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Abstract—Radiation in the space environment poses a constant
threat to circuit devices, and, as a solution, several fault tolerance
techniques have been developed. However, some techniques use
either proprietary technology or radiation-hardening specialized
foundries to manufacture, either of which are not easily accessible
to most researchers. There is, yet, another set of rad-hard
techniques which provide sufficient fault tolerance to specific
aerospace applications. The CEVERO SoC is a custom proof-
of-concept design that implements techniques as lockstep, dual
module redundancy and state recovery in its inner fault tolerance
module. It is meant to integrate with the open-source PULP
platform and to open a path to a full fault-tolerant SoC.

Index Terms—Radiation-Hardened, Fault tolerance, Soft error,
lockstep, DMR, CEVERO.

I. INTRODUCTION

Since its beginnings, space exploration was a driving force
towards technological advancement. The microelectronics in-
dustry has been a key factor in the human endeavor to discover
and study the cosmos and its celestial bodies. However, as
expected from any pioneer venture, space environment has
confronted our electronic appliances with unforeseen problems
and, in order to tackle them, there was need to develop highly
specialized technology.

One such problem posed onto electronic devices in space
is radiation-induced fault. This effect is caused when highly
energetic particles strike a sensitive region of a microelectronic
circuit. In some cases, the strike may cause no noticeable
effect, but in other cases it might cause a transient disruption
of a circuit operation, a logic state change or a permanent
defect in the microelectronic circuit [1].

Several radiation hardening techniques have been imple-
mented since, so as to avoid errors from happening or to allow
electronic devices to recover from them. These techniques
are present in several circuitry abstraction levels, however,
low-level techniques used in the foundry process or gate
design usually require technology that is either inaccessible
to most (such as rad-hard processes in specialized foundries)
or out-dated for current performance requirements. As an
alternative, researchers have shifted their efforts to higher
levels of abstraction, specially the architectural level.

Current soft error tolerance chips implement one or several
of these architectural protection circuits inside the general
processing unit or they even use Custom Out of The Shelf

(COTS) chips to create the fault tolerant device. Following
this line of thought, this document proposes the usage of
an existing, growing, high performance and ultra low power
platform called Parallel Ultra Low Power (PULP) platform,
based on the RISC-V instruction set, to implement a fault
tolerant system concept which requires minimal modifications
to the current processor design.

The next section will provide the reader with a brief
introduction on radiation induced soft error causes and the
techniques used to mitigate such errors. It presents an example
of processor that implements error tolerance on the architec-
tural level and exemplifies the reason these techniques are
indeed effective. Following, section III describes the PULP-
based system, focusing on the fault tolerance module descrip-
tion and how it interfaces with processor units and memory.
Section IV exposes the methodology and its results to validate
the proposed system as fault tolerant and the last section
concludes with an overview of the proposed system and future
developments intended to this project.

II. RADIATION-INDUCED ERRORS AND MITIGATION
TECHNIQUES

Some of the first radiation effects ever described in elec-
tronics date back from the 1950s [2]. However it was only in
the 1970s and 1980s that this phenomena caught the attention
of the scientific community and was then extensively studied
[3]–[5].

The reason radioactive particles induce faults in electronic
devices is due to a disturbance in the electric field, which
generates electron-hole pairs in sensitive parts of a transistor.
These charged particles are then free to be collected by
diffusion regions and, later, reach device contacts, producing
incorrect signals.

A. Radiation-Hardening Techniques

The understanding of how highly energetic particles disrupt
the correct work of components in a microelectronic circuit
lead to the development of techniques to avoid incorrect behav-
ior. Theses techniques are applied from the lowest abstraction
level up until the highest one, and it is a common procedure
to apply as many radiation-hardening techniques as necessary



to guarantee that the circuit will be hardened and tolerant to
a diverse range of faults caused by radiation.

Radiation-Hardened by Process (RHBP) is the first class of
techniques to shield microelectronic circuits against energetic
particles. These techniques focus on enhancing the process on
which transistors are created by using selected materials, in-
sulation layers, doping levels, or using proprietary fabrication
steps. They usually need dedicated foundry lines to be fully
developed [6]. The next group of techniques with an increasing
abstraction level are Radiation-Hardened by Design (RHBD)
techniques. Generally, approaches that fall into this category
deal with circuit layout and composition of logic gates and
memory cells. The most compelling argument in favor of this
approach is the usage of commercially available processes
instead of rad-hard processes from specialized foundries.

Lastly, Radiation-Hardened by Architecture (RHBA) tech-
niques are generally implemented inside modules in the pro-
cessor micro-architecture such as register files or arithmetic
logic units, adding extra fault-tolerance features to them, as
explained below. An advantage in favor of RHBA techniques
is the fact they may be implemented with very high level
tools, such as hardware description languages (HDLs) and
electronic design automation software, when compared to
previously mentioned techniques, and they still take advantage
of hardware execution speeds. The most common architectural
features that allow fault tolerance are N-Modular Redundancy
(N-MR), data scrubbing and Error Correction Codes (ECC).

Generically put, N-MR consists of replicating a digital
component and comparing the output of these components. In
case of an error, the output of the components will differ and
the RHBA technique will detect the error. The most common
applications of N-MR are Dual Modular Redundancy (DMR)
and Triple Modular Redundancy (TMR), and they differ by
how resilient they are against error. In the case of the DMR,
the only way to avoid error propagation would be to halt
whatever computation was performed and re-execute it (note
that, in some cases, the previous circuit state has to be saved
and restored before re-executing). However, in the case of
TMR (and higher redundancy levels as well), the comparison
circuit, besides detecting the error, can infer which is the most
likely correct result by a voting process, and then forward this
result to the module output. In each of these methods, there
is a parameter penalty that should be considered: although
TMR might be quicker in acquiring the correct output because
there is no computation re-execution, the DMR is probably the
most area-optimized solution because the digital component
is replicated only twice as many as the original one (against
three times as many when considering the TMR solution) and
the error-detection hardware should be simpler than the voter
circuit required for TMR.

Another very common technique to detect and correct
errors is memory scrubbing, typically associated with Error
Correction Codes (ECC) [7], [8]. Because, soft-errors might
occur in memory regions that are not actively used, many of
those errors can accumulate if left unchecked and, in a worst
case scenario, they might become incorrigible errors because

the ECC will not be able to define which bits are wrong. So, in
order to avoid this, memory components should implement a
data scrubbing technique which continuously browses memory
positions and compares their values against the ECC. In case
an error is detected, the hardware ”scrubber” will use ECC to
correct and write the expected value at the memory position
it is due. An important consideration is that the scrubber
should operate at a defined frequency in order to avoid the
accumulation of errors [7].

B. Fault-Tolerant Processors

The research on all these Radiation-Hardened techniques
culminates in the development of digital circuits for space-
borne applications. The heart of most computations systems is
a general purpose processor that receives the binary code and
executes the instructions of the specified Instruction Set Ar-
chitecture (ISA). Therefore, in order to deploy computational
systems for usage in natural space environment, engineers have
developed a diverse range of radiation-hardened processors
that implement several of the strategies discussed before.

However, as technologies advance, many of the mission-
proven processors start to become obsolete. Performances like
the RAD750 [9] which achieves 200MHz and the RH3000
[10], 25MHz, do not seem to be sufficient for future space
applications and they are, for sure, several generations behind
the current commercially available processors. In fact, several
of the modern processors for space applications tend to fo-
cus on RHBA techniques, presumably because their ease of
development, verification and the fact that theses techniques
allow to use the full power of today’s commercially available
transistor processes. One interesting example is the Arm Triple
Core Lock-Step (TCLS) processor.

The Arm TCLS implements a TMR approach, in which
three cores execute in lock-step. When a divergence is detected
between selected signals in each core, the system enters a
correction state that defines the correct result by a voting
process and restores the correct state into the cores.

The chip is based on the ARM Cortex-R5 and is deployed
in applications that require high dependability, predictability
and availability in safety-critical systems such as in busi-
ness enterprise or automotive industry. It bets on the usage
of Commercially-off-the-shelf processors (COTS), relying on
minimal use of RHBD technology (amounting to 4% of the
solution) to cope with the radiation effects of radiation-induced
faults. The authors claim that in Low Earth Orbits (LEO),
the system could work with no RHBD elements, relying
exclusively with the RHBA techniques to deal with sporadic
soft errors in its critical parts [11].

III. A SOFT-ERROR HARDENED SOC PROPOSAL

Several fault tolerant processors and chips are based on
existing designs. This is the course that the Arm TCLS chose
to take. This design uses processor that already exists and
improves over that processor with different and customized
solutions for fault tolerance.



The CEVERO (Chip multi-procEssor for Very Energy effi-
cient aeRospace missiOns) SoC takes this idea to a platform
called PULP, which is based on the open-source and fast-
growing instruction set RISC-V. As a platform focused on
low energy consumption, high processing capacities and wide
range of applications, the PULP platform [12], [13] is an
extremely good and open-source starting point to develop a
fault-tolerant processor SoC.

As a proof of concept, the CEVERO SoC is described
here in a simplified SoC organization. The goal is to describe
the inner workings of the fault tolerant module as developed
and how it is integrated to processing cores from the PULP
platform.

A. CEVERO SoC organization

The system is composed by an instruction memory, data
memory, two ibex cores (formerly known as Zero-riscy [14])
and a fault tolerance module that communicates with both
cores. Together they form the CEVERO SoC. This SoC
uses the duplex architecture technique, where the general
processing units are duplicated.

The adopted approach to achieve fault tolerance in this
system is to verify that both cores execute the same instruction
and compare their results at the time of writing to the register
file, which is the last execution step of an instruction in the
core pipeline. Using this strategy, the system is able to verify
instruction by instruction if an error occurred. This technique
where the system runs the same set of operations at the same
time in parallel is denominated lockstep, and it fits very well
to a in-order processor like the ibex core.

In this deterministic processor, it is possible to save the
state of a process and later resume the process by restoring the
internal state. Similar techniques are used by operating systems
during context switching and by commercial processors for
simultaneous multithreading. Comparably, this fault-tolerance
module saves the state of the process that is running at that
moment. Thus, when an error occurs, it is possible to recover
the system to a safe state.

The Figure 1 shows the internal organization of the SoC
and the interconnections between the internal components.
The FTM block represents the fault tolerance module (FTM),
which communicates with both ibex cores. Also, the ibex cores
share the same instruction bus and data memory bus, since they
execute completely in parallel and should read and write the
same data from and to both memories. Core 0 is assigned the
function to fetch the instruction in the memory and to write
in data memory. The core 1 will get the same instruction as
core 0 by pulling this information from the bus between core
0 and memory.

The data flow in this SoC architecture is similar to a
conventional processor, except for the writing stage of the
pipeline. The program is stored in the instruction memory.
Then, both cores fetch the same instructions from memory.
After processing, the result is stored in the General Purpose
Register file (GPR). At this moment, the FTM is responsible
for intercepting the result and also saving it to the Safe General
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Fig. 1. CEVERO SoC organization.

Purpose Register (SGPR), which should be a register file with
embedded error correction, hardened against soft errors from
radioactive particles.

B. Ibex core modification

The ibex core has undergone minor modifications to suit
this project. One signal and two buses were exposed out of
the core, meaning they also became I/O ports. The signal
refers to write_enable signal, the other two buses refer
to address and write_data. All these are destined to the
internal GPR.

The write_enable signal is used to allow the write
operation in the GPR. The address is used for selecting the
address where the data will be written and the data signal is
the data itself. These same signals and buses are driven to the
SGPR, located within the fault tolerance module.

C. Fault tolerance module

The Fault Tolerance Module (FTM) is responsible for
detecting and correcting any error that occurs in the execution
of the program. When this block detects an error, it halts
both cores and returns the execution point to a safe state.
The module then resumes execution from this safe state and
guarantees the correct execution of the program.

The FTM receives the write_enable signal, the address
and the data buses from both cores. Those signals are internal
to the ibex core and they are intended to the GPR of both
ibex cores. With this data, the FTM module is able to compare
results and detect any mismatches.

Interconnections among components that make up the mod-
ule are shown in Figure 2: the Controller, the Comparator, the
Safe General Purpose Register (SGPR) and the Safe Program
Counter (SPC). The components that make up the module will
be discussed.

1) Comparator: The comparator receives signals and buses
from both cores and performs a bitwise comparison in each
one of them. If all the bits from one core are equal to the bits
in the other, the address and the data are routed to the SGPR
and the execution in the cores proceeds normally. Otherwise,
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Fig. 2. Internal components of the module.

if one bit is different, the comparator will send an error signal
to the controller.

In order to perform this comparison, all information which
originates from the same core is concatenated into a single
bit stream. Then a bitwise XOR logic operation is executed
between both sequences from each core. In a XOR operation,
different bits evaluate to true and equal bits, to false. Therefore,
whenever there is a bit mismatch, the error signal is generated
from this operation.

2) SGPR: The SGPR is a register file identical to the GPR
existent in the ibex core. This block receives the address and
data from the comparator if this information is equal in both
the cores.

When an error is detected, the write enable signal changes
to false. At this moment, no more data is written to the block
and the recovery process starts. The controller begins to access
each address of the SGPR so that the information contained
in each of them is sent to the GPR in both cores in order to
restore the previous safe state.

3) SPC: the SPC receives and stores the program counter
value. It continuously stores the PC value at each fetch done
by the core. The value stored is always the one in the PC
from two cycles ago, because of the existence of a two stage
pipeline.

When an error is detected, the controller will receive the
value contained in this block and it will overwrite the program
counter of the ibex cores.

4) Controller: The controller block is responsible for man-
aging the entire module, controlling the SGPR, SPC and the
ibex cores during the recovery process.

This component receives two signals: the error signal from
the comparator and the halted signal originated from the
core. The first signal is high when the comparator detects a
difference between values coming from both cores. The other
signal is high when the core is in halted state.

Figure 3 shows the controller state machine. It is composed
of 7 states. The first state S0 is the wait mode where the
FTM waits until an error occurs. In S0, all internal signals and
variables are restarted. When an error happens, the controller
starts the correction cycle. In the next state S1, the controller
sends a reset signal to both cores, clearing all memory

s0start

s1 s2

s3

s4

s5s6

error

not halted

halted

iter < NUM REG

Fig. 3. Controller state machine.

elements. Then writing to the SPC is disabled. In S2, halt
signal is sent, the machine goes to S3, and the controller waits
until the cores respond with the halted signal. All these
steps represent the communication protocol between the FTM
and the cores. The protocol is described in more detail in
subsection III-E.

In state S4, the controller sends the value of the SPC to
the PC in both cores. The S5 state is where the controller
addresses all registers of the GPRs and SGPR fetching the
value contained in each register of the SGPR to overwrite the
value in the registers of the GPR with corresponding address.
When this process is finished, i.e. when the controller is done
accessing all registers, the operation is terminated and then the
block advances to the next state. In the final state, the resume
signal is sent and the ibex cores leave the halted state.

D. Debug interface communication

The fault tolerance module uses the debug interface of
the ibex core to establish the connection with it. The choice
to use this interface rather than creating a totally new one
is mainly due to the fact that there is no need to modify
the internal structure of the core. Creating a new interface
would considerably change the core unit and would be a very
intrusive approach.

The focus of this stage of the project is to develop a
fault tolerance module able to detect and correct an error
that occurs when the SoC is in operation. It is not in best
interest to develop a processor or modify one profoundly. That
being said, using the debug interface is convenient and strictly
needed to the recovery process. In future developments, this
debug interface shall be adapted and integrated into production
hardware in order to allow state recovery.

Using the debug interface allows, with some ease, to control
the core and change values of the internal memory elements.
This technique enables the system to pause the core, so it will



CLK
ERROR
RESET
HALT

HALTED
RESUME
SHIFT

Fig. 4. Beginning of the correction operation.

not fetch new instructions while the FTM controller performs
the state recovery.

The memory elements are accessible through a debug ad-
dress port. The address bus of the debug interface has 15 bits.
This bus is considerably broad, because it accesses multiple
distinct registers, such as the GPR registers, the PC, and the
CSR registers, for example. In addition, the address between
memory blocks are well spaced apart.

The address to access the GPR varies from 0x400 to 0x47F,
which corresponds to the range that covers the address of
32 registers. The memory is byte addressed, then every 4
bytes corresponds to a register. The PC is accessed by address
0x2000. The information inserted in this location corresponds
to the value of the next PC, which will be used to fetch the
next word in the instruction memory. All address are accessible
only if the core is halted.

E. Proposed protocol

In this section, the communication protocol between the
fault tolerance module and the ibex core is explained.

Figure 4 shows the digital timing diagram of the proposed
protocol. The error signal is an internal signal. Here it has been
made explicit to expose the moment when the error detection
occurs. This signal originates from the comparator block.

As shwon in figure 4, the FTM detects an error signal
coming from the comparator, which happens when there is a
difference between bit sequences fetched from both cores. The
controller then sends a reset signal to the ibex cores, deleting
all stored memory elements. Soon after, in the next clock cycle,
the halt and shift signals are driven high and the halt
signal is kept high for one clock cycle. There is a delay of
four clock cycles between the FTM controller sends the halt
signal and the core answers that it has been halted. After
the core responds with the halted signal, the shift lasts
for two clock cycles.

There is only one bus to address all the register through
the debug interface. The same goes for reading and writing
data. For this reason, multiplexers are used in the design of
the project to switch between memory elements. The shift
signal is sent to the multiplexers for this transition to happen.

At the end of the correction process, the resume signal is
sent. Then, both cores leave halted mode, the halted signal
changes to low logic level, and then the cores continue with

CLK
ERROR
RESET
HALT

HALTED
RESUME
SHIFT

Fig. 5. End of the correction operation.

normal processing. But now resuming from a safe state before
the error had occurred. Figure 5 shows the active resume
signal and the cores’ exit from halted mode.

IV. SYSTEM VALIDATION

A. Methodology

The approach to test the system is relatively simple and
intended to validate basic tolerance to bit flips in the system.
As a project in its initial phase, this methodology suits its
purpose to validate system error recovery and to illustrate the
system’s feasibility in the PULP platform.

The testing procedure is described as follows: a program
is loaded into instruction memory and execution begins. Both
cores should execute the same instructions at the same time
and, at any given time, an error is induced by a built-in fault
injection module in the program instruction. It changes the
instruction of one of the cores, forcing a different result from
the other. This intervention forces the fault tolerance module to
go into correction mode operation and to correct the error by
returning execution of the program to a safe state. There is no
difference on where the error occurs in the ibex core because,
by the end of the pipeline, if any of the values from both
cores differ, the recovery process is the same and should take
the same amount of time. However, a permanent fault would
cause this recovery process to carry on indefinitely, rendering
this system ineffectual.

The main program used for testing was the code written
in assembly that calculates up to the n-th element of the
Fibonacci sequence. The assembly code was written using
Ripes [15], a simulator and assembly code editor built for
RISC-V. With this program, the binary equivalent was created
to be embedded into instruction memory.

B. Validation

One of the applied tests was to replace an entire instruction
word during the execution process in one of the cores. This
provoked a change of several bits compared to the instruction
word that would be executed if there was no intervention.

The fault injection module was implemented between the
instruction memory and the core. When it receives an error
signal, it shifts its output to a faulty instruction. The error
signal is defined in the project’s testbench. When this signal is
sent, the core will fetch the wrong instruction and, therefore,



an error is forced because the both cores will have different
instructions to process at the same instant.

V. RESULTS

The tested program took 82 clock cycles to run, outputting
the value 89 which is the expected twelfth term of the
Fibonacci sequence. At a certain point in the execution of the
program, an error signal was introduced so that core 0 fetches
a wrong instruction, causing an error in execution. This test
was executed multiples times differing only by when the fault
is injected.

The module proved effective in detecting the error at the
exact moment when a difference between program instructions
coming from either one of the cores.

The FTM took a total of 40 clock cycles to complete the
entire process. Including the time from error detection up until
error correction.

VI. CONCLUSION

The natural space environment is conclusively very haz-
ardous for digital circuits as radiation related problems occur
frequently with circuitry in spaceborne applications. However,
a big variety of radiation-hardened techniques were developed
to mitigate and even extinguish the effect of those problems
in digital components of a computer.

Some of these techniques, specially RHBP and RHBD ones,
require proprietary and/or really costly technologies, which
renders them inaccessible to many researchers. Nevertheless,
other techniques with higher abstraction levels are more ac-
cessible and suitable for specific space applications.

This document proposes the implementation of a few of
these techniques, such as lock-stepped DMR in conjunction
with state recovery and ECC protected register file in a fault
tolerance module integrated to an open-source core from the
PULP platform. It realizes a fault-tolerant system, validated
by a test program, that is replicable due to its open-source
foundation and readily available technologies. As explained in
past sections, the FTM itself and its integration to the ibex core
need modifications so as to become a manufacturable system:
the debug interface shall be adapted and condensed down
to allow strict access to register files, and the FTM should
consider implementing scrubbing and other fault tolerance
techniques in its inner components to provide full coverage
against radiation-induced soft errors.

As it is, this proof-of-concept system opens a path to the
future development of a more robust system-on-a-chip. This
SoC will be based on a custom PULP SoC, which shall be
deliberately protected with similar radiation hardening tech-
niques, and will include this proposed fault tolerance module.
Therefore, there is an increasingly complex, yet viable path to
future works on this system, and the outcome is a system-on-
a-chip which advocates on a more accessible, open-hardware
spaceborne system.
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