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Abstract —  The  use  of  deep  learning  on  edge  AI  to  detect            
failures  in  conveyor  belts  solves  a  complex  problem  of  iron  ore            
beneficiation  plants.  Losses  in  the  order  of  thousands  of  dollars           
are  caused  by  failures  in  these  assets.  The  existing  fault           
detection  systems  currently  do  not  have  the  necessary         
efficiency   and   complete   loss   of   belts   is   common.   

Correct  fault  detection  is  necessary  to  reduce  financial         
losses  and  unnecessary  risk  exposure  by  maintenance        
personnel.  This  problem  is  addressed  by  the  present  work  with           
the  training  of  a  deep  learning  model  for  detecting  images  of            
failures  of  the  conveyor  belt.  The  resulting  model  is  converted           
and  executed  in  an  edge  device  located  near  the  conveyor  belt            
to   stop   it   in   case   a   failure   is   detected.  

The  results  obtained  in  the  development  and  tests  carried          
out  to  date  show  the  feasibility  of  using  Edge  AI  to  solve             
complex  problems  in  a  mining  environment  such  as  detecting          
longitudinal  rips  and  stimulate  the  continuity  of  the  work          
considering  new  scenarios  and  operational  conditions  in  the         
search   for   a   robust   and   replicable   solution.  

Keywords—  Artificial  intelligence,  deep  learning,  edge       
computing  

 

I. Introduction  
 

Conveyor  belts  are  one  of  the  most  utilized  resources  in           
iron  ore  industrial  plants,  easily  reaching  up  to  dozens  of           
kilometers  in  a  mid-sized  plant.  The  main  component  of  a           
conveyor  belt  is  its  vulcanized  rubber  belt  with  its  internal           
structure   made   of   fabric   (canvas)   or   steel   cables.   

The  conveyor  belt  is  very  sensible  to  piercing  and  sharp           
elements,  this  being  critical  especially  where  load  transfer         
from   one   belt   to   another   occurs.   

In  some  cases,  the  cut  may  lead  to  the  complete  loss  of             
the  asset  with  impacts  on  the  maintenance  costs,  production          
losses,  and  exposure  to  health  and  safety  hazards  of  the           
workers.  Fig.  1  shows  an  example  of  a  real  conveyor  belt  rip             
by   an   element   present   in   the   iron   ore   being   transported.  

Rip  detection  instruments  can  be  categorized  in  two         
groups,  electromechanical  and  electronic  integrated  in  the        
conveyor  belts.  The  electromechanical  have  as  their  main         
advantage  its  installation  and  maintenance  costs  but  have         
low  sensibility  and  efficiency,  primarily  for  their        
dependence  on  direct  interaction  with  the  tear  or  its  effects           
on  the  sensor  element.  The  electronics  integrated  to  the  belt           

have  good  efficiency  of  detection  but  they  have  high  cost           
and   low   flexibility.   

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Example   of   longitudinal   rip   in   the   conveyor   belt.  

The  specific  contribution  of  this  work  is  the  study  to  use            
deep  learning  algorithms  being  executed  in  the  device  edge          
to   detect   belt   failures   from   real-time   images   of   its   surface.  

In  our  project,  all  image  processing  and  decision  making          
will  be  carried  out  on  the  device  edge,  without  any           
dependence  on  centralized  processing,  which  is  the        
difference  compared  to  other  solutions  based  on  the         
detection   of   image   failures   but   with   centralized   processing.  

In  this  sense,  this  work  presents  an  Edge  artificial          
intelligence  (AI)  approach  for  an  industrial  context.  More         
specifically,  is  used  deep  learning  in  an  embedded  device  in           
a  decentralized  way  with  the  manipulation  of  information  in          
real-time  and  local  decision  making  combined  with        
restrictions   of   energy   consumption,   cost,   and   dimensions.  

 

II. T HEORETICAL    R EFERENCE  

The  constant  development  of  AI  algorithms  has  enabled         
it  to  perform  complex  tasks  previously  feasible  only  by          
humans  and  allowing  the  creation  of  applications  for  daily          
use.  

XXX-X-XXXX-XXXX-X/XX/$XX.00   ©20XX   IEEE  



A. Deep   Learning  
At  the  same  time  the  models  acquired  the  ability  to           

perform  practical  tasks,  their  complexity  increased.  Modern        
models  have  dozens  of  layers  and  thousands  of  neurons          
leading  to  millions  of  trainable  parameters.  It  can  be  said           
that  the  confluence  of  these  millions  of  trainable  parameters,          
massive  amounts  of  data,  modern  training  techniques,  and         
specialized  processors  led  to  deep  learning.  Deep  learning         
algorithms  are  widely  used  in  image  classification  and         
detection   [1].  

In  the  classification  and  detection  of  images,  models         
must  have  a  high  learning  capacity.  This  feature  is  achieved           
by  using  deep  layers  in  deep  convolutional  network  models.          
Deep  learning  is  composed  of  a  set  of  technologies  for           
optimization  such  as  dropout,  rectified  linear  units  (ReLU)         
activation  functions,  and  convolutional  neural  network       
architectures.  Another  important  technology  applied  in  deep        
learning  is  the  transfer  of  knowledge.  This  technique  allows          
the  use  of  previously  trained  models  that  will  be  refined  in            
the   final   training   process   [2].  

The  typical  workflow  of  the  deep  learning  process  is          
shown  in  Fig.  2.  Once  the  problem  to  be  solved  is  defined,             
the  development  will  pass  through  three  stages:  the  first  is           
the  collection,  preparation,  and  validation  of  the  data  for          
training;  the  second  is  the  process  of  learning  with  the           
choice  of  the  model,  the  task  to  be  performed,  training           
method  and  training;  the  last  stage  is  the  validation  of  the            
model  with  an  analysis  of  its  performance  considering         
perceived   errors,   model   bias,   spurious   correlations   [3].  

Fig. 2. Deep   learning   workflow   [3].  

B. Edge   AI  
The  need  for  local  information  processing  leads  to  the          

demand  for  distributed  computing.  The  Edge  computing        
paradigm  is  born  out  of  this  need  and  at  a  high  level  can  be               
divided  into  Device  Edge,  Enterprise  Edge,  Far  Edge,  and          
Near   Edge.  

Device  edges  are  the  closest  to  the  real  world,  being  the            
Internet  of  Things  (IoT)  with  the  capacity  to  collect          
information  from  the  environment,  analyze  and  take  actions         
without  the  need  to  exchange  data  with  a  centralized  system           
[4].  

The  confluence  of  AI  with  Device  Edge  created  the          
concept  of  Edge  AI.  Edge  AI  is  in  its  early  stages,  attracting             
many  companies  and  researchers  to  its  study  and  application          
development.  Considering  the  restrictions  on  energy       
consumption,  processing  power  and  memory  size  existing  in         
Device  Edge,  development  efforts  have  focused  on        

framework  design,  model  adaptation  and  processor       
acceleration   [5].  

The  design  of  the  frameworks  and  adaptation  of  the          
models  are  mainly  addressed  by  the  manufacturers  of  these          
devices.  In  our  studies,  we  verified  the  existence  of  solutions           
such  as  the  software  of  the  Google  Coral  platform  [6],  the            
nncase  compiler  [7],  and  the  OpenVino  toolkit  from  Intel          
[8].   

Neural  network  accelerators  are  processors  designed  and        
optimized  for  performing  deep  neural  network  operations.        
These  are  built  considering  the  energy  consumption,        
processing  speed,  and  memory  size  restrictions  available  on         
device  edges.  Neural  network  accelerators  have  as  their         
main  objective  inference  and  not  training.  The  optimization         
of  its  operation  is  achieved  through  specific  processing  and          
memory  architectures  for  operation  with  deep  neural        
networks   [9].  

 

III. R ELATED    W ORKS  
Many  works  and  studies  have  been  carried  out  to  use           

deep  learning  algorithms  for  intrusion  detection,  fire        
detection,  structural  failures,  machine  defects,  product       
quality   verification.  

Detection  of  defects  on  the  surface  of  conveyor  belts  is           
proposed  with  the  use  of  computer  vision  combined  with          
laser  light  to  detect  tears  in  the  belt  conveyor  [10].  The            
images  were  captured  using  a  CMOS  flat  matrix  installed  in           
the  lower  region  of  the  belt.  The  laser  image  on  the  captured             
belt  in  real-time  was  treated  with  suitable  filters  and  in  the            
simulations  carried  out  the  system  was  able  to  detect  tears           
quickly   and   accurately.  

Longitudinal  rip  in  conveyor  belt  detection  with  the         
combined  use  of  sounds  and  images  reached  an  accuracy  of           
86.7%  in  laboratory  simulations  [11].  The  images  obtained         
from  the  belt  are  processed  with  the  application  of  filters,           
binarization,  and  extraction  and  bit  counting  associated  with         
the  existence  of  a  tear  or  not.  In  parallel,  a  microphone  array             
captures  the  noise  produced  by  the  belt,  which  is  processed           
using  Mel-Frequency  Cepstral  Coefficients  (MFCC)  and       
Gaussian  Mix  Model  -  Universal  Background  Model        
(GMM-UBM).  This  processing  identifies  the  possible       
signature  of  the  tear  on  the  belt.  The  audio  and  video            
identifications  are  combined  to  produce  the  result  of  a  belt           
with   or   without   a   tear.  

A  study  for  the  use  of  convolutional  neural  networks  and           
images  for  the  detection  of  dirt  in  mechanical  structures  of           
conveyor  belts  has  been  developed  with  promising  results         
[12].  In  this  study,  two  network  architectures  were  used  at           
RsNet18  and  VGG16.  These  were  trained  from  73         
photographs  of  the  clean  and  dirty  belt  structure.  The          
accuracy  results  for  identifying  the  presence  of  dirt  or  not           
was  81.8%  for  the  ResNet18  architecture  and  95.5%  for  the           
VGG16.  

Failure  detection  situations  with  visual  characteristics       
similar  to  the  belt  tear  are  addressed  using  the  frameworks           
YOLO  (You  Only  Look  Once)  and  Faster  R-CNN  (Faster          
Region  Convolutional  Neural  Network)  [13].  In  this  study,         
the  models  were  trained  in  the  identification  of  defects  in  the            
street  asphalt.  The  image  dataset  was  obtained  from  Google          
Street  images.  Each  defect  in  the  image  was  classified  as           
belonging  to  1  out  of  9  categories,  classified  manually  by  a            
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specialist.  The  total  number  of  classified  images  was  7,237.          
The  results  were  satisfactory  for  both  the  YOLO-v2  and          
Faster  R-CNN  networks  with  precision  results  equal  to  93%          
and  75%,  respectively  and  F1  (Overall  Accuracy)  with         
values   of   84%   and   65%,   respectively.  

 

IV. D EEP    L EARNING    A PPLICATIONS     IN    E DGE    AI  
The  SiPEED  board  was  used  to  implement  the  damage          

detector  using  deep  learning  on  Edge  AI.  SiPEED  presented          
the  best  cost-benefit  relation  compared  to  the  other  existing          
platforms  available  at  the  beginning  of  this  work.  The          
SiPEED  model  used  is  illustrated  in  Fig.  3,  while  the           
technical  specifications  in  Table  I  was  used  to  choosing  the           
board.  

TABLE I. C ROSS -P LATFORM    C OMPARISON .  

Parameter  Raspberry   Pi   3  Jetson   Nvidia  
Nano  

SiPEED  
MAiX   BiT  

Processor  ARM   Cortex   –  
A53  Quad-core   a57  K210   –   RISC  

–   V  
Clock   (GHz)  1.2  1.43  0.40  
RAM   (GB)  1   4   0.008  

AI   resources  NA  GPU  KPU  
OS   /  

Language  
Raspian   /  
Python  

Ubuntu   /   SDK  
JetPack  uPython  

Power   rating  
(W)  15  10  5  

Costs   (US$)  75.00  194.00  21.00  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. SiPEED   MAiX   BiT  

A. SiPEED   Architecture  
The  SiPEED  platform  was  developed  from  the  K210         

Kendryte,  a  System  on  Chip  (SoC)  aimed  at  computer  vision           
and  hearing  applications,  has  an  integrated  convolutional        
neural  network  accelerator.  Fig.  4  shows  the  K210  block          
diagrams.  

SiPEED  boards  can  be  programmed  using  C  or         
Micropython  programming  languages.  C  SDK  and       
Micropython  firmware  both  have  a  specific  set  of  libraries          
for  manipulation  of  convolutional  neural  networks,       
computer  vision,  and  sound  or  voice.  When  flashed  with          
Micropython  firmware,  SiPEED  boards  can  be  programmed        
using  MaixPy  IDE,  an  integrated  development  environment        
derived  from  OpenMV,  that  allows  connection  to  the  device,          
code   execution,   and   debugging   with   visual   feedback.  

 

 
 

 

 

 

 

 
Fig. 4. Block   diagram   of   K210  

The  K210  neural  network  accelerator  is  called        
Knowledge  Processor  Unit  (KPU)  and  is  a  processor  for          
convolution  operation,  batch  normalization,  activation,  and       
pooling  operations.  It  can  detect  objects  and  faces  in          
real-time,  Fig.  5  shows  the  K210  Kendryte  KPU  block          
diagram.  

 
Fig. 5. Block   diagram   of   KPU  

The  KPU  supports  a  wide  range  of  tensor  operations          
used  in  common  network  architectures,  such  as  Conv2D,         
DepthwiseConv2D,  MaxPool2D,  Relu6,  and  others(20+  in       
total).  Model  compilation  to  K210  format(.kmodel)  is        
performed  using  nncase  software  developed  by  the  K210         
manufacturer.  The  manufacturer  of  the  K210  is  the  Chinese          
company   Canaan   Creative.  

B. Training   Framework  
The  aXeleRate  framework  was  used  in  training  the  deep          

learning  model  implemented  in  Edge  AI.  aXeleRate  is  based          
on  Keras-TensorFlow  and  consists  of  a  set  of  scripts          
optimized  to  be  executed  in  a  jupyter  notebook  running  on           
the   Google   Collaboratory   platform   [14].  

AXeleRate  has  a  modular  structure,  allowing  users  to         
combine  different  frontend  architectures  with  a  variety  of         
feature  extractors,  such  as  MobileNet,  NASNetMobile,       
ResNet,  and  others.  Frontend  defines  the  format  of  data          
output  by  model  -  in  aXeleRate  users  can  choose  between  a            
classifier,  YOLOv2  detector,  and  SegNet-basic  semantic       
segmentation  network.  The  data  in  front  of  the  images  are           
preprocessed  and  fed  into  the  feature  extractor  part  of  the           
network.  The  resulting  feature  vectors  are  used  by  the          
network  frontend  to  classify  the  image,  output  the  bounding          
boxes  or  segmentation  masks,  depending  on  the  type  of          
frontend.  

The  main  feature  of  aXeleRate  is  the  automatic         
conversion  of  trained  models  to  the  necessary  format  for          
later  use  on  Edge  AI  devices.  The  Edge  AI  devices           
ecosystem  is  currently  very  fragmented,  each  device        
requires  the  model  to  be  converted  into  its  own  format  in            
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order  to  accelerate  inference.  The  conversion  is  done  using          
different  tools  that  are  often  not  compatible  with  each  other.           
For  example,  K210  uses  nncase  converter,  Nvidia  Movidius         
chips  use  OpenVINO  toolkit  and  Google  Edge  TPU  uses  a           
proprietary   model   compiler.   

The  process  of  using  aXeleRate  is  shown  in  Fig.  6  with            
the  main  steps  indicated  by  the  blue  circumferences The  first           
step  consists  of  loading  the  images  from  the  dataset  stored  in            
Google  Drive  for  training  in  the  TensorFlow-Keras        
framework  (indication  1).  After  training,  the  model  is         
delivered  in  .h5  format,  for  classifiers  (indication  2).  Next,          
the  .h5  model  returns  to  TensorFlow  (indication  3),  to  be           
converted  to  .tflite  format  (indication  4),  and  then  to  be           
compiled  in  nncase.  The  nncase  compiler  performs  the         
compression,  parameterization,  and  compilation  of  the       
model  to  the  .kmodel  format  (indication  5).  The  .kmodel          
model  is  executed  by  the  KPU  from  the  device's  SD  card            
(indication   6).  

 

 

 
 

Fig. 6. Training   and   compilation   with   aXeleRate  

C. Deep   Learning   Model   Selection  
We  selected  the  MobileNet  deep  learning  model  from         

those  compiled  by  nncase.  This  architecture  is  efficient  in          
terms  of  fine-grained  recognition,  accuracy,  and  low        
computational  cost  [15].  Version  0.75  MobileNet-224  v1        
was  used  in  the  project.  The  comparison  between  the          
different  versions  of  MobileNet  and  the  fine-grained        
recognition  benchmark,  in  this  case  Inception  v3,  is  shown          
in  Table  II.  The  Stanford  Dogs  dataset  was  used  to  assess            
this   capacity   of   the   compared   networks.  

TABLE II. M ODEL    C OMPARISON    U SING    S TANFORD  
D OGS ,   A DAPTED    F ROM    [15]  

Model   Top   1  
  Accuracy  

Million   Parameters  

Inception   v3  84%  23.2  
1.0   MobileNet-224  83.3%  3.3  

0.75   MobileNet-224  81.9%  3.3  
1.0   MobileNet-192  81.9%  1.9  

V. M ETHODOLOGY  
This  section  describes  the  training  methodology  for  the         

deep  learning  algorithm,  building  the  Edge  AI  prototype  and          
field   tests   for   the   study.  

A. Edge   AI   prototype   construction  
The  prototype  was  built  with  the  SiPEED  board  to  carry           

out  field  tests  and  capture  images  of  the  conveyor  belt.  A            
prototype  was  built  from  the  SiPEED  board  to  obtain  photos           
of   the   belt   and   field   tests.   The   prototype   is   shown   in   Fig.   7.  

 

 

 

 

 

 

 

 
Fig. 7. Edge   AI   prototype.  

For  the  tests,  three  Python  scripts  were  developed.  The          
first  to  capture  photos  in  the  field  with  224x224  resolution           
and  storage  on  the  SD  card.  The  second  for  testing  the            
model  from  the  validation  dataset  previously  stored  on  the          
SD  card.  The  third  for  damage  classification  tests  in  the  field            
with  storage  of  the  classified  photos  with  this  situation  on           
the   SD   card.  

B. Training   the   Deep   Learning   Model  
The  data  set  was  developed  to  train  the  deep  learning           

model.  For  the  dataset  291  photos  of  the  damaged  belt  (tear)            
and  291  photos  of  the  normal  belt  were  taken.  The  damage            
simulations  were  carried  out  by  the  maintenance  team  and          
pictures  of  these  situations  were  taken  with  the  belt  stopped           
and   in   motion.  

The  photos  were  taken  with  SiPEED  itself  using  the          
224x224  resolution  appropriate  to  the  MobileNet  input        
format.   Examples   of   these   images   are   shown   in   Fig.   8.  

Data  augmentation  techniques  were  applied  to  increase        
the  number  of  images  available  for  training  bringing  the          
total  number  of  images  to  873  images  with  tears  and  873            
without.  The  images  of  each  class  were  divided  into  training           
images   794   and   79   verification   images.  

 
 

 

 

 

 

           (a)                                       (b)   

Fig. 8. Images   of   conveyor   belt:   (a)   Without   tear.   (b)   With   tear.  

The  0.75  MobileNet  architecture  was  configured  as  a         
classifier,  with  224  inputs,  2  fully-connected  layers  with  100          
and  50  neurons,  and  a  dropout  of  0.5.  The  training  was            
carried  out  using  aXeleRate.  Thirty  training  rounds  were         
carried  out  and  the  learning  rate  adopted  was  0.001.  The           
initial  weights  of  the  model  were  based  on  training  the           
model   with   an   ImageNet   dataset.  

C. Experiments  
To  analyze  the  results,  confusion  matrices  were  used  at          

the  same  time  as  the  precision  (1),  recall  (2)  and  overall            
accuracy  F1  (3).  Where  TP  is  truly  positive,  FP  is  false            
positive,   TN   is   true   negative   and   FN   is   a   false   negative.  

 

recisionp = T P
T P +F P (1)  
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ecallr = T P
T P +F N (2)  

 

1F = precision+recall
2 precision recall* * (3)  

 

To  test  the  KPU's  performance,  the  second  script         
developed  for  the  prototype.  In  this  script,  the  model          
previously  trained  and  compiled  by  aXeleRate  is  loaded         
from  the  SD  card.  The  same  verification  images  used  during           
the  training  process  are  stored  on  the  SD  card  and  pass            
through   the   KPU   classification   through   the   script.   

The  prototype  positioned  close  to  the  belt  so  that  the           
underside  of  the  belt  was  in  the  SiPEED's  field  of  view.  The             
maintenance  team  simulated  cuts  in  the  belt  and  it  was           
activated  so  that  cuts  would  pass  in  front  of  the  prototype.  It             
was  defined  that  each  simulated  cut  would  pass  in  front  of            
the   prototype   10   times.   

VI. R ESULTS  
This  section  presents  the  results  of  training  the  deep          

learning  model  as  well  as  the  performance  of  the  prototype           
in   field   tests.  

A. Training   Model   Performance  
 The  0.75  MobileNet-224  model  was  trained  with  the          

previously  prepared  image  dataset.  The  training  was  carried         
out  with  the  use  of  the  aXeleRate  platform  being  performed           
on  Google  Colab.  The  backend  weights  used  in  the  training           
process   was   the   imagenet.  

The  training  was  carried  out  in  24  minutes  reaching  a           
97.4%   accuracy   as   shown   in   the   graph   in   Fig.   9.  

 

 

 

 

 

 

 

 

 
Fig. 9. Training   graph  

The  model  was  evaluated  using  the  set  of  verification          
images  separate  from  the  original  dataset.  Altogether  there         
were  79  images  with  tears  and  79  without  tears.  The           
confusion  matrix  is  shown  in  Fig.  10.  The  performance          
indicators   can   be   seen   in   Table   III.  

 

 

 

 
Fig. 10. Confusion   matrix   of   the   model   -   Google   Colab.  

TABLE III. T RAINED    M ODEL    P ERFORMANCE     AT    G OOGLE    C OLAB .  

Indicator  Value  

Precision  95%  
Recall  97%  
F1  96%  

B. Model   Performance   At   Edge   AI  
The  model  trained  and  compiled  by  aXeleRate  was         

loaded  into  SiPEED  MaIX  Bit  to  test  its  efficiency.  The           
confusion  matrix  is  shown  in  Fig.  11  and  its  performance           
indicators   in   Table   IV.  

 

 

 

 
Fig. 11. Confusion   matrix   of   the   model   -   SiPEED.  

TABLE IV. T RAINED    M ODEL    P ERFORMANCE     AT    S I PEED.  

Indicator  Value  

Precision  87%  
Recall  99%  
F1  93%  

 

As  can  be  seen,  there  is  a  loss  of  performance  of  8.4%  in              
accuracy  and  3.1%  in  F1.  The  recall  amount  grows  by  2.1%.            
These  performance  reductions  do  not  prevent  the  use  of          
Edge   AI   and   deep   learning   models   in   the   detection   of   tears.  

Models  are  trained  with  weights  and  biases  represented         
with  32-bit  floating-point  numbers,  which  are  then        
quantized  (i.e.  discretized)  to  some  specific  values.  We  can          
then  represent  using  integers  instead  of  floating-point        
numbers.  Converting  32-bit  floating-point  numbers  to  8-bit        
integers  reduces  the  memory  usage  by  4x  and  allows  us  to            
take  advantage  of  specialized  hardware  for  performing        
inference  faster,  but  it  comes  with  the  price  in  the  form  of             
slight  accuracy  reduction.  The  precision  loss  in  quantized         
models  is  a  common  occurrence  -  the  accuracy  difference          
between  original  and  quantized  models  can  be  further         
lowered  using  larger  calibration  dataset  or  using        
quantization-aware   training.  

C. Field   Test   Performance  
Field  tests  were  carried  out  in  4  experiments.  In  tests,  the            

prototype  was  installed  next  to  the  belt  to  visualize  the           
simulated  cuts.  The  installation  location  is  shown  in  Fig.  12           
and   one   of   the   simulated   longitudinal   cuts   in   Fig.   13.  

 

  

 

 

 

 
Fig. 12. Prototype   installation   location  
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Fig. 13. Simulated   longitudinal   cut  

In  each  test,  the  prototype  was  exposed  to  10  regions           
with  longitudinal  rip  and  10  regions  without  damage,  in          
these  situations  the  belt  was  in  motion.  For  each  situation,           
SiPEED   took   a   photo   to   record   the   event.  

The  4  experiments  totaled  80  exposures  with  the  results          
presented  in  the  confusion  matrix  of  Fig.  14  and  the           
performance  of  Table  V.  One  of  the  detected  tears  is  shown            
in   Fig.   15.  

Comparing  the  results  of  the  field  tests  with  the  tests           
carried  out  with  SiPEED  classifying  images  from  the         
dataset,  an  increase  of  3%  in  accuracy  and  1%  in  F1  is             
verified.  In  the  same  comparison,  there  is  a  2%  reduction  in            
Recall.  

Field  tests  were  performed  during  the  day  in  situations  of           
indirect  sunlight.  The  lighting  value  measured  in  the  test          
region   was   between   600   and   1500   lux.  

 
Fig. 14. Confusion   matrix   of   field   tests.  

TABLE V. P ERFORMANCE     OF    F IELD    T ESTS .  

Indicator  Value  

Precision  90%  
Recall  97%  
F1  94%  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Detection   in   field   test   –    Com   rasgo    means    with   tea r  

VII. C ONCLUSION  
The  feasibility  of  using  edge  AI  running  a  deep  neural           

network  to  detect  longitudinal  rip  on  a  conveyor  belt  was           
demonstrated.  

The  process  of  converting  and  compiling  the        
cloud-trained  model  for  use  on  the  device  edge  worked          
despite   the   9%   loss   inaccuracy.  

In  the  experiments  conducted  during  the  development  of         
the  work,  the  prototype  reached  an  accuracy  of  90%  and  an            
overall  accuracy  of  94%  in  the  detection  of  the  simulated           
longitudinal   rip   on   the   conveyor   belt.  

The  results  obtained  encourage  the  advancement  of  the         
development  of  the  work  taking  into  account  new  operating          
conditions  including  conveyor  belts  with  repairs  and  mud         
stains  as  well  as  environmental  conditions  such  as  higher          
dust   levels   and   different   lighting   situations.  

In  parallel  with  the  development  of  the  solution,  the          
study  of  similar  works  in  search  of  parameters  for  a  better            
evaluation  of  the  overall  performance  of  the  developed         
system   should   be   further   developed .  
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