
The Node Status as a Prioritization Strategy for
Replica Balancing in a HDFS Cluster

Rhauani Weber Aita Fazul1, Patrı́cia Pitthan Barcelos1
1Post Graduate Program in Computer Science

Federal University of Santa Maria (UFSM)
Santa Maria – RS, Brazil

{rwfazul, pitthan}@inf.ufsm.br

Abstract—Data replication is the main fault tolerance mech-
anism of HDFS, the Hadoop Distributed File System. Although
replication is essential to ensure high availability and reliability,
the replicas might not always be placed evenly among the nodes.
The HDFS Balancer is an integrated solution of Apache Hadoop
that performs replica balancing through the rearrangement of
the data blocks stored in the file system. The Balancer, however,
demands a high computational effort of the nodes during its
operation. This work presents a customization for the HDFS
Balancer that considers the status of the nodes as a strategy to
minimize the overhead caused by the balancing operation in the
cluster. To this end, metrics obtained at runtime are used as a
way to prioritize the nodes during data redistribution, making it
occurs primarily between nodes with low communication traffic.
Also, the Balancer starts to operate aiming at a minimum balance
level, reducing the number of data transfers required to even up
the data stored in the cluster. The evaluation results showed
that the proposed customization allows reducing the time and
bandwidth needed to reach the system balance.

Index Terms—data replication, replica balancing, balancing
overhead, data locality

I. INTRODUCTION

Apache Hadoop [1] is an open-source framework designed
for large-scale, massively parallel, and distributed data pro-
cessing and storage. One of its main components is the
Hadoop Distributed File System (HDFS), a system designed
to provide reliable storage even when running on clusters
of commodity hardware. The HDFS follows a master-worker
architecture composed by a NameNode (NN) and multiple
DataNodes (DNs). The NN is the master server responsible for
maintaining the system namespace and controlling the access
and distribution of the files across the cluster. The DNs, on
the other hand, are the workers that store and recover the data.

When a file is inserted in the HDFS, it is split into data
blocks of fixed size (128MB by default). To ensure reliability
and availability, the HDFS implements data replication as
a fault tolerance mechanism. In this way, the blocks are
replicated and distributed between the DNs. The number of
replicas of each block is defined by the Replication Factor,
whose default value is 3. It can be configurable for each file
either by the user or the application [2]. A factor of n ensures
that data will not be lost even if n−1 DNs fail simultaneously.

Besides providing reliability through redundancy, the repli-
cation promotes performance improvements as it allows the
applications to explore a higher data availability in the cluster.

In this sense, a good replica placement is essential to keep the
file system working properly. The NN takes all the decisions
regarding the data placement and determines which DNs will
store the replicas of each block. To do that, the NN follows
a Replica Placement Policy (RPP) [1] that optimizes the data
distribution by using rack awareness. The RPP assures that
a node can have only one replica of the same block, and in
a rack, a block can be present in a maximum of two nodes
[3]. This provides high availability in the event of failures and
prevents losing data even when an entire rack fails.

In general, the RPP provides fault tolerance and good
performance on reading and writing data by optimizing the
network bandwidth utilization [2]. However, it does not ensure
a fully-balanced replica distribution [4]. Imbalance also occurs
in situations like the addition of new DNs in the cluster as it
results in a large discrepancy between the data held on the
DNs [5]. The replica imbalance impacts the data locality and
can prevent the HDFS to explore the computational resources
in an optimized way, degrading its overall performance.

One way to even out the data spread across the cluster
is through the HDFS Balancer [4], a Hadoop daemon that
redistributes replicas from over-utilized to under-utilized DNs.
However, it operates in a generalized way to suit different
applications running in a variety of contexts, disregarding
parameters, such as the communication traffic of the DNs and
the volume of data to be transferred. Thus, the Balancer may
not be optimized to meet some specific usage demands that can
be hardly affected by the balancing operation in the cluster.

This work presents a prioritization strategy for the HDFS
Balancer that aims to reduce the overhead of the balancing
operation through metrics recovered in runtime. Based on that,
the data redistribution starts to occur primarily between nodes
with low communication traffic, minimizing the impact in
the other tasks executing in the cluster during the balancing
operation. Additionally, an effort is made to reduce the number
of data transfers required to balance the data distribution on
the cluster. An experimental investigation was lead in order to
validate and evaluate the effectiveness of the implementation.

The work is organized as it follows. Section II presents the
main causes and problems inherent by the replica imbalance
in HDFS clusters. Section III gives an overview of the related
work focused on replica balancing. Section IV describes the
proposed solution in details. Section V presents and discusses

the evaluation results. Lastly, Section VI concludes the paper
and summarizes possible future work.

II. REPLICA BALANCING

A principle of Hadoop’s operation is to move the compu-
tational tasks to where the data are stored and, if it is not
possible, to nodes with a faster network path to the DNs
that maintain the blocks required for the operation. Bringing
computing closer to data, the heart of Hadoop processing,
is known as data locality [2]. This feature increases the
performance of the platform in processing large datasets as the
block access – since it is local – becomes faster and cheaper
in terms of network bandwidth utilization.

As each block is replicated by default in three different DNs,
the probability that a computational task is able to process
most blocks locally is high [3]. Therefore, the placement of the
replicas is critical for data availability and the performance of
I/O bound applications running on HDFS [4]. Hadoop works
hard managing block placement in a way that maximizes both
reliability and performance [5]. However, it is not always pos-
sible to prevent an HDFS cluster from becoming imbalanced.

Different aspects can contribute to the replica imbalance,
such as: (i) the RPP that does not take into account DN storage
space utilization [4], thus contributing to inter-DN imbalance,
and selects a rack to keep two-thirds of the replicas of a
certain block, resulting in inter-rack imbalance; (ii) the client
application behavior which, if executed directly in one DN of
the cluster and according to the RPP, always stores one of
the replicas locally; (iii) the re-replication process that is also
under the same initial replication policy; and (iv) the addition
of a new DN into the system, as it will be a valid candidate for
block placement alongside all the other nodes in the cluster,
therefore remaining lightly utilized for a significant period [5].

An imbalanced replica distribution tends to affect the data
locality and may result in a higher number of intra-rack or even
off-rack transfers, thus consuming valuable cluster bandwidth
[6]. Also, the imbalance can cause an overhead in the highly
utilized DNs (nodes with more stored blocks), thus leading to
performance bottlenecks in the system.

III. RELATED WORK

Two main approaches can be used to mitigate the problems
of replica imbalance. The first one is through preventive ac-
tions made in the moment of the initial block distribution. With
that, it is possible to reduce the chances that the cluster
becomes imbalanced. In general, examples of this approach,
like the solution presented in [7], involve the development of
new replica placement policies for the HDFS that consider
the data volume stored in each node as criteria for data
distribution. However, in some situations, like when new nodes
are added to the system, it is not possible to prevent a high
discrepancy between the data held on the cluster nodes, in a
way that reactive approaches become necessary. This work is
focused on solutions from this latter approach.

The reactive balancing in HDFS acts as a corrective ap-
proach that allows the cluster administrator to even out the

replica placement between the nodes. In this sense, the blocks
already stored in the file system are redistributed across the
cluster, aiming at a controlled balancing level. Examples of
reactive approaches include [8] that proposes an enhanced
algorithm to balance racks based on priority. The algorithm
acts mainly on balancing over-utilized racks, minimizing the
chances of rack failures caused by overheads, and contributing
with more uniform data distribution.

In [9] it is showed a balancing strategy that besides DNs
utilization considers variations in the write and read latency of
the nodes storage disks to reallocate the data in HDFS. With
that, DNs with less disk latency tend to receive a high number
of blocks. The authors in [10], in turn, focus on optimizing the
redistribution process by exploring the computational power
of the nodes. The proposed balancing algorithm is based on
the processing capacity of the DNs, where the blocks are
redistributed only to specific DNs, selected from an initial
classification by their heterogeneity and performance.

Another possible solution for reactive balancing, integrated
into Hadoop distribution as a utility, is the HDFS Balancer
[4]. Since this solution is the basis for the implementation
presented in this work, the balancer operation is detailed next.

A. HDFS Balancer

The HDFS Balancer [4] is a Hadoop daemon designed for
replica balancing across storage devices in HDFS. Following
its default operation policy, the HDFS Balancer moves data
blocks from DNs with high utilization to DNs that store a
smaller volume of data. The tool is executed on demand by
the cluster administrator.

The Balancer is driven by a threshold (a percentage in the
range of 0% to 100%), which is passed as parameter to its
execution and it is aware that a single DN may have multiple
storage devices of different types. So, considering that Gi,t
represents the group of storage devices of type t that belongs to
DN i, the threshold will limit the maximum difference between
the utilization of a certain Gi,t (Ui,t), i.e., the ratio of the used
space on the node to its total storage capacity, and the average
utilization of the cluster (Uµ,t), i.e., the ratio of the used space
on the cluster to its total capacity [2]. When the utilization of
each group is in accordance with the threshold, which has the
default value of 10%, the cluster is considered to be balanced.
Reducing the threshold increases the balance of the cluster but
requires more effort in terms of data processing and transfer.

The Balancer operation can be divided in different stages
that are executed iteratively [11]. Initially, each Gi,t of
the cluster is classified in one of the following categories:
(i) over-utilized, if Ui,t > Uµ,t+threshold ; (ii) above-average,
if Uµ,t + threshold ≥ Ui,t > Uµ,t; (iii) below-average,
if Uµ,t ≥ Ui,t ≥ Uµ,t − threshold ; (iv) under-utilized, if
Uµ,t − threshold > Ui,t. Besides, for each Gi,t, the data
amount (in bytes) needed for taking its Ui,t until the Uµ,t
is calculated and stored in a variable called maxSize2Move.

After, each over-utilized Gi,t (source) is paired with one
or more under-utilized Gi,t (target) in a 1 – n relation (the
lists are accessed sequentially, without any predefined order).

The over-utilized groups that have maxSize2Move satisfied are
removed from their list and will not be paired in the current
iteration. For the remaining over-utilized groups, pairs are
formed between the Gi,t classified as below-average. If there is
still some under-utilized Gi,t, candidates are searched between
the remaining Gi,t classified as above-average.

In sequence, the replicas that will be moved from the source
to the target group are elected. The Balancer maintains the
same data availability level initially provided by the RPP. So,
when selecting a replica to move and determining the target
Gi,t, the Balancer assures that this decision will not decrease
either the number of replicas or the number of racks [4].

Additionally, to decrease the inter-rack data copying re-
quired for the transfers between nodes of different racks, the
Balancer uses the DN nearest to the target and that has a copy
of the block to be moved as a proxy. Thus, after copying the
block kept in the proxy to its local storage, the target group
sends an alert to the NN that triggers a delete operation of the
replica in the source group. If after the conclusion of all block
movements the cluster still has over-utilized or under-utilized
groups, a new balancing iteration will be started.

Although the Balancer was designed to operate in the
background without affecting the other clients and applications
in the cluster [2], the balancing operation may demand high
cost in both processing and bandwidth consumption. Section
IV presents a customization for the HDFS Balancer that turns
the tool aware of the status of the cluster nodes, avoiding
inappropriate overheads.

IV. CUSTOMIZED REPLICA BALANCING POLICY

Previous work attested that replicas imbalance directly af-
fect the HDFS performance in serving I/O bound applications
[12]. Motivated by the achieved results, we defined a cus-
tomized policy for the HDFS Balancer dedicated to optimizing
the default operation policy of the Hadoop’s native balancer.

The customized policy defines a priority system based on
the cluster topology and in the metrics of the HDFS. The
priorities are grouped into four categories according to their
behavior, as shown in Table I. All priorities ensure that the
replica placement after the balance will continue to respect the
RPP and that the maximum variation of the data volume stored
in each DN remains controlled by the threshold value. This
work focuses on the priorities of the Node status category,
which are presented in Section IV-A.

TABLE I
PRIORITIES OF THE CUSTOMIZED REPLICA BALANCING POLICY.

Category Priority

Node capacity Processing capacity, Storage capacity
Node status Node utilization, Node classification, Node load
Rack status Rack reliability, Rack utilization

Data distribution Data availability

A. Node Status Category

The priorities of the Node status category customize the
replica balancing policy of the HDFS through differences in

metrics obtained in the Balancer’s runtime. In the following
sections, the Node utilization, classification, and load priorities
are described in detail.

1) Node utilization priority: This priority reorders the lists
of the storage device groups considering the amount of data
stored in each group. This increases the chances that the Gi,t
with the highest utilization in the cluster will be primarily
paired with the Gi,t with the lowest utilization and so on. As
the definition of the source-target pairs follows a 1 – n relation,
it tends to reduce the value of n, optimizing the matching of
the source and target groups during the balancing process.

To this end, it is necessary to order the lists that keep
the storage groups before the pairing stage starts. Thus, we
implemented a new method called orderStorageGroups, which
sorts the lists according to the used or the available space of the
groups. If the used space (attribute dfsUsed) is the configured
metric, the lists of the source groups (over-utilized and above-
average) are sorted in descending order and the lists of the
target groups (below-average and under-utilized) are sorted
in ascending order. On the other hand, if the metric is the
available space (attribute remaining), the lists of the source
groups are sorted in ascending order and the lists of target
groups in descending order.

This priority can be used simultaneously alongside other
priorities of the customized policy. The algorithm of this
priority was omitted due to its simplicity (i.e., numeric list
sorting). It is worth mentioning, however, that the group lists
are originally kept in Java collections, and thus they do not
have a predefined order. So, it becomes necessary to convert
the lists to a sortable implementation (e.g., LinkedList) before
applying the comparisons to order the storage groups.

2) Node classification priority: This priority aims at a
minimum balance in function of the configured threshold.
Thus, the utilization of the over-utilized and under-utilized
groups are taken only until the balancing limits to the cluster
be considered balanced. With that, it is possible to reduce the
execution time and the number of data transfers required for
balancing the replicas stored in the file system.

To allow this behavior, we implement a set of methods for
integration into the source code of the HDFS Balancer. The
first of them, exhibited in Figure 1, is used to calculate a new
variable, called minSize2Move. The value of minSize2Move
represents the amount of data required to make the utilization
of a given group (Ui,t) to be in concordance with the balancing
threshold. For a group classified as above-average or below-
average, this value will be zero as its utilization already
complies with the threshold (line 5). On the other hand, for an
over-utilized Gi,t the value of minSize2Move will represent the
data amount (in bytes) required to take the Ui,t of the group
until the upper balancing limit (line 9), i.e., Uµ,t+ threshold .
Similarly, for an under-utilized Gi,t, this value will be the
volume necessary to take the Ui,t of the group to the lower
balancing limit (line 12), i.e., Uµ,t − threshold .

After defining minSize2Move for each Gi,t it is possible
to determine a new value for the maxSize2Move variable. It
is worthwhile to mention that, in some cases, new validations

1: procedure CALCMINSIZE2MOVE
2: utilizationDiff← utilization− average
3: thresholdDiff← |utilizationDiff| − threshold
4: if thresholdDiff ≤ 0 then . above or below-average Gi,t
5: minSize2Move← 0
6: else
7: if utilizationDiff > 0 then . over-utilized Gi,t
8: supLimDiff← utilization− (average + threshold)
9: minSize2Move← |supLimDiff| × capacity / 100

10: else . under-utilized Gi,t
11: infLimDiff← utilization− (average− threshold)
12: minSize2Move← |infLimDiff| × capacity / 100
13: end if
14: end if
15: return minSize2move
16: end procedure

Fig. 1. Method to calculate the auxiliary variable minSize2Move.

become necessary. Suppose that the HDFS has multiples over-
utilized Gi,t and none under-utilized Gi,t. If minSize2Move is
attributed directly to maxSize2Move, the balancing operation
will be frozen because the target groups (below-average, in
this case) will not allow data transfers as the new value of
maxSize2move of these groups is zero.

To solve this problem, a set of auxiliary methods was
created to compensate the value of maxSize2Move in order
to allow the data amount that exceeds the threshold in over-
utilized groups (overLoadedBytes) to be redistributed between
the remaining below-average groups. The same strategy is
used to the above-average groups that, when it is necessary,
can transfer blocks to compensate the data amount below the
lower balancing limit (underLoadedBytes). The solution to this
adjustment is summarized, in general, as the mapping – in
each balancing iteration – of the above and below-average
groups with smaller and bigger utilization in the cluster. The
maxSize2Move variable is then updated to allow the utilization
of these groups (Ui,t) to be either extended or reduced.

3) Node load priority: This priority considers the number
of active connections in the nodes to determine the volume
of data to be moved between the storage device groups of
the HDFS. In addition to redistributing the minimum amount
of blocks required for balancing, the node load priority tends
to prevent further impacts on the performance of other tasks
running on the cluster during the Balancer execution.

This priority is used in association with the other two
previously presented priorities. Initially, the lists that kept the
groups according to their classifications are sorted with the
orderStorageGroups method of the Node utilization priority.
Then, the load of each Gi,t is quantified by a method called
computeLoad, as showed in Figure 2. The first part of the
method (lines 2 to 6) fills the xceiverMap structure, that relates
each DatanodeStorageReport with the value of the attribute
xceiverCount of the given node. This attribute represents an
estimated number of executing threads in the target node,
which is used by Hadoop to check the communication traffic
of the DNs and mark them as busy in order to perform some
actions regarding load balance issues during data placement.

In the second part of the computeLoad method (lines 7 to

1: procedure COMPUTELOAD
2: for each r ∈ DataNodeStorageReports do
3: key← r.getDatanodeInfo().getDatanodeUuid()
4: xceiverCount← r.getDatanodeInfo().getXceiverCount()
5: xceiverMap.put(key, xceiverCount)
6: end for
7: min← min(xceiverMap.values())
8: max← max(xceiverMap.values())
9: for each r ∈ DataNodeStorageReports do

10: key← r.getDatanodeInfo().getDatanodeUuid()
11: xceiverCount← xceiverMap.(get(key))
12: weight← 0.5
13: if (max− min) 6= 0 then
14: load← (xceiverCount− min) / (max− min)
15: end if
16: loadMap.put(key, load)
17: end for
18: end procedure

Fig. 2. Method used to quantify the load of the storage groups.

17), some calculations are made to fill the loadMap structure,
which registers for each DN a value that represents its load
(L′
i) based on the value of the xceiverCount of the node (Li,t).

This value was established from the min-max normalization1

that turns the minimum value of a set into 0, the maximum
value into 1 and any other value in a proportional number
between 0 and 1. We get the normalization through the
equation L′

i = (Li,t −min)/(max−min).
After computing the normalized value for each Gi,t (line

14), it is created an entry in the loadMap structure (line
16) that is accessed later in a new method called calcMax-
Size2MoveBasedOnNodeLoad, exhibited in Figure 3. Firstly, it
is calculated the required quantity of bytes to take the Ui,t of
the group until the Uµ,t, this amount is saved in the bytes2Avg
variable (line 3). Then, the minSize2Move variable is defined
using the calcMinSize2Move method (line 4), already pre-
sented as a part of the Node classification priority.

1: procedure CALCMAXSIZE2MOVEBASEDONNODELOAD
2: utilizationDiff← utilization− average
3: bytes2Avg← |utilizationDiff| × capacity / 100
4: minSize2Move← calcMinSize2Move(capacity, utilization, average)
5: key← r.getDatanodeInfo().getDatanodeUuid()
6: loadBasedBytes←

(bytes2Avg− minSize2Move)× (1− loadMap.get(key))
7: maxSize2Move← minSize2Move + loadBasedBytes
8: if thresholdDiff < 0 then . target Gi,t
9: maxSize2Move← min(remaining,maxSize2Move)

10: end if
11: return min(maxSize2Move,max) . max = 10GB
12: end procedure

Fig. 3. Method to define maxSize2Move based on the node load.

The difference between bytes2Avg and minSize2Move is
weighted based on the normalized value stored in the loadMap
structure (L′

i), resulting in the loadBasedBytes variable (line
6). For the over-utilized and under-utilized groups, the dif-

1If the DNs do not show differences in the xceiverCount, L′
i will have

a average value of 0.5 (line 12 of the computeLoad method), making the
subsequent definition of maxSize2Move similar to the value that is already
adopted by the standard balancing policy, i.e., |Ui,t - Uµ,t|.

ference between bytes2Avg and minSize2Move represents the
amount of data (in bytes) required to take the Uµ,t until
the upper and lower balancing limits, respectively. For the
above-average and below-average groups, minSize2Move will
be zero, keeping the bytes2Avg value unchanged. Notice that
to reach the expected value of maxSize2Move, it is important
to sum minSize2Move with loadBasedBytes (line 7), ensuring
that the Ui,t of over-utilized and under-utilized groups will
be taken, at least, to the balancing limits determined by the
threshold. With these changes, the HDFS Balancer starts
considering the node loads, avoiding busy nodes from being
further impacted by the replica balancing operation.

Considering the goals of the node load priority, it may be
appropriate to personalize the execution settings of the HDFS
Balancer. The properties for Background Mode in [11] are
recommended for clusters serving other jobs and applications
at the same time of the Balancer execution.

V. EXPERIMENTATION AND DISCUSSION

The experiment presented in this section uses the three
priorities defined in the Node status category of the cus-
tomized balancing policy. The tests were performed on the
GRID’5000 platform, using Hadoop (version 2.9.2) in a fully-
distributed mode with 10 DNs configured on the ecotype
cluster of the Nantes site over a Debian 9.9 distribution.
Each configured node had 2 Intel Xeon E5-2630L v4 (10
cores/CPU) processors, 128GB of RAM, 372GB of storage
capacity (SSD) and two Ethernet connections of 10Gbps each.
In total, the HDFS cluster had 3.19TB of storage capacity.

To validate the implementation and evaluate the effective-
ness of our customization, we consider the state of HDFS
before replica balancing (i.e., data placement entirely based on
the default RPP) and after running the HDFS Balancer with
the priorities. Although the works of [8], [9], and [10] present
different balancing solutions for the HDFS, we understand
that standard PPR is the most appropriate basis of comparison
for this work. Our solution differs from the others precisely
because it is based on a customization for the HDFS Balancer
and it acts as a reactive prioritization strategy that considers
the load of the nodes during the process of replica balancing.

The data load was performed by the TestDFSIO [2], a
benchmark that measures HDFS performance trough intensive
I/O operations. TestDFSIO was used to write 10 files of 25GB
each with a default Replication Factor of 3 replicas per block,
resulting in a total of 775.87GB of data (Uµ,SSD in 23.16%).

Table II shows the occupation in GB (Oi,SSD) and the
utilization percentage (Ui,SSD) of each DN before and after
running the HDFS Balancer with the Node utilization, clas-
sification, and load priorities and a threshold of 5%. Initially,
DN01, DN02, DN03, DN05, DN07, and DN10 were under-
utilized, with utilization below 18.16% (Uµ,SSD − threshold,
i.e., 23.16%−5%). On the other hand, DN04, DN06 , and DN08

were over-utilized, with utilization above 28.16% (Uµ,SSD +
threshold, i.e., 23.16% + 5%).

The L′
i column in Table II exhibits the calculated values

obtained by the min-max normalization based on the commu-

TABLE II
CLUSTER STATE BEFORE AND AFTER REPLICA BALANCING WITH THE

PROPOSED CUSTOMIZATION FOR THE HDFS BALANCER.

DN L′
i

before balancing after balancing

Oi,SSD (GB) Ui,SSD (%) Oi,SSD (GB) Ui,SSD (%)

DN01 1.0 57.68 17.68 60.72 18.61
DN02 0.0 53.67 16.45 65.51 20.08
DN03 0.0 58.08 17.80 66.52 20.39
DN04 0.0 128.75 39.46 86.68 26.56
DN05 0.0 58.33 17.88 70.17 21.51
DN06 1.0 115.67 35.45 91.75 28.12
DN07 0.0 55.18 16.91 79.87 24.48
DN08 0.0 97.76 29.96 86.68 26.56
DN09 1.0 75.84 23.24 75.84 23.24
DN10 0.0 54.93 16.83 78.35 24.01

nication traffic of the nodes (determined by the xceiverCount
variable). Highlighted are the DNs that were considered busy
by having a high flow of communication in their nodes (L′

i at
1.0). Due to its high communication traffic, the DN01 (under-
utilized) received only as many blocks as necessary to be
classified as below-average by bringing its utilization up to ap-
proximately the lower balancing limit (U01,SSD > Uµ,SSD −
threshold). Similarly, the DN06 (over-utilized) only transferred
the approximate number of blocks to be classified as above-
average by bringing its utilization down to approximately the
upper balancing limit (U06,SSD < Uµ,SSD + threshold).

It is important to notice that the DN09, given it is within
the threshold (node classified as above-average) and has L′

i

at 1.0, was not matched in any balancing iteration, i.e., did
not send or receive data. It reinforces the effort of the Node
load priority to minimize the additional overhead caused by
the balancing process on the DNs considered as busy due to
the high number of open connections in their nodes.

To investigate possible performance improvements provided
by balancing the cluster, we run the TestDFSIO in reading
mode 15 times before and after running the HDFS Balancer.
Figure 4 shows the reading times (in seconds) in each run of
the benchmark. Before the balancing, the average of the execu-
tion times was 965.46s and, after balancing, it was reduced to
an average of 826.46s. It is equivalent to a percentage change
of -14.4%, which represents a reduction in the time needed to
read the data stored in the HDFS after replica balancing.

In addition to reducing read times, the data locality opti-
mization in a balanced cluster can provide other performance
optimizations on HDFS, such as increased throughput and I/O
rate. The throughput is given by the ratio of the total volume
of data processed (in MB) to the sum of the times (in seconds)
spent by each task (due to parallelism, this value is greater than
the total execution time of the job). The average throughput
was 33.1MB/s without balancing and 41.11MB/s after using
the Balancer. The obtained percentage change was 24.2%,
indicating an increase in application throughput. The average
data transfer rate (i.e., I/O rate), in turn, is the ratio between the
transfer speed obtained by each map task to the total number
mappers. With TestDFSIO, the default number of mappers that

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

600

700

800

900

1.000

1.100

1.200

1.300

Execution run of TestDFSIO in reading mode

E
xe

cu
tio

n
tim

e
(s

)
before balacing
after balancing

Fig. 4. Read times before and after replica balancing.

will get executed is equivalent to the number of files read by
the benchmark (10 in this experiment). The average I/O rate in
the 15 runs was 37.24MB/s before balancing and 43.77MB/s
after balancing. It shows an increase of 17.53% in the read
transfer with replica balancing.

In this experiment, the execution of the HDFS Balancer
with the proposed customization took about 43 minutes to
complete. In total, 5 balancing iterations were performed and
73.5GB of data were moved between the HDFS storage de-
vices. If the Balancer was running with their default balancing
policy, the data volume to be moved (bytesLeftToMove) would
be about 231.09GB, which would demand (proportionally) 135
minutes to be relocated and would have taken at least 8 balanc-
ing iterations. Thus, the combination of Node utilization, Node
classification, and Node load priorities allowed optimizations
in the Balancer operation by reducing the time and bandwidth
required to perform replica balancing on the HDFS cluster.

VI. CONCLUSION AND FUTURE WORK

When storing files in the Hadoop Distributed File System
(HDFS), they are split into fixed-size data blocks, which are
independently replicated and distributed across the cluster.
Replication increases reliability and data availability, although
the placement of the block replicas between the nodes is
critical to system performance. Over time, data might not
always be kept uniformly stored. An imbalance in the cluster
affects data locality and can put a high strain on the nodes
with more stored replicas, degrading HDFS performance.

The HDFS Balancer is a tool integrated into the Hadoop
distribution designed for replica balancing. The Balancer is
good at providing an overall balancing in the placement of the
replicas by redistributing the data across the cluster. However,
its operation does not consider the status of the computational
nodes in the cluster, which may be experiencing overhead peri-
ods. To make the balancing operation more flexible in different
environments that run Hadoop, we propose a customization for
the native balancer of HDFS based on balancing priorities.

The strategy presented in this paper aims to reduce the
overhead caused for the balancing operation by using metrics
retrieved during runtime. In this sense, an effort is made to
prevent nodes that are already experiencing overhead periods

with high communication traffic (i.e., busy nodes) from being
further impacted by the balancing operation, causing the data
redistribution to be performed primarily between nodes with
low communication traffic. Also, the Balancer starts to operate
aiming at the minimum balance, moving as little data as
possible to make the utilization of each node to be within
the balancing threshold and so minimizing the number of
data transfers required to balance the data distribution across
the cluster. The evaluation results showed that our customiza-
tion allowed us to optimize and make the HDFS Balancer’s
operation more flexible by reducing the time and bandwidth
consumption required to achieve the system balance.

Future work involves analyzing the behavior of the cus-
tomization presented in this paper on Hadoop instances run-
ning over heterogeneous environments and considering the
induction of node failures. In addition, we intend to conduct
an in-depth experimental investigation involving the use of
different stress testing benchmarks for the HDFS, which will
allow us to evaluate the effectiveness of the solution in
scenarios with nodes experiencing periods of high overhead
during replica balancing using the HDFS Balancer.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using
the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations (see https://www.
grid5000.fr).

REFERENCES

[1] Apache Software Foundation. (2020) HDFS Architecture. [Online].
Available: https://hadoop.apache.org/docs/r3.3.0/hadoop-project-dist/
hadoop-hdfs/HdfsDesign.html. [Accessed: May, 2020].

[2] T. White, Hadoop: The Definitive Guide, 4th ed. Sebastopol: O’Reilly
Media, Inc., 2015.

[3] S. Achari, Hadoop Essentials, 1st ed. Packt Publishing Ltd, 2015.
[4] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop

distributed file system,” in 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST). IEEE, 2010, pp. 1–10.

[5] G. Turkington, Hadoop Beginner’s Guide, 1st ed. Birmingham: Packt
Publishing Ltd, 2013.

[6] Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality in
mapreduce,” in Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012).
Ottawa: IEEE Computer Society, 2012, pp. 419–426.

[7] I. A. Ibrahim, W. Dai, and M. Bassiouni, “Intelligent data placement
mechanism for replicas distribution in cloud storage systems,” in IEEE
International Conference on Smart Cloud (SmartCloud). New York:
IEEE, 2016, pp. 134–139.

[8] K. Liu, G. Xu, and J. Yuan, “An improved hadoop data load balancing
algorithm,” Journal of Networks, vol. 8, no. 12, pp. 2816–2822, 2013.

[9] J. Dharanipragada, S. Padala, B. Kammili, and V. Kumar, “Tula: A disk
latency aware balancing and block placement strategy for hadoop,” in
International Conference on Big Data. IEEE, 2017, pp. 2853–2858.

[10] A. Shah and M. Padole, “Load balancing through block rearrangement
policy for hadoop heterogeneous cluster,” in 2018 International Con-
ference on Advances in Computing, Communications and Informatics
(ICACCI). Bangalore: IEEE, 2018, pp. 230–236.

[11] Hortonworks Data Plataform. (2019) Scaling namespaces and
optimizing data storage. [Online]. Available: https://docs.cloudera.
com/HDPDocuments/HDP3/HDP-3.1.5/data-storage/content/balancing
data across hdfs cluster.html. [Accessed: June 03, 2020].

[12] R. Fazul, P. V. Cardoso, and P. P. Barcelos, “Improving data availability
in hdfs through replica balancing,” in 2019 9th Latin-American Sympo-
sium on Dependable Computing (LADC). IEEE, 2019, pp. 1–6.

https://www.grid5000.fr
https://www.grid5000.fr
https://hadoop.apache.org/docs/r3.3.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/r3.3.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/data-storage/content/balancing_data_across_hdfs_cluster.html
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/data-storage/content/balancing_data_across_hdfs_cluster.html
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/data-storage/content/balancing_data_across_hdfs_cluster.html

	Introduction
	Replica Balancing
	Related Work
	HDFS Balancer

	Customized Replica Balancing Policy
	Node Status Category
	Node utilization priority
	Node classification priority
	Node load priority

	Experimentation and Discussion
	Conclusion and Future Work
	References

