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Abstract—JavaScript language (JS) has been widely used in
recent years applied to browsers-context. Yet JS is being applied
to other backgrounds such as server-side programming, mobile
applications, games, robotics, and the Internet of Things (IoT).
JavaScript is suitable for programming IoT devices due to event-
driven oriented architecture. However, it is an interpreted lan-
guage, so it has a lower performance than a compiled language.
This paper assesses the use of WebAssembly as a strategy to
improve the performance of JavaScript applications in the IoT
environment. The experiments were performed on a Raspberry
Pi using the Ostrich Benchmark Suite. We run the algorithms
in JavaScript, WebAssembly, and C language while collecting
data about device resource consumption. Our results showed that
JavaScript performance could be improved by 39.81% in terms
of execution time, a tiny gain in memory usage, and reduced
battery consumption by 39.86% when using WebAssembly.

Index Terms—JavaScript, WebAssembly, Raspberry PI, Inter-
net of Things

I. INTRODUCTION

The Internet of Things (IoT) is a paradigm in which ordinary
objects can be connected to the Internet and has processing ca-
pacity to analyze the environment and make decisions without
human intervention [1]. According to Transforma Insights [2],
the forecast until the year 2030 will be a total of 24.1 billion
active IoT devices, with a growth rate of 11% per year.

Programming IoT devices requires specific knowledge about
embedded systems and compiled language like the C language
[1]. However, high-level languages can facilitate programming
and may are more suitable to the context of smart devices.

JavaScript is a high-level, lightweight, dynamic, and un-
typed programming language. It allows the use of functional
and object-oriented paradigms, and its execution model is
based on the interpretation of the source code [3].

Over time the language has gained prominence, the vast
majority of sites use JS, and modern frameworks are designed
based on it [3]. According to Stack Overflow [4], for the
eighth year in a row, JavaScript has maintained it as the most
commonly used programming language with an estimated
community of 12 million developers worldwide [5].

JavaScript might be used to simplify the programming of
IoT devices due to its event-oriented architecture. However,
it is an interpreted language. Hence the programs cannot be
executed directly on the CPU (Central Processing Unit) [6].

Typically, interpreted languages can be penalized in terms
of performance when compared to compiled programs, and
mainly in embedded systems can consume more resources like
CPU, memory, and energy. For this kind of device, battery
consumption is an essential issue. Therefore, to allow the
JavaScript language in IoT programming, it is necessary to
implement techniques or tools to improve JS performance.

The vast majority of approaches to improve JavaScript
performance focus on the dynamic code translation process to
reduce the translation overhead [7]. Oppositely, WebAssembly
(WASM) presents a new proposal that can improve the per-
formance of JS applications. WASM is a low-level language
similar to assembly, which promises performance closest to
compiled languages [8].

This paper presents the analysis of a strategy to improve
the performance of the JS language in IoT environments. We
adopt WebAssembly as an optimization technique and evaluate
how much it consumes in terms of resources when compared
to JavaScript.

Our experiment was performed from the execution of bench-
mark algorithms executed through WebAssembly under the
NodeJS interpreter on a Raspberry Pi.

The experimental results point out that JavaScript perfor-
mance could be improved by 39% in terms of execution time,
a tiny gain in memory usage, and reduced battery consumption
by 39%. In addition, we have identified which situations are
most suitable for applying the WebAssembly approach.

The outline of this paper is as follows: Section II presents
the essential concepts about WebAssembly and JS execution;
Section III show the related work; Section IV presents the
methodological process of the research; Section V shows the
results, and finally, section VI presents the conclusions.

II. BACKGROUND

The main goal of WebAssembly is to improve the JavaScript
application performance while being a flexible and platform-
independent model. To provide some essential background, we
survey the most directly relevant ancestors about the execution
model of JavaScript and WebAssembly.



A. JavaScript Execution Model

The JavaScript execution model is based on the interpreter,
which executes the JS code. The JavaScript engine can be
implemented as a standard interpreter or just-in-time compiler
that compiles JS into bytecode [9]. To present the concepts,
we use the Google V8 [10] interpreter as a model.

The V8 engine is used inside Google Chrome browser
and is the basis for NodeJS [11] (the most popular server
environment runtime for JS). The Figure 1 shows the overview
of the JavaScript program execution.

Fig. 1. Overview of the JavaScript pipeline

Figure 1 presents the typical execution flow of the JS
program. First, the source code needs to be analyzed to convert
the text format into tokens and generate an AST (Abstract
Syntax Tree).

The V8 uses a mechanism called TurboFan for analysis if
something is running slow if there are bottlenecks and access
points to optimize them. While it is a powerful approach, the
verification code, and decision about what needs to optimize,
implies in CPU use. In other words, it means higher power
consumption. Its an issue at the IoT devices powered by the
batteries.

In this sense, to overcome these limitations, solutions are
proposed to face performance issues and overhead of verifica-
tion, one good strategy is the WebAssembly.

B. WebAssembly Approach

Designed from the four major browser vendors – Google,
Microsoft, Mozilla, Apple – WebAssembly (WASM) is a
portable low-level bytecode that the goal is to serve a universal
compiler target [8]. Towards this end, WASM provides a set of
architectural instructions that can be incorporated into several
host environments, such as web browsers, cloud computing
platforms, or IoT devices [12].

WebAssembly brings an innovative proposal to enable
low-level code on the environment target [8]. The WASM
code is produced through compilation from C/C++, Rust,
JavaScript/TypeScript, using the official toolchain [12].

The WASM module is loaded, decoded, and compiled. The
module exposed one API that the instance functions which can
be directly reached through JavaScript application.

Figure 2 shows the JavaScript execution with WASM mod-
ule. The module has already undergone optimization during
the compilation phase. In addition, the analysis of code is also

Fig. 2. JavaScript execution pipeline throught WASM

not necessary because a few of the steps in the process can
be skipped.

On the other hand, modern JavaScript engines have been
investing in research to achieve highly optimize levels and
improve their runtimes. The load WASM bundle and the
execution time might not be very advantageous for simple,
specific issues. In this sense, We seek to explore the perfor-
mance trade-off of JavaScript through the WASM module in
the IoT environment.

III. RELATED WORK

Due to its original purposes, the vast majority of works
investigate the use of WebAssembly as a tool associated with
the browser environment.

The introductory study was proposed by Haas et al. [8]. In
their work, WebAssembly is presented in detail, and some
tests were applied using PolyBench benchmark employed
in browser-based environments. They conclusion show that
WebAssembly is a competitive alternative running 10% slower
than native code.

The author Conrad Watt [13], present Speedy.js, a cross-
compiler that translates JavaScript/TypeScript to WebAssem-
bly. They work aiming at the performance-critical web code, to
provide translates in an optimization way. With this approach,
it can manage to make compute-intense web code up to four
times faster, while reducing runtime fluctuations to the half.

Herrera et al. [14], provided Apart from the Ostrich bench-
mark suite, five research questions were framed to investi-
gate the improvement of JavaScript-based browser engines,
the relative performance of JavaScript and WebAssembly
with variations in portable versus vendor-specific browsers.
In particular, the authors included a Raspberry Pi in their
evaluation. In general, they registered a gain of speedup of
19% performance against native code.

On the opposite way, Jangda et al. [15] built an exten-
sion to BROWSIX to enable the execution of unmodified
WebAssembly-compiled Unix applications directly inside the
browser. The goal was to analyze the performance of We-
bAssembly compared to native code. For that, they choose the
SPEC CPU suite as benchmarks and conclude that applications
compiled to WebAssembly run slower by an average of 45%
(Firefox) to 55% (Chrome).

There are divergent points in the literature regarding the
performance of WebAssembly and, commonly, analyzes are



performed using browser-based environments. Thus it is es-
sential to evaluate it from other perspectives and in different
architectures.

In this sense, we contextualize WebAssembly as a means
to enable the execution of JavaScript in embedded systems.
Moreover, this paper differs from the others because of the
focus on the IoT environment. In particular, how WebAssem-
bly stacks against JavaScript in terms of performance and
consumption of resources like the battery, CPU, and memory.

IV. RESEARCH METHODOLOGY

Regarding the evaluation of WebAssembly to improve
JavaScript application performance, we performed a series of
tests with a set of algorithms for different purposes. The goal
is to assess if there is a performance gain and how much it
impacts battery-powered devices.

The Raspberry Pi (RPi) is a single-board computer (SBC).
Due to its versatility and low cost, it has become popular.
We chose RPi because it is widely used, easy to manage, and
enables fast prototyping for the IoT environment. Also, it is
suitable for a wide variety of applications [16]. Table I shows
the technical details about the evaluation setup.

TABLE I
DEVELOPMENT ENVIRONMENT

Component Description

Raspberry PI3 model B
1.2GHz (64-bit) quad-core ARM ProcessorSBC
1GB of RAM

Memory Card SanDisk 16GB Class 10
Operating Systems Raspberry Pi OS 32-bit Lite (5.4.51-v7+)
JS Engine Node.js (12.18.2)
WASM toolchain Emscripten (1.40.0)
C compiler gcc (Raspbian 8.3.0-6+rpi1)
Profiling tool Perf (4.9.82)
Current sensor INA219 Zerø-Drift
Microcrontroler Arduino UNO R3

Raspberry Pi is able to run a full operating system. The
official image is a Debian-based Linux distribution knows as
Raspberry OS. We keep the basic OS version to reduce the
overhead of software that will not be used.

Regarding the JavaScript engine, we proceed with the
NodeJS [11]. NodeJS represents state of the art in terms of
server-side platform. It is widely used for JavaScript execution
and has a wide range of tools/frameworks for application
development [3].

Concerning the benchmarks, we select the Ostrich Bench-
mark Suite [17]. This benchmark provides some facilities
for evaluating JavaScript against WebAssembly because it
gives the same implementation of the algorithm in JS and
C. Furthermore, Ostrich provides a make file to automate the
build process of C compiler and Wasm module generation.
Table II shows the benchmarks used.

The Ostrich Benchmark Suite is composed of 12 algorithms.
However, in our analysis, we will work with only eight because

TABLE II
OSTRICH BENCHMARKS [17]

Benchmark Description

nw An algorithm to compute the optimal alignment of two
protein sequences

crc An error-detecting code which is designed to detect errors
caused by network transmission or any other accidental
error

nqueens An algorithm to compute the number of ways to put down
n queens on an n x n chess board where no queens are
attacking each other

lud A LU decomposition is performed on a 1024 x 1024,
randomly-generated matrix

bfs A breadth-first search algorithm that assigns to each node
of a randomly generated graph its distance from a source
node

levamd An algorithm to calculate particle potential and relocation
due to mutual forces between particles within a large 3D
space

fft The Fast Fourier Transform (FFT) function is applied to a
random data set

srad A diffusion method for ultrasonic and radar imaging appli-
cations based on partial differential equations

four algorithms did not compile on the Raspberry Pi due to
the incompatibility of versions and architecture.

To generate the WASM modules, we use as input the
C source code and the Emscripten compiler [18]. The
module compilation required to rename the parameter TO-
TAL MEMORY to INITIA MEMORY to meet the restric-
tions of the new version of the WebAssembly compiler, and
we included the setting ALLOW MEMORY GROWTH = 1
to allow memory allocation when necessary.

A. Power Measurement

To evaluate energy consumption, we built an external mea-
surement based on the INA219 [19] current sensor. We make
the power meter using the Arduino board to capture the current
sensor’s measured values. The data are stored on the SD card.
The rate of samples is 150 registries per second, and the
current consumption is recorded in mA.

B. System State Monitoring

We install the required software to measure the performance
and proceed with the evaluation from the clean Linux image.
Moreover, unnecessary services like ssh, dhcp, and sbus were
disabled.

Thus, to collect the performance information, we selected
the Perf profiling tool [20]. Perf is a profiling mechanism for
Linux-based systems, and It can instrument CPU performance
from events counters. It is possible to collect useful infor-
mation from the counters to understand the execution of the
applications, such as instructions executed, memory allocation,
or cache-misses suffered

Perf offers different ways to collect profiling information.
We record the execution section using the options [-d -e]
to obtain, respectively, detailed information about the cache
memory allocation and the number of instructions and cycles



executed by the CPU. Furthermore, it also provides the exe-
cution time in seconds for each algorithm.

C. Evaluation
The experiment consists of measuring each JS benchmark

execution through NodeJS. Every single operation was re-
peated 30 times to obtain data consistency and more accurate
statistical information [21].

We run the benchmarks and use tools to extract performance
statistics. However, our analysis is performed to exclude a
potential system overhead.

We have established a methodology for the execution of
each test. Before performing the test, we collect statistical data
about the idle state. In the sequence, we load the JavaScript
interpreter. This action aims to remove the load time of the
application engine. In this phase, we collect the performance
without running the test. Finally, we execute and capture the
statistics of each benchmark.

To control the test execution, we created a bash file that
runs the experiments in an automated way. Each algorithm is
repeated 30 times. Between one performance and another, we
included ten seconds pause for the system to go back to idle
mode and the drained current returns to usual variation.

V. RESULTS AND DISCUSSION

This section presents the results of the comparative experi-
ments between JavaScript and WebAssembly. The reports are
segmented by language and grouped by benchmark.

Although our focus is not on compiled languages, we make
comparisons with it. In this way, we decided to include
test results for the C language. However, the main analysis
continues around WebAssembly.

Table III shows the raw data regarding the performance of
the benchmarks. The information represents the average from
30 runs per algorithm by approach performed on the Raspberry
Pi. Overall, WebAssembly showed better results; however,
memory consumption requires a more in-depth analysis. Table
IV summarizes the comparison between the approaches.

From the perspective of absolute numbers, it is evident that
there have been substantial improvements in execution time
and energy consumption, while memory has a positive value,
but far from the other metrics. Figure 3 presents the analysis
of execution time.

Figure 3 highlights the executions of the bfs and srad
algorithms. In these cases, the performance has increased by
more 50%. To better understand the difference between the
approaches, we analyzed the srad algorithm to know how it
works and why WASM was superior.

The goal is to find out which of the implementation aspects
take the longest to execute and, consequently, to identify
more favorable scenarios for the application of WASM. Srad
algorithm consists in diffusion method tailored to ultrasonic
and radar imaging applications [17]. In a simplified way, the
objective of the algorithm is to reduce speckle noise from
images. For that, the implementation consists of some opera-
tions at the pixel level through arrays representing regions of
the image.

Fig. 3. Execution time analysis

In this sense, the operation of the algorithm considers
functions with nested loops. Each loop interaction implies
calculations to determine the next index and its values; this
operation is repeated for a massive number of items. The
problem is that in JavaScript, all numbers are floating-point
numbers. Hence, it consumes more resources, and the JS inter-
preter requires an extra effort to speculate during compilation
what data types will be used.

On the other hand, WebAssembly has not achieved the
same performance in other algorithms that also use similar
structures. WASM can be penalized when applied to simple
tasks; loading codes or functions external to the application
implies costs for proceeding between the JavaScript engine and
the WebAssembly module. For instance, to execute a function
that adds two numbers exclusively via JavaScript is faster than
running the same function through WebAssembly, because to
perform the sum requires to load the WASM module. Thus,
the tradeoff between the load and execution might become
inconvenient according to the scenario.

Therefore, loading a WASM module does not mean a
performance-boost if applied for developing simple issues.
Figure 4 shows the memory usage of each algorithm.

Fig. 4. Memory analysis

Regarding memory consumption, we highlight the differ-
ence in the bfs algorithm. To execute it, we need to reduce the
number of entries sets since using the default values indicated



TABLE III
RAW EXECUTION DATA AND STANDARD DEVIATION

Execution time (sec.) Memory (MB) Energy (J)
JavaScript WASM JavaScript WASM JavaScript WASM

Benchmark SM SD SM SD SM SD SM SD SM SD SM SD

nw 8.95 0.002 6.62 0.001 15.93 3.765 17.40 0.392 22.75 1.165 18.03 1.24
crc 10.35 0.003 7.86 0.002 3.67 0.147 3.94 0.122 26.30 0.800 19.99 0.87
nqueens 43.51 0.001 27.10 0.001 2.98 0.008 3.18 0.016 105.22 2.721 66.93 4.13
lud 115.30 2.281 70.06 0.032 4.87 0.231 6.04 0.508 270.64 7.984 166.62 1.53
bfs 7.79 0.041 2.24 0.000 12.64 6.844 5.85 3.245 23.77 1.830 6.00 1.11
lavamd 19.33 0.002 11.87 0.001 3.84 0.061 3.33 0.063 44.30 4.435 27.88 5.48
fft 17.25 0.012 11.79 0.004 6.10 1.425 6.41 1.443 43.22 1.249 27.43 2.06
srad 45.95 0.054 22.95 0.064 4.11 0.116 3.93 0.082 107.98 3.296 52.90 2.85

SM: Standard Mean
SD: Standard Deviation

TABLE IV
COMPARATIVE RESULTS BETWEEN JAVASCRIPT AND WEBASSEMBLY

JavaScript Vs. WebAssembly
Benchmark Execution time (%) Memory (%) Energy (%)

nw 26.00 -9.27 20.73
crc 24.03 -7.35 23.97
nqueens 37.72 -6.48 36.38
lud 39.24 -24.09 38.43
bfs 71.20 53.72 74.74
lavamd 38.61 13.12 37.07
fft 31.66 -5.08 36.53
srad 50.05 4.46 51.01

Average 39.81 2.38 39.86

by the benchmark suite implied in out of memory error. This
algorithm performs searches for graphs using nested loops, so
each call allocates memory for parameters, local, and control
variables varying according to the depth level of the graph.

WebAssembly had the worst memory consumption on lud
algorithm. This algorithm operates on matrices inside loops,
and matrix indices are calculated at each interaction based on
variables that are also manipulated by the loop.

Theoretically, WebAssembly manages memory through a
resizable ArrayBuffer that contains a linear array of bytes
which is read and written by low-level memory instructions
[8]. In this way, the dynamic indexes of the matrix imply
readings that are not sequential. In general, when going
through a matrix or array, the next value to be read is usually
the subsequent record; however, in this scenario, the reading
becomes unpredictable directly affecting the cache spatial
locality.

The algorithm profiling data shows 46% of miss rate at last
level cache (LLC). Furthermore, memory loads spilling regis-
ters, and extra jumps are necessary [22]. Thus, the processor
needs more clock cycles to search for information.

JS garbage collection system uses non-deterministic algo-
rithms that work when some memory allocation occurs in
contrast to WASM that have a heap which allocate from the
bottom of the heap, and grow the stack from the top of the
heap [22].

Regarding the power consumption, the measurements are

performed by second discarding the overhead for the system
(idle mode). The results represent the geometric average from
30 runs recorded over the whole executions. Figure 5 shows
the energy consumption.

Fig. 5. Energy consumption analysis

Figure 5 exposes the average energy spend by execution.
In the experimental environment, the algorithm execution
did not compete directly with other applications for CPU
usage. However, we have no control over the scheduling of
processes by the operating system. Hence, the energy cost
may be impacted by some sub-process that eventually has been
scheduled during the test.

In general, JavaScript is perceived to consume more energy
to develop the algorithms. It happens because the compiler
performs optimizations (Turbofan [10]) in order to gain per-
formance. Such analysis implies directly on CPU usage, so it
has a higher energy cost.

Directly comparing WebAssembly against JavaScript, there
is an overall gain of about 39%. Further, there is still a
substantial performance in time-execution and energy saving,
with an extra cost in memory consumption. We observe a
more efficient performance with situations for computationally
intensive tasks, as Haas et al. [8] points out.

Typically, the works found in the literature compare We-
bAssembly with the C language. Table V presents the execu-
tion statistics in the native language.



TABLE V
C EXECUTION STATISTICS

C language
Benchmark Exec. Time (Sec.) Memory (MB) Energy (J)

nw 5.23 13.26 14.69
crc 2.99 0.99 8.97
nqueens 11.24 0.00 28.82
lud 59.77 1.26 145.18
bfs 1.63 2.45 4.26
lavamd 7.50 0.30 17.62
fft 4.81 2.89 11.88
srad 16.07 0.68 37.57

Comparing WebAssembly with C language, we reported
that WASM runs 21% slower than native code. This rate
is double that recorded by [8]. Nevertheless, a value very
close to that achieved by [14] 19%. WASM proves to be a
viable alternative for performance optimization, reducing the
gap between compiled and interpreted languages.

On the other hand, in his work, Jangda et al. [15] highlights
situations in which WebAssembly performs poorly. In our
experiments, this limitation was perceived in situations in
which arrays and matrices were involved because of excessive
access to information that was not at the top of the memory
hierarchy.

Herrera et al. [14] achieved more expressive rates between
WebAssembly and JavaScript. However, in our tests, JS had a
better performance. This difference probably occurs because
JS interpreters have been investing a lot of effort into the
optimization processes of their virtual machines, ensuring
continuous improvements.

VI. CONCLUSION

This paper evaluated whether WebAssembly could improve
the performance of the JavaScript language in the IoT en-
vironment. We were able to collect information about the
consumption of resources such as CPU, memory, and battery
from the execution of benchmarks.

The evaluations presented in this paper shown that We-
bAssembly is an efficient strategy to improve JavaScript per-
formance, being superior in all evaluated items, emphasizing
reducing battery consumption. On a battery-powered device
with limited resources, energy consumption can be more
significant than the speed of execution.

Finally, WebAssembly is a promising technology that can
be applied to different contexts, mainly because it is compiled
code suitable for the IoT environment optimizing the trade-off
between performance and resource consumption.

For future studies, we intend to explore the use of We-
bAssembly through other JavaScript interpreters. We will also
deepen the analysis of memory usage since this proved to be
a limitation of WASM and represents a research opportunity
to enable JavaScript as a language for the IoT environment.
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