overall
accuracy F1 (3). Where TP is truly positive, FP is false
positive, TN is true negative and FN is a false negative.

recisionp = T P
T P +F P (1)

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

ecallr = T P
T P +F N (2)

1F = precision+recall
2 precision recall* * (3)

To test the KPU's performance, the second script
developed for the prototype. In this script, the model
previously trained and compiled by aXeleRate is loaded
from the SD card. The same verification images used during
the training process are stored on the SD card and pass
through the KPU classification through the script.

The prototype positioned close to the belt so that the
underside of the belt was in the SiPEED's field of view. The
maintenance team simulated cuts in the belt and it was
activated so that cuts would pass in front of the prototype. It
was defined that each simulated cut would pass in front of
the prototype 10 times.

VI. R ESULTS
This section presents the results of training the deep

learning model as well as the performance of the prototype
in field tests.

A. Training Model Performance
 The 0.75 MobileNet-224 model was trained with the

previously prepared image dataset. The training was carried
out with the use of the aXeleRate platform being performed
on Google Colab. The backend weights used in the training
process was the imagenet.

The training was carried out in 24 minutes reaching a
97.4% accuracy as shown in the graph in Fig. 9.

Fig. 9. Training graph

The model was evaluated using the set of verification
images separate from the original dataset. Altogether there
were 79 images with tears and 79 without tears. The
confusion matrix is shown in Fig. 10. The performance
indicators can be seen in Table III.

Fig. 10. Confusion matrix of the model - Google Colab.

TABLE III. T RAINED M ODEL P ERFORMANCE AT G OOGLE C OLAB .

Indicator Value

Precision 95%
Recall 97%
F1 96%

B. Model Performance At Edge AI
The model trained and compiled by aXeleRate was

loaded into SiPEED MaIX Bit to test its efficiency. The
confusion matrix is shown in Fig. 11 and its performance
indicators in Table IV.

Fig. 11. Confusion matrix of the model - SiPEED.

TABLE IV. T RAINED M ODEL P ERFORMANCE AT S I PEED.

Indicator Value

Precision 87%
Recall 99%
F1 93%

As can be seen, there is a loss of performance of 8.4% in
accuracy and 3.1% in F1. The recall amount grows by 2.1%.
These performance reductions do not prevent the use of
Edge AI and deep learning models in the detection of tears.

Models are trained with weights and biases represented
with 32-bit floating-point numbers, which are then
quantized (i.e. discretized) to some specific values. We can
then represent using integers instead of floating-point
numbers. Converting 32-bit floating-point numbers to 8-bit
integers reduces the memory usage by 4x and allows us to
take advantage of specialized hardware for performing
inference faster, but it comes with the price in the form of
slight accuracy reduction. The precision loss in quantized
models is a common occurrence - the accuracy difference
between original and quantized models can be further
lowered using larger calibration dataset or using
quantization-aware training.

C. Field Test Performance
Field tests were carried out in 4 experiments. In tests, the

prototype was installed next to the belt to visualize the
simulated cuts. The installation location is shown in Fig. 12
and one of the simulated longitudinal cuts in Fig. 13.

Fig. 12. Prototype installation location

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Fig. 13. Simulated longitudinal cut

In each test, the prototype was exposed to 10 regions
with longitudinal rip and 10 regions without damage, in
these situations the belt was in motion. For each situation,
SiPEED took a photo to record the event.

The 4 experiments totaled 80 exposures with the results
presented in the confusion matrix of Fig. 14 and the
performance of Table V. One of the detected tears is shown
in Fig. 15.

Comparing the results of the field tests with the tests
carried out with SiPEED classifying images from the
dataset, an increase of 3% in accuracy and 1% in F1 is
verified. In the same comparison, there is a 2% reduction in
Recall.

Field tests were performed during the day in situations of
indirect sunlight. The lighting value measured in the test
region was between 600 and 1500 lux.

Fig. 14. Confusion matrix of field tests.

TABLE V. P ERFORMANCE OF F IELD T ESTS .

Indicator Value

Precision 90%
Recall 97%
F1 94%

Fig. 15. Detection in field test – Com rasgo means with tea r

VII. C ONCLUSION
The feasibility of using edge AI running a deep neural

network to detect longitudinal rip on a conveyor belt was
demonstrated.

The process of converting and compiling the
cloud-trained model for use on the device edge worked
despite the 9% loss inaccuracy.

In the experiments conducted during the development of
the work, the prototype reached an accuracy of 90% and an
overall accuracy of 94% in the detection of the simulated
longitudinal rip on the conveyor belt.

The results obtained encourage the advancement of the
development of the work taking into account new operating
conditions including conveyor belts with repairs and mud
stains as well as environmental conditions such as higher
dust levels and different lighting situations.

In parallel with the development of the solution, the
study of similar works in search of parameters for a better
evaluation of the overall performance of the developed
system should be further developed .

A CKNOWLEDGMENT
The authors would like to thank Vale, CAPES, CNPq,

and the Federal University of Ouro Preto for supporting this
work.

R EFERENCES
[1] A. Koul, S. Ganju, M. Kasan, Pratical Deep Learning for Cloud,

Mobile, and Edge: Real-World AI & Computer-Vision Projects Using
Pyhton, Keras & TensorFlow. 1st ed., O’Reilly Media, United States
of America, 2020.

[2] A. Krizhesky, I. Sutskever, G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks”, Neural Information
Processing System Conference, 2012.

[3] Raghu, Maithra, and Eric Schmidt. "A survey of deep learning for
scientific discovery." arXiv preprint arXiv:2003.11755 (2020).

[4] A. Malik, A. Gupta, Artificial Intelligence at the Edge. 1st ed.,
Amazon Publishing, United States of America, 2020.

[5] L. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, & A. Y. Zomaya,
”Edge intelligence: the confluence of edge computing and artificial
intelligence”, IEEE Internet of Things Journal, 2020.

[6] [NI], “Google Coral”. https://coral.ai/software/. 2020.
[7] Sunnycase, “Kendrite nncase”. https://github.com/kendryte/nncase.

2020.
[8] [NI], “OpenVino Intel”.

https://software.intel.com/content/www/us/en/develop/tools/openvino
-toolkit.html. 2020 .

[9] L. Deng, G. Li, S. Han, L. Shi and Y. Xie, “Model Compression and
Hardware Acceleration for Neural Networks: A Comprehensive
Survey”, IEEE, vol 108, No. 4, 2020.

[10] X. Li, L. Shen, Z. Ming, C. Zhang and H. Jiang, “Laser-based on-line
machine vision detection for longitudinal rip of conveyor belt”, Optik,
v. 168, pp. 360-369, 2018.

[11] H. Chengchegn, Q. Tiezhu, Q. Meiying. X. Xiaoyan, Y. Yi and Z.
Haitao. “Researhc on audio-visual detection method for conveyor belt
longitudinal tear”, IEEE Access, vol VII, pp. 120202-120213, 2019.

[12] A. A. Santos, F. A. S. Rocha, H. Azpúrua, A. J. R. Reis and F. G.
Guimarães, “Automatic system for visual inspection of belt
conveyors”, SBA, 14˚ Intelligent Automation Symposium, pp.
1192-1197, 2019.

[13] Majidifard, Hamed, et al. "Pavement Image Datasets: A New
Benchmark Dataset to Classify and Densify Pavement Distresses."
Transportation Research Record 2674.2 (2020): 328-339.

[14] D. Maslov “Image Recognition With K210 Boards and Arduino
IDE/Micropython”.
https://www.instructables.com/id/Transfer-Learning-With-Sipeed-Mai
X-and-Arduino-IDE. 2020.

[15] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.
Weyand, & H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications”, arXiv preprint
arXiv:1704.04861. 2017.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html.%202020
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html.%202020

