
Dynamic Controller Instantiation in MEC-NFV
based Software Defined Internet of Vehicles

1st Atricia Sabino
Center of Informatics (CIn)

Federal University of Pernambuco
Recife, Brazil

masm2@cin.ufpe.br

2nd Rhodney Simoes
Center of Informatics (CIn)

Federal University of Pernambuco
Recife, Brazil

rambks2@cin.ufpe.br

3rd Kelvin Lopes Dias
Center of Informatics (CIn

Federal University of Pernambuco
Recife, Brazil

kld@cin.ufpe.br

Abstract—Softwarization of vehicular networks has been a fun-
damental approach to deal with its dynamic topology along with
requirements of scalability and flexible resource management
in order to deploy future Internet of Vehicles (IoV). Despite
Software-defined Vehicular Networks (SDVN) has gained mo-
mentum in industry and academia to tackle the aforementioned
issues, some requirements such as on-demand allocation of net-
work functions and scalability support are not yet satisfactorily
addressed in current proposals. Even scalable solutions based
on distributed and hierarchical SDN controllers are commonly
deployed statically before the network operation. With the advent
of network functions virtualization (NFV), it is expected that
IoV will benefit from a standard architecture for dynamic
instantiating of SDN controllers to provide an efficient solution
for IoV management. This article proposes and evaluates a
flexible and dynamic solution for the management of IoV through
the synergy between SDN and NFV paradigms in order to provide
on-demand instantiation of SDN controllers, as well as meet
QoS requirements. The results demonstrate the effectiveness of
the proposal in supporting the increasing demand for connected
vehicles, reduction in packet loss, jitter control, and avoiding
processing overhead when compared to the performance of
traditional architecture.

Index Terms—SDN, NFV, MEC, VANETs, IoV

I. INTRODUCTION

With the advent of the Internet of Vehicles (IoV), innovative
services can be enabled to improve passenger comfort, acci-
dent prevention, and enhanced mobility in large urban centers
[10]. In Vehicle-to-Infrastructure (V2I) Communication, the
vehicle exchanges information with the wireless access points
named Road Side Units (RSUs) [13]. Regarding the current
architecture, some challenges in IoV require more research and
new solutions to tackle the significant increase of connected
devices, the need for efficient usage of resources, dynamic
nature of vehicular data traffic, delays, and packet losses due
to the high mobility of vehicles, unreliable connections, and
Quality of Service (QoS) requirements of the applications. To
address the challenges of managing IoV, authors in [5] pro-
posed the adoption of Software-Defined Networking (SDN).

The SDN [4] paradigm is based on the separation of data
and control planes, as well as a global network view to
provide flexible and programmable management solutions.
Thus, the so called Software Defined Vehicular Networks
(SDVN) provides a flexible control plane for managing the
communication between RSUs and vehicles [1]. However,
despite its distributed control, most implementations still use
a single SDN controller per domain as in [3] or even designs
that deploy multiple controllers based on static and offline
approaches [8].

This can lead to problems of scalability and failures, espe-
cially in a dynamic environment such as the IoV scenarios.
SDVN architectures allow the controller to manage communi-
cation between vehicles and RSUs. During the network oper-
ation, several messages are exchanged between the controller
and the vehicular data plane. The amount of flows due to
the signaling operations between vehicles and RSUs increases
according to the number of new vehicles entering the network
or existing ones making handovers among RSUs or even to
assist network policies and users demands, that will issue
flow rules from SDN controllers to populate vehicles flow
tables. This may overload the SDN controller and degrade the
network performance and its QoS guarantees, which causes the
high number of new requests to congest the SDN controller.

To deal with such a problem, while still meeting the
latency constraints of IoV environment applications [12], it is
necessary to adopt an infrastructure apt to provide dynamic,
scalable, and low latency capabilities for the deployment of
SDN controllers. Therefore, the joint Multi-access Edge Com-
puting (MEC) and Network Functions Virtualization (NFV)
environment can provide such benefits for IoV demands [14].

This article proposes and evaluates a flexible and dynamic
solution for the management of vehicular networks through
the synergy between SDN and MEC-NFV environment. The
proposal devises an architecture and a strategy of auto-scaling
of SDN controllers configured as Mobile Edge Applications
(ME apps) according to the traffic demands in vehicular
networks. The proposal is implemented in a MEC-NFV testbed
using the tacker service based on the NFV MANO architecture

integrated with the Openstack platform. The network scenar-
ios use the wireless SDN network emulator called Mininet-
WiFi [3], integrated into the Simulation of Urban Mobility
(SUMO). The results obtained demonstrate the effectiveness
of the proposed solution to support the increasing demand of
connected vehicles, while reducing packet losses, controlling
jitter, and avoiding processing overhead when compared to the
performance of traditional architecture.

This article is organized as follows: Section II highlights and
discusses the related work. Section III presents the proposed
integrated. Section IV discusses the results obtained by a set of
experiments carried out considering scenarios and metrics. Fi-
nally, V concludes the work summarizing the results achieved
and future works.

II. RELATED WORK

SDN and NFV have been adopted by vehicular networks in
order to guarantee flexibility, programmability, cost reduction
of both deployment and operation, and scalability. This section
presents some related works applying those softwarization
paradigms either individually or cooperatively in the contexts
of VANETs and Internet of vehicles (IoV).

In [5], a single centralized SDN controller (control plane),
deployed and accessed via cellular connectivity (3G/4G), is
in charge of the entire VANET, while user data is transmitted
through RSUs (IEEE 802.11) in both V2V and V2I modes. De-
spite also considering a distributed approach to switch directly
to V2V communication mode in case of cellular connectivity
loss with the control plane, that is, fault of the centralized SDN
controller, this solution relies on using traditional MANETs
routing protocol on the data path, thus lacking the benefits of
SDN. The authors compare their approach against traditional
MANET routing protocols through NS-3 simulations, which
demonstrate the packet rate delivery (PDR) gains and the
effectiveness of the fallback mechanism.

A hierarchical SDVN architecture is proposed in [2]. Two
layers: local SDN controllers at the bottom and a single main
controller at the top level of the hierarchy. The clustering
technique is adopted in order to choose a cluster head in charge
of becoming the SDN controller (either an RSU or a vehicle)
for the corresponding domain. Local SDN controllers may
serve vehicles during connectivity loss due to the failure of
the main controller. Despite the dynamic assignment of SDN
controllers to RSU or vehicles, both nodes should be SDN-
aware, thus the solution does not contemplate legacy VANETs
nodes. Furthermore, deployment of SDN controllers might not
be arranged in a flexible manner and within bounded delays,
since it requires running complex clustering algorithms in real-
time, in contrast to the easy on-demand deployment of virtual
functions over the cloud computing platform.

The proposal of [3] creates and implements a vehicles archi-
tecture for VANETs, named cars as node (node car), adapted
for the Mininet-WiFi network emulator. The tool has support
for the OpenFlow protocol based on lightweight virtualization,
which adds to the emulator the function of wireless channel
emulation and the mobility support. The technique covered in

[3] installs the static flows and modifies them in the wired
aggregation switch (each switch has its ports connected to
different wireless access points) to emulate the mobility of
cars in a controlled manner. The evaluation scenario take into
account a video streaming application. During the experiment,
execution, when the car with ongoing video transmission
leaves its current BS coverage, the SDN controller will detect
this event and coordinate a new connection to an RSU or
another BS.

In [8], the SDN controller is positioned at RSUs in order
to reduce the operational latency for vanet communications.
Subsequently, this previous work is extended with a hierar-
chical SDVN architecture in [6] with two tiers: at the top
level, that is, the Internet level, there are distributed regional
controllers and at the bottom level, selected RSUs running
local controllers. A heuristic model of controller positioning
is used at the RSU level. Despite the benefits of the proposal
in terms of scalability and latency, since it has to select a few
RSUs to host local controllers due to a high cost to deploy
SDN controllers for all RSUs of the topology, it is not flexible
or of easy management. Besides that, its correct operation also
may depend on cellular/4G interfaces on OBUs for accessing
regional controllers to benefit from the global view of the
network.

To overcome shortcomings during the handover process
for time-sensitive applications, the benefits of fog computing,
network virtualization capabilities, and SDN programming are
used to create an architecture that allows planning handovers
with travel information and providing scalable solutions [7].
In [9], a fog computing solution is proposed for supporting
vehicular applications and decision making. The SDN / NFV
and fog are used to create an architecture capable of remotely
controlling connected cars through the data modeling language
YANG (Yet Another Next Generation). The Fog proposal is
based on Docker and OpenVSwitch with containers for each
service that is needed.

Our proposal is distinguished from related work since it
devises a scalable SDVN architecture to dynamically deploy
SDN controllers while granting low latency applications to
serviced cars. Therefore, the proposal encompasses MEC in
an NFV environment and located at the eNBs. Where the
controllers are dynamically allocated as MEC apps depending
on the demand. To validate the proposal, the IoV scenario
was emulated to generate signaling and traffic load to the
MEC testbed implemented in an NFV enabled Openstack
infrastructure.

III. MEC ARCHITECTURE IN AN NFV ENVIRONMENT FOR
SDVN

In this article, we propose to deploy dynamically SDN
controllers in a MEC architecture for IoV called MEC-SDIoV,
aiming at reducing the communication latency between con-
trollers and RSUs without compromising the scalability of
the environment. In addition, our solution provides joint
programmability and flexibility advantages to dynamic IoV

scenarios by benefiting from distinguished features of SDN,
NFV, and, MEC.

A. MEC-SDIoV architecture

Vehicles in the IoV scenario are responsible for requesting
contents and applications, among other demands, that generate
network traffic to RSUs when using 802.11 interfaces. This
communication is prioritized due to the high cost of LTE, thus
RSUs are responsible for providing communication between
vehicles and the Internet. The decisions on traffic engineering,
load balancing, and mobility issues are managed by appli-
cations running on SDN controllers, which are dynamically
deployed in the MEC-NFV architecture. This virtualized en-
vironment is located closer to the vehicles, that is, at the eNBs.
Therefore, upon arrival of new packets at RSUs to which there
are no flow rules already established to forward them, the
RSUs generate PACKET-IN messages toward the controllers
in order to acquire the required rules. Thus, as there is an
increase in the number of vehicles within the coverage area
of RSUs, there may be a proportional increase in demand for
RSUs and, consequently, for SDN controllers. In view of the
scenario described above, MEC-SDVN architecture, see Figure
1, aims at scaling dynamically SDN controllers in the MEC in
an NFV environment in order to tackle the demand in terms
of increasing number of control flows, that is, PACKET-IN
messages. Taking a dynamic approach to scaling controllers
implies the task of reassigning controllers to RSUs for load
balancing among them.

eNB

RRH

Small cell

MEC-NFV

RSU

NFVO

NFVM

SDN

Controllers

Agent

ME apps

MEC-NFV

Internal

Components

Vi-Vnfm

Or-Vnfm

Mv1

Os-Ma-nfvo

RSUs

Ag-Vnfm

Mv3

Link Ethernet

Reassignment of

SDN Controller to RSU

Packet-in

V2I

V2V

Ag-Env

Fig. 1. MEC-SDIoV - An MEC based SDVN architecture for IoV

Our MEC-SDIoV architecture proposes an extension to
the MEC reference architecture in NFV environment and its
internal components based on functional blocks can be seen
in Figure 1. This proposal aims to scale SDN controllers as
ME apps. An Agent is added to the MEC-NFV reference
architecture, which is responsible for periodically requesting
information from the Virtual Network Functions Manager
(VNFM) with regard to the allocation of new controllers
through the reference point Ag-Vnfm. Upon a trigger event

to create new controlers, the Agent decides on the Controller
Reassignment-RSUs task for load balancing between the con-
trollers and then applies the decision made through the AgEnv
RSUs reference point.

V
IM

N
F

V
O

N
F

V
M

(M
E

 a
p

p
 L

C
M

)

SDN

Controllers

Req. Policies

Req. ME app Status

Req. Templates

R
eq

./
R

es
p

.
C

o
n
tr

o
ll
er

s
In

f.

Set Controller Assignment

Check for a new controller

A
g

en
te

RSU

Resp. ME app Status

Resp. Policies

Resp. Templates

Service, VNF and

Infrastructure

Description

R
eq

./
R

es
p

.
S

ca
le

Req./Resp. Hosts Status

1

2

3

4

5

6

7

8

Fig. 2. Proposal Signaling

The numbers depicted in Figure 2 summarize the interaction
components: In step (1), VIM performed the monitoring of
controllers instantiated as ME apps. Next,the network func-
tions virtualization orchestration queries the VIM about the
infrastructure resources in step (2). Then, in the step (3)
the NFVO queries defined policies and sends it to the VNF
manager. In the step (4) the VNF manager queries which
templates are defined in the VNF descriptor. Following, in
step (5) auto-scaling actions are performed. (6) the agent
monitors VNFs through VNF manager. (7) Check if a new
SDN controller is deployed. Finally, in (8) the agent sends
commands to reassign the RSUs.

IV. TESTBED OVERVIEW AND PROPOSAL EVALUATION

A. Testbed

In order to validate MEC-SDIoV architecture, a testbed
integrated with an emulation environment was implemented.
In order to create a scalable IoV environment with RSUs,
Mininet-WiFi in conjunction with SUMO was used. For the
MEC-NFV environment, the OpenStack was integrated with
NFV based on the ETSI MANO architecture through the
Tacker service, which has API responsible for the VNFs
management cycle, being able to monitor VNFs, perform
auto scaling, and self-recovery. The Agent was implemented
in Python by interacting with the Ryu controllers, as Me
apps, through Tacker service and applying the reassignment
decisions to the RSUs in the Mininet-WiFi.

B. Results

In this section, we present the evaluation of the proposed
MEC-SDIoV architecture. Note that all experiments were
performed 30 times and the graphs were generated with a
95% confidence interval.

For the sake of testing the proposal to demonstrate the oper-
ation of the architecture and preliminary performance results,
it was defined as a simple policy for the instantiation of SDN
controllers based on the CPU usage of ME app. One of the
strategies carried out to evaluate VNFs overload is to measure
the percentage of CPU usage, which is quite sensitive to large
numbers of requests and data exchanges, therefore, it is widely
considered in the MEC-NFV environment to assess the state
and performance of ME apps. In addition, VNF overloading
may result in fewer packets being processed, leading to packet
losses and delays. To identify the impact on packet loss and
throughput, an experiment to evaluate the QoS impact of a
file transfer application was performed. For this purpose, the
application traffic was generated via Iperf tool. The download
rate was set to 20Mbps. In this way, it was possible to simulate
the download or an information transfer between a requesting
car and the file server in the MEC. Each RSU is connected
to a remote SDN controller. Simulation time was set to 60s.
The average value of metrics were plotted considering three
different number of vehicles (120, 260, 310) and 4 RSUs.
The evaluation of the proposal was conducted in an MEC
testbed integrated with a vehicular network emulator. Four
experiments were conducted, ranging from a scenario with a
single controller to four dynamically instantiated controllers.
Thus, even under simple scaling policies, the proposal provides
a flexible way to meet scalability. To define the threshold of the
CPU utilization to trigger the auto scaling policy, simulations
were performed to monitor the VNF behavior under increasing
traffic scenarios. It was possible to identify that at the moment
in which the processing load reaches 60% of CPU capacity,
losses of packets begin to occur.

C. Results and discussion

The experiments and analysis of the results take into account
the metrics CPU usage, packet loss, and jitter. The first experi-
ment is depicted in Figure 3, which shows the CPU utilization
over time considering three different amount of vehicles in
order to test the auto scaling feature of our proposal. The three
evaluation scenarios initially start with a single SDN controller
to meet the vehicles requirements. The CPU utilization is
constantly monitored by the architecture, besides the checking
for the need to allocate a new SDN controller. Then, the
NFVO deploys another VNF based on predefined threshold.
Thus, it is possible to observe in Figure 3 such behavior
and how the demand from the vehicles is balanced among
the controllers over time. The SDN controllers instantiated as
VNFs are represented in the legend as C1 for the case of a
single controller experiment, C2 for the instantiation of the
second controller, C3 for the case of three controllers, and the
fourth controller instantiation is represented by C4.

The graph of Figure 3 (a) depicts the average CPU usage
over time for the single controller dynamically instantiated.
When the first VNF (C1) reached the threshold of 60%
regarding CPU usage, a new VNF (C2) is instantiated. The per-
centage of CPU utilization of the second controller represented
in Figure 3(a) as C2 is shown only 10 seconds after starting its
instatiation. This is because until that time the corresponding
Ryu controller had not yet become fully operational. Despite
this instantiation time, the adopted threshold of 60% provides
a safe margin for minimum packet losses for these operations.

0 10 20 30 40 50 60

1
0

3
0

5
0

7
0

Simulation Time (s)

C
P

U
 (

%
)

(a) Scaling with two controllers

C1
C2

0 10 20 30 40 50 60

3
0

4
0

5
0

6
0

7
0

Simulation Time (s)

C
P

U
 (

%
)

(b) Scaling with three controllers

C1
C2
C3

0 10 20 30 40 50 60

3
0

4
0

5
0

6
0

7
0

Simulation Time (s)

C
P

U
 (

%
)

 (c) Scaling with four controllers

C1
C2
C3
C4

Fig. 3. Dynamic scaling of SDN controllers as VNFs

For the next experiment depicted in Figure 3(b), the sce-
nario encompasses three controllers, where two of them are
overloaded so that the action of instantiating a new VNF
is triggered. The parameters in the Mininet-WiFi are also
modified because more cars and information exchange are
required to send as many PACKET-IN messages as possible
in order to increase the load on the controllers. The number of
260 vehicles and 4 RSUs was sufficient for the two controllers
to reach the threshold of 60% regarding CPU utilization. From
the analysis of results depicted in Figure 3 (b), despite reaching
the 60% threshold in the first few seconds of the simulation,
the scaling action on Tacker NFV is not performed. The
execution of the task occurs only within the next 20 seconds.
Regarding the scaling shown in the previous subsection, VNF
lasts more time congested, that is, the time to trigger a new
instance is greater due to the use of ceilometer monitoring
overhead, which now has one more VNF to collect data and
also requires more MEC resources. The third controller is
created to run in parallel with the two already existing ones.
And the whole process for balancing traffic among RSUs
occurs again. Finally, in the last scenario depicted in Figure
3 (c), the goal is to report the case for a greater instantiation
of SDN controllers as VNFs. The load generation for the IoV
scenario has now been configured with 310 cars. The intention
is to reproduce the behavior of city with a larger number
of cars, justified, for example, in large events: such as the
World Cup or Olympics game. With this increased vehicular
flow and countless amounts of message exchanges, more SDN
controllers need to be deployed. Figure 3 (c) shows that
for this experiment, only three SDN controllers are running
before 20 seconds. The operation that creates new scaling
tasks has a setting to monitor the CPU percentages of the
three controllers. When any of the VNFs reaches 60% a new
one is created. This behavior has been configured in templates
TOSCA (Topology and Orchestration Specification for Cloud
Applications) obeying the maximum, minimum, and increment
of VNFs. Figure 4 depicts the averages for packet loss results
of the four experiments considering 95% confidence interval.
With high CPU processing, the VNF controller can handle
most of the new requests, but others are retransmitted resulting
in packet loss. As expected, the proposal can provide much
fewer packet losses when compared to a single controller
approach. It is worth noting that the average loss value is
kept almost similar regardless of the increase in the number
of simulated cars.

Figure 5 shows packet loss and jitter results for a file transfer
application using two controllers.

Non-Scaling With Two With Three With Four

Non-Scaling Baseline vs MEC-SDIoV Scaling

Pa
ck

et
Lo

ss
(p

ps
)

0.
0

0.
5

1.
0

1.
5

2.
0

Fig. 4. Average Packet Loss per Second

Figure 5 (a) shows an average of 0.25 packets per sec-
ond (pps) when the application was executed in the single
controller environment and with 0.015 pps with the proposal.
That is, it was possible to reduce packet loss by 16.6 times.
Similarly, the Figure 5 (b) depicts a reduction on the jitter
obtained with the adoption of the dynamic instantiation of a
new controller. Compared to our scalable proposal, the gains
are evident in terms of jitter control with respect to the non-
scalable baseline. Figure 5 (b) presents the average values of
30 executions and corresponding 95% confidence intervals for
both baseline and MEC-SDIoV solution. The concentration of
data when the application was executed in both scenarios, first
without scaling and then with the use of dynamic scaling of the
SDN controllers. At the time the tests were performed without
scaling, the mean and the interval represented in the graph are
higher, showing that there is always a variance in the packet
delay. According to the presented results, there is an impact on
vehicular applications. That is, the vehicular network can be
degraded due to congestion or high processing demands, which
may impact in the overall QoS of vehicular applications. Thus,
the solution proposed here can be used to benefit applications
sensitive with stringent delay requirements since its devised
to be a dynamic, flexible, and scalable SDVN running at the
MEC.

Non-Scaling Baseline MEC-SDIoV Scaling

Pa
ck

et
Lo

ss
(p

ps
)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.1

0.2

0.3

0.4

Non-Scaling Baseline MEC-SDIoV Scaling

Jit
te

r(
m

s)

Fig. 5. Application Packet Losses and Jitter

V. CONCLUSION

This article presented a flexible architecture for the man-
agement of software-defined vehicular networks using NFV
with the aim of instantiating SDN controllers dynamically.
We have implemented a complete NFV architecture with its
components according to the ETSI standards. A preliminary
performance evaluation was carried out through an integrated
testbed environment combining the real implementation of
ETSI MANO in an Openstack platform along with IoV sce-
narios using Mininet-WiFi emulator and SUMO. The results
showed that the proposal performs satisfactorily and allows
the support of scalability by alleviating the congestion of the
vehicular networks while granting adequate levels of QoS in
terms of packet loss and jitter.

Future works consist on improving the monitoring of VNFs,
since Openstack telemetry services adopted by our testbed
collect a few cloud metrics related to the virtual machine.
In addition, we intend to augment the evaluated scenario with
more RSUs, mobility models, and video stream applications.

Finally, with the limited cloud environment of our testbed in
terms of processing and memory, it was possible only the
increment of one VNF for each scaling out action. Thus, our
future work will use a more powerful cloud testbed.

REFERENCES

[1] Chahal, M., Harit, S., Mishra, K. K., Sangaiah, A. K., and Zheng, Z.
(2017). A survey on software-defined networking in vehicular ad hoc
networks: Challenges, applications and use cases. Sustainable Cities
and Society, 35:830 – 840.

[2] Correia, S., Boukerche, A., and Meneguette, R. I. (2017). An architecture
for hierarchical software-defined vehicular networks. IEEE Communi-
cations Magazine, 55(7):80–86.

[3] Fontes, R. D. R., Campolo, C., Rothenberg, C. E., and Molinaro, A.
(2017). From theory to experimental evaluation: Resource management
in software-defined vehicular networks. IEEE Access, 5:3069–3076.

[4] Kreutz, D., Ramos, F. M. V., Verssimo, P. E., Rothenberg, C. E.,
Azodolmolky, S., and Uhlig, S. (2015). Software-defined networking:
A comprehensive survey. Proceedings of the IEEE, 103(1):14–76.

[5] Ku, I., Lu, Y., Gerla, M., Gomes, R. L., Ongaro, F., and Cerqueira, E.
(2014). Towards software-defined vanet: Architecture and services. In
2014 13th Annual Mediterranean Ad Hoc Networking Workshop (MED-
HOC-NET), pages 103–110.

[6] Liyanage, K. S. K., Ma, M., and Chong, P. H. J. (2018). Controller
placement optimization in hierarchical distributed software defined ve-
hicular networks. Computer Networks, 135:226 – 239.

[7] Palattella, M. R., Soua, R., Khelil, A., and Engel, T. (2019). Fog com-
puting as the key for seamless connectivity handover in future vehicular
networks. In Proceedings of the 34th ACM/SIGAPP Symposium on
Applied Computing, SAC ’19, pages 1996–2000, New York, NY, USA.
ACM.

[8] Sudheera, K. L. K., Ma, M., Ali, G. G. M. N., and Chong, P. H. J.
(2016). Delay efficient software defined networking based architecture
for vehicular networks. In 2016 IEEE International Conference on
Communication Systems (ICCS), pages 1–6.

[9] Vilalta, R., Va, S., Mira, F., Casellas, R., Muoz, R., Alonso-Zarate, J.,
Kousaridas, A., and Dillinger, M. (2018). Control and management of
a connected car using sdn/nfv, fog computing and yang data models. In
2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), pages 378–383.

[10] J. Wang, B. He, J. Wang, T. Li (2018). Intelligent VNFs Selection
based on Traffic Identification in Vehicular Cloud Networks. In IEEE
Transactions on Vehicular Technology

[11] Wan, J., Liu, J., Shao, Z., Vasilakos, A. V., Imran, M., and Zhou,
K. (2016). Mobile crowd sensing for traffic prediction in internet of
vehicles. In Sensors.

[12] Zhang, N., Zhang, S., Yang, P., Alhussein, O., Zhuang, W., and Shen,
X. S. (2017). Software defined space-air-ground integrated vehicular net-
works: Challenges and solutions. In IEEE Communications Magazine-
2017.

[13] Sakiz, F. and Sen, S. (2017). A survey of attacks and detection
mechanisms on intelligent transportation systems: Vanets and iov. Ad
Hoc Networks, 61:33 – 50.

[14] Giust, F., Sciancalepore, V., Sabella, D., C. Filippou, M., Mangiante,
S., Featherstone, W., and Munaretto, D. (2018). Multi-access edge
computing: The driver behind the wheel of 5g-connected cars. IEEE
Communications Standards Magazine, 2.

[15] Naohisa, M., Kenki, T., Sho, H., and AOKI Hiroki, A. A. (2016). Iot
network implemented with nfv.

[16] ETSI, N. (2013). Network functions virtualization - architectural
framework.

