
WebAssembly potentials: A performance analysis
on desktop environment and opportunities for

discussions to its application on CPS environment
João Lourenço Souza Junior

Atlantic Institute
Fortaleza, Brazil

joao lourenco@atlantico.com.br

Davi Cedraz S. de Oliveira
Atlantic Institute

Fortaleza, Brazil
davi cedraz@atlantico.com.br

Victor Nobrega Praxedes
Atlantic Institute

Fortaleza, Brazil
victor praxedes@atlantico.com.br

Dennys da Silva Simiao
Atlantic Institute

Fortaleza, Brazil
dennys simiao@atlantico.com.br

Abstract—The Web started as a simple document-sharing
network and today has evolved to become a consolidated and
ubiquitous platform for creation and application distribution. To
explore its demands, web browser vendors have been working
on new technologies like WebAssembly, a new type of machine
language for a conceptual machine instead of a real physical
machine, supported by the modern web browsers, providing
new features and greater performance for web applications.
At the other end, embedded devices have also evolved along
with applications. However, there are still semantic heterogeneity,
maintainability, and development issues inherent to the vast
number of devices and services that operates in the numerous
domains of Cyber-Physical Systems (CPS). The overall objective
of this work is to study the WebAssembly technology through
a performance analysis in a desktop environment, presenting
empirical comparisons between the execution of a program
compiled in native machine code and the same program compiled
in WebAssembly, to verify its flexibility to compile code written
in different languages for web applications and maintain similar
performance to their native applications counterpart. We also
point out the opportunities and challenges to potentially apply
WebAssembly as a semantic abstraction layer for embedded
devices in CPS development.

Index Terms—WebAssembly, Internet of Things, Cyber-
Physical Systems

I. INTRODUCTION

The current Web scenario has been helping society to rede-
fine the way organizations and individuals automate actions,
optimize processes, communicate, and effectively collaborate
with each other [1]. All of these applications can stay con-
nected and all of this started as a simple document sharing
network. Today it has evolved to become a consolidated and
ubiquitous platform for creating and distributing applications,
being accessible across a wide range of operating systems and
devices (e.g., desktops, Smartphones, Tablets, among others).

Based on this evolution, several emerging technology fields
are bringing new technologies to innovate in this scenario,
browsers providers started working on new technologies to
properly integrate applications into their software [2]. In April

2015 the World Wide Web Consortium (W3C), formed the
WebAssembly Working Group, where engineers from the
top four web browsers (Chrome, Firefox, Safari, and Edge)
designed low-level portable code so collaborative called We-
bAssembly (abbreviated to Wasm).

The WebAssembly offers a compact representation, vali-
dation, and compilation, in an efficient way, with low-level
security, and without execution overhead. This technology is
a new type of machine language that can be run in modern web
browsers, providing new features and increased performance
for web aplications. The idea is not to write using Wasm syntax
directly, but rather, to be an effective compilation target for
low-level languages like C, C++, Rust, etc. It is also designed
to run alongside JavaScript, allowing both work together. The
WebAssembly is not linked to a specific programming model,
being platform-independent and, from its formal semantic
definition, its compiled code is written in different languages
to run applications on the web with similar performance to
native applications1 [3]. But, the Wasm specification doesn’t
make any web specific assumptions or provide web specific
features, and it can be employed in other environments [4].

Therefore, the main objective of this work is to validate
the performance equivalence of the use of WebAssembly
in comparison to the use of native compiled platforms and
applications in a desktop environment, presenting empirical
quantitative comparisons, focusing on performance measures
of algorithmic execution. In addition, we also raised the dis-
cussion of the potential use of Wasm as a semantic abstraction
layer to develop embedded devices in CPS development.

The work will be based on bibliographical and exploratory
research, carried out from the knowledge obtained through
scientific articles, books, and documentation referent to the
technologies that involve WebAssembly. A proof of concept

1Native applications refer to applications that are compiled for an operating
system and specific hardware.



will be drawn up and subjected to a set of tests that will
produce outputs to make the above comparisons and analyzes.

The remainder of this paper is organized as follows. Sec-
tion II presents a deep theoretical foundation and literature
review to explore the state of the art of WebAssembly.
Section III presents the experiment conducted in this work,
defining the process of execution, collection, and analysis
of the performance comparison experiment by running We-
bAssembly on a desktop environment. In Section IV, we
argue in details the opportunities of using WebAssembly in
the context of Cyber-Physical Systems and IoT environments.
Section V presents the related work. Section VI presents the
threats to validity. Finally, Section VII concludes this paper
and points out directions for future work.

II. WEBASSEMBLY

The WebAssembly is formally defined as a secure, portable,
and low-level code format, like Assembly, designed to efficient
execution and compact representation. Its primary objective is
to enable high-performance applications on the Web, however,
it doesn’t make any specific assumptions about the Web or
provides specific Web features, therefore it can be used in
other environments. Furthermore, its specification defines the
concrete representations (binary format and the text format),
structure, execution, and validation of this language [4]. The
Wasm code can be generated in two formats, binary and
textual, both based on a common structure, described in the
form of an abstract syntax. The Binary format is a linear
encoding of this abstract syntax, it is defined by a grammar of
attributes whose only terminal symbols are bytes. In the textual
format, the Wasm code is represented as a large S-Expression,
consisting of a large list of instructions [3].

A. Instruction Set Architecture - ISA
The process of transforming a piece of code written in a

high-level programming language to machine code is defined
from a specific instruction set architecture (ISA), and the most
common type of ISA are: reduced instruction set computer
(RISC), complex instruction set computer (CISC), and stack-
based. Wasm is a little bit different from these architectures,
it is a virtual stack-based ISA, that is, a machine language for
a conceptual machine instead of a real physical machine and,
as such, has many use cases and can be incorporated in many
different environments.

In general, when a Wasm application is available, it is
loaded and executed by the web browser, and not directly on
the target machine, the application does not need to know
the architecture (ARM, x86 ...) of this machine. After the
generation of the binary file, the browser can download this file
and then decode the WebAssembly to the native machine code,
this decoding is very efficient due to the similarity between
Wasm and Assembly.

B. Compile
As Wasm is a virtual ISA that isn’t linked to any specific

programming language, but currently there exists a set of lan-
guages that can be compiled to Wasm, however, the languages

C, C++, and Rust have tool-chains in more advanced stages
of development. Therefore, the experiments in this work were
implemented in these languages.

Fig. 1: WebAssembly compile process

The Figure 1 illustrates the compile process of C/C++ to
Wasm binary, which consists of transforming the source code
into an intermediate representation (IR) using the Clang front
end from LLVM [5], so the IR can be optimized by LLVM, and
finally, a back end LLVM generate the WebAssemly code. The
back end is still evolving, in constant development, resulting
in complications and instability at the moment.

C. Execution

As shown in Figure 2, the WebAssembly execution process
involves decoding the Wasm code into native machine code,
validation, instantiation and program invocation [4].

Fig. 2: WebAssembly execution process

For the Web environment, the Wasm reuses the infrastruc-
ture of the mechanisms of JavaScript execution, especially
JIT compilers. However, the WebAssembly System Interface
(WASI) specification and API provide support to run Wasm
code outside the web browsers [6].

Although Wasm is mostly used in browsers, it was designed
for any sandbox environment, not just for the web [2]. In
fact, there is an effort on the part of the community to
apply WebAssembly beyond browsers, since this technology
provides speed, scalability, and security to run the same code
on any operating system or computer architecture [3]. The
Wasm3 project, for example, aims at creating a WebAssembly
interpreter, allowing the execution of Wasm files on a wide
variety of devices, including microcontrollers [7]. This is
a goal similar to the WebAssembly Micro Runtime project
(WAMR), an independent micro runtime for WebAssembly
[8]. Both projects based on the WASI specification.



III. EXPERIMENT: PERFORMANCE COMPARISON

The experiment aims to analyze the performance of a digital
image processing application in the native environment versus
web browsers. Since this is demanding in computational terms,
it is a relevant experiment to analyze the performance of
applications compiled for Wasm under the quantitative aspect.
Its result provided the inputs to make empirical performance
comparisons and an analysis of the impact of using We-
bAssembly in the development of multi-platform applications.

A. Proof of Concept Development

The proof of concept consists of a concept program to
reproduce frames from a video highlighting the detected
faces using the Haar object detection algorithm feature-based
cascade classifiers, an approach based on machine learning
where the function of cascade is trained from many positive
and negative images, providing the classifier with the ability
to detect objects in other images. OpenCV already contains
many pre-trained classifiers for faces, eyes, smiles, etc. [9].

B. Test Scenarios

A set of tests were applied to the concept program, which
produced the necessary data to accomplish the objectives of
this work. These tests were designed based on a systematic
approach to performance measurement, where objectives, test
data, metrics, parameters, and expected results were defined.

1) Objective: Measure and collect the execution times of
the face detection program algorithm and their respective
subroutines, image pre-processing, face marking and image
post-treatment, in the native execution environment and We-
bAssembly, through the system Windows 10 Pro 64-bit op-
erating system and Google Chrome web browsers version
75.0.3770.142 64-bit and Mozilla Firefox version 68.0.1 64-
bit. Logically, considering the same computational resources
for all test scenarios, an x86 architecture computer with
the following configurations: Intel (R) Core (TM) i7-8550U
1.80GHz processor/CPU; 16GB DDR RAM memory; 100GB
SSD hard drive and Windows 10 Pro 64-bit operating system.

2) Test Data: The test data set consists of three videos:
DATASET 12, DATASET 23 and DATASET 34. The selec-
tion criteria were: be a public accessible video, that is, without
restrictions for reproduction and be available in MPEG-4
format with a standard resolution of 1920px by 1080px.

3) Metrics: The performance times of each phase of the
face detection process were considered as performance indi-
cators, and also the total frame reproduction time with the
face detected or not. Where the time is inversely proportional
to the performance, that is, less execution time means better
performance.

2https://www.youtube.com/watch?v=EWUdGRAwUpY
3https://www.youtube.com/watch?v=vQtLX6pW5eA
4https://www.youtube.com/watch?v=RuL5jVqc4Tg

4) Parameters: During the development of the proof of
concept and the experiments execution, were identified pa-
rameters that influenced the performance of the program:

• Video resolution: The execution times proved to be
directly proportional to the size of the pixels matrix
that composes the processed videos frames. The different
resolutions applied in the tests are classified by LOW,
MEDIUM, and HIGH with the pixel matrix 480px x
320px, 768px x 480px, and 1280px x 720px respectivaly;

• Test data: Each video of the test data described in Section
III-B2 produced different execution times, even when
compared with the same resolutions;

• Execution environment: Different times were identified
for the different execution environments.

5) Expected results: According to the parameters defined in
the previous section III-B3, tests were performed per execution
environment, test data and resolution of the videos, generating
a total of 27 different test scenarios following the metrics
defined in Section III-B3.

C. Results Analysis

From the data obtained with the execution of all test
scenarios and the experiences attained during the research
and development process, we have elaborated quantitative
analyzes. The execution of 27 test scenarios produced a
significant measurement database with the amount of 38771
measurements. Based on these data, the analysis process was
carried out, which is divided into three stages: data standard-
ization, statistical analysis and comparative analysis.

1) Standardization of results: The test results were loaded
and unified by test data (DATASET 1, DATASET 2 and
DATASET 3). Then it was identified that the most common
number of faces marked in a video frame was 1 (one), so a
filter was applied to consider only the results where only 1
(one) face was detected.

2) Statistical analysis: With the result of the standardized
tests, the mean and median of each metric per parameter were
calculated. It was observed that the mean and the median
showed similar values for all metrics, but, since the mean is
more sensitive to unusual measurement points, the calculation
of the median was adopted in all performance comparisons.

3) Comparative analysis: Based on the statistical analysis
demonstrated in section before, the data were grouped and or-
ganized into graphs for better visualization of the information.
And all the metrics presented in Section III-B3 were analyzed.

Pre-processing: In the performance comparison of the
execution of the pre-processing of video frames, we have
noticed that the version of WebAsembly that runs on Chrome
and Firefox got better performance than the native version,
since the best execution times occurred in the version running
on Chrome, reaching 3.0 times faster than the native version
and 2.0 times faster than running on Firefox.

Face detection: is the main functionality of the proof
of concept developed and, as expected, it was the routine
that demanded the longest execution time in all execution
environments. Unlike what occurred in the pre-processing, the



native version was 3.32 and 4.31 times more performance than
the WebAssembly code executed in the Firefox and Chrome
web browser respectively.

Marking of detected faces and Post-processing: The
analysis of the execution times of these routines allowed us to
identify that they have equivalent performance regardless of
the variation of the parameters. However, it is worth noting
that the execution times of the module with WebAssembly
were registered in the order of nanoseconds.

Overall performance: The last comparative analysis was
made with the total processing time measurements, that is,
the execution time needed to capture the original video frame,
process and reproduce the copy. With the data analysis shown
in Figure 3, it became clear to us that the biggest bottleneck to
the execution time of the program was the execution of the face
detection algorithm provided by OpenCV. Therefore, similarly
to the analysis of the face detection process, the native version
performed better than the version of the concept program
ported to WebAssembly, being 3.42 times faster than running
on Firefox and 4.19 times faster that running on Chrome.

Fig. 3: Performance comparison of Proof of Concept Program
- WebAssembly (Chrome and Firefox) vs Native (Windows)

The results showed that the WebAssembly version of proof
of concept achieved similar performance to the native version
when considering the following performance metrics: pre-
processing, face marking, and post-processing. However, the
face detection routine was significantly better in the version
compiled for the native machine. This difference can be
attributed to the fact that implementation of the Haar feature-
based cascade classifiers algorithm by OpenCV contains fea-
tures that haven’t yet been optimized for Wasm.

It is important to note that the face detection routine
provided by OpenCV is a computer vision library with thou-
sands of C++ code lines with many features, which until
the launch of WebAssembly would not possible to see on a
web application. So, based on the results obtained we can
conclude that WebAssembly has the real potential to bring
better performance to web applications. In addition the Wasm
bring to the web a niche of computational solutions that were

restricted to the Desktop environment. And we could prove
that WebAssembly provides the capacity to maintains the
mains base code of an application independent of the target
ISA.

IV. WEBASSEMBLY AT CPS ENVIRONMENT

In Cyber-Physical Systems, the devices assist users in sev-
eral distinct domains and it requires a strong interoperability
[10]. It is essential that devices of different architectures,
communication protocols, and firmware semantic composition
to be able to work together in the same ecosystem. The
technological heterogeneity issue is still challenging due to the
large number of devices and protocols, mostly for ubiquitous
systems [11]. Web-services based approach (WoT, Web of
Things) and semantic web technologies (SWoT, Semantic Web
of Things) are now widely accepted as possible solutions,
it has been leveraged to enrich devices and services with
semantic annotations used to qualify them [12].

In this context, one technology that could solve some of
those problems is WebAssembly. Its use in IoT devices is
justified because it seeks to guarantee semantic interoper-
ability, in addition to providing a safer environment asso-
ciated with optimized code, low memory usage, portability,
and performance equivalent to native applications. Figure
4 contains a diagram that depicts the conceptual idea of
a WebAssembly application on an IoT device. The Wasm
Binary, an application compiled on WebAssembly, is executed
through a platform-independent Wasm Runtime. The WASI
for Embedded Systems is a platform-specific implementation
that provides a Hardware Abstraction Layer (HAL), that is, it
makes the hardware transparent to the upper layers. Finally, the
firmware layer, the one closest to the hardware, is responsible
for providing basic functionalities such as OTA interface for
updating the Wasm application via network.

Fig. 4: WebAssembly as Hardware Abstraction Layer.

Based on our research on very recent developments and the
experiment carried out in this work, we propose the three main
facts that we believe corroborate with the wide application of
Wasm in the CPS context:

• The WAMR and Wasm3 interpreter allows us to write
the same firmware for different devices and different
architectures [13]. By reducing or almost eliminating the
semantic divergence in the source codes embedded in the



devices, it is possible to isolate the business layer from
the communication and sensing modules, contributing to
its scale with much more security and flexibility.

• WebAssembly was designed to have portability, espe-
cially to the non-Web context, that means that it does
not require any Web APIs and can be used as a portable
binary format on many platforms, bringing benefits in
tooling, performance, and language-agnosticism (since it
supports C/C ++ level semantics).

• It has numerous unexplored applications for the non-web
context [14], in the CPS ecosystem, it can be used as
a HAL (Hardware Abstraction Layer) [15] and theoreti-
cally as a TEE (Trusted Execution Environment) which
can facilitate OTA (Over the Air) firmware updates on
devices, possibly becoming the future of Cyber-Physical
Systems as well.

Mazhelis, Luoma, and Warma defines the IoT ecosystem
and its devices as an ever-changing field [16]. We under-
stand that it is due to a set of dynamic technologies that
may change all the time in the way they are connected,
communicated, and can be programmed. Therefore, supported
by the latent need to build interoperable IoT devices in very
dynamic and heterogeneous environments, Wasm as bytecode
in an IoT architecture can be used by developers to improve
standardization, virtualization, context-awareness, and many
others Semantic Web of Things aspects [17]. We presented
in this section some opportunities for using Wasm in a CPS
context. Although the development of new SWoT approaches
and Wasm novelty projects is rising, many studies need to be
carried out before applying it in real production environments.

V. RELATED WORK

In the last years, several proposals present WebAssembly
as a quiet revolution of the Web [14] and the future of
the web development [18], mainly due to its performance,
flexibility, portability, and others aspects [3]. However, few
of them have been truly investigated the use of Wasm as
an embedded bytecode; Hardware Abstraction Layer; Trusted
Execution Environment or system interface to present it as
a Web Semantic Technologies to improve interoperability
between devices, with different architectures.

Putra [19] concluded on his work that WebAssembly mod-
ules can be used to support embedded system-based biomed-
ical sensors. He points out that Wasm has limitations to
compensate with its portability, but can be applied for achiev-
ing safety and effectiveness on biomedical sensor devices
development. The comparison performed by the author shows
superiority for WebAssembly between native implementation
on flashing operation time, managing to be almost 10 seconds
faster; the Wasm module file size can be smaller than native
file; and also a superior efficiency in the WebAssembly module
usage than in the native-only usage. It was also shown that
all WebAssembly modules execute longer than the native
implementation. However, according to him, since the Wasm
implementation may result in significantly smaller file size and

shorter installation time, the use of the Wasm module was
more sustainable during development.

Jacobsson and Willén [13] proposed the use of WebAssem-
bly as a virtual machine standard, not only for web browsers
but also for embedded systems. To demonstrate the usage
of their WebAssembly system, they connect the Texas In-
struments CC26x2R LaunchPad and their BLE stack Sim-
pleLink to a photoplethysmogram (PPG) sensor connected to
a Bluetooth Low Energy device. An advantage pointed out
by them is that WebAssembly implementation is platform-
agnostic, so they also have it working on Contiki-OS as well.
Using Wasm, they developed a software to extract the heart
rate and implements a simple signal processing application
to receive the raw sensor data. Due to the effectiveness of
WebAssembly, they claim it has enabled to run exactly the
same code in all parts of the complete wearable sensor system.
They also express that Wasm finally allows them to use one
single programming language and environment to program all
different parts of a system.

VI. THREATS TO VALIDITY

This research can be affected by different factors, either by
the results of other studies or internal factors that can weaken
or invalidate our findings. Based on that, we gathered these
factors to discuss in this section.

It is well known that, in software engineering, there is no
“silver bullet”, so it is in the vast amount of domains of Web
and either Cyber-Physical Systems development there is no
semantic technology that can cover all problems. Rourke [2]
presents many WebAssembly limitations as not having, at the
time of this work, important features like garbage collectors,
thread support, or a defined standardization process. In fact,
WebAssembly can be slower compared to native code (10%
to 55%) and has a substantial performance gap [20] due
to missing optimizations, code generation issues, and others
inherent to the WebAssembly platform.

We are well aware that the main threat to the validity of
this work is the discussion of the opportunities for applying
WebAssembly on embedded devices, although we haven’t
applied yet an experiment or apply Wasm directly in CPS
environment. The results obtained in the experiment carried
out in this work, for the purpose of performance comparison,
was applied in web test scenarios and enables us to infer
WebAssembly’s performance in heavy tasks such as image
processing. If we look at the demands in the context of edge
computing, the demand for such processing is getting closer
and closer to that carried out on IoT devices [21], but the threat
that the experiment carried out in this work was not applied
to an embedded device still holds, therefore, we still cannot
determine the differences in the results obtained.

To the best of our knowledge, specifically of WebAssembly
use in Cyber-Physical Systems, even with some limitations,
Wasm has code compiler performance similar to native code
and its general usage can be more efficient than in the native-
only usage. However, we must be aware that its performance



problems can be a key deterrent in IoT projects where this at-
tribute is a requirement, resulting in a major trade-off between
performance and portability.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the WebAssembly technology
by conducting an experiment and compared the execution of
algorithms’ performance in both their native environment and
web browsers. In addition, we discussed about the hypothesis
that a Wasm program could have similar performance of a
program compiled and executed on a native machine.

We first elaborate test scenarios in order to obtain a
database of relevant performance measurements. With this
data, statistical analyzes were carried out and concluded that
the hypothesis raised in this work could not be proved or
refuted. That is, because the results from the proof of concept
showed we achieved a similar performance to their native
version, considering the following performance metrics: pre-
processing, marking of faces and post processing. Based on the
obtained results, we can conclude that the Wasm has potential
to bring better performance to web applications, in addition,
Wasm is capable of taking not only computational power, but
a niche of computational solutions that were restricted to the
Desktop environment, such as complex applications running
on IoT devices in a Cyber-Physical Systems (CPS) context.

By conducting several bibliographical researches to under-
stand how Wasm can be applied and how it can contribute
to the context of CPS, we have finding several works that
corroborate with this hypothesis, and which also highlight
the limitations of this technology. We concluded that non-
web Wasm environment and its tools like WebAssembly
Micro Runtime and Wasm3 interpreter allows us to write the
same firmware for different devices and different architectures,
which leads us to a new hypothesis: by compiling a high-level
language to machine code for different processor architectures
(x64, x86, ARM) it makes Wasm binary files much smaller in
size (in Kb) and easier to execute, maintain and debug.

In this way, a future work would be to perform a formal
experiment to evaluate the pros and cons in therms of inter-
operability, portability and performance, in comparison to the
native development of a CPS embedded on a microcontroller.
We plan to: understand what caused the Haar feature-based
cascade classifiers run slower with WebAssembly in order to
determine points of improvement and its limitations; apply the
proposed use of Wasm3 and WASI as a Hardware Abstraction
Layer to an CPS system; and test the performance of a larger
set of algorithms that allows us to get better indication of
Wasm performance, not only on the web but also on embedded
devices.

ACKNOWLEDGMENT

We acknowledge that this work is a partial result of the stud-
ies performed on Cyber-Physical Systems innovation platform,
supported by non-profit private company Atlantic Institute.

REFERENCES

[1] Y. Dwivedi, M. Williams, A. Mitra, S. Niranjan, and V. Weerakkody,
“Understanding advances in web technologies: evolution from web 2.0
to web 3.0,” 2011.

[2] M. Rourke, Learn WebAssembly: build web applications with native
performance using Wasm and C/C++, 2018, oCLC: 1059521746.

[3] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing
the Web Up to Speed with WebAssembly,” in Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2017. New York, NY, USA: ACM, 2017,
pp. 185–200. [Online]. Available: http://doi.acm.org/10.1145/3062341.
3062363

[4] W3C. (2019) WebAssembly Core Specification. [Online]. Available:
https://www.w3.org/TR/wasm-core-1/

[5] LLVM, “Mirror of official llvm git repository located at
http://llvm.org/git/llvm. updated every five minutes.: llvm-mirror/llvm,”
2019, original-date: 2012-01-27T23:49:56Z. [Online]. Available:
https://github.com/llvm-mirror/llvm

[6] “WASI,” 2020, original-date: 2019-04-02T18:23:05Z. [Online].
Available: https://github.com/WebAssembly/WASI

[7] “wasm3,” 2020, original-date: 2019-10-01T17:06:03Z. [Online].
Available: https://github.com/wasm3/wasm3

[8] “Wasm micro runtime,” 2020, original-date: 2019-05-
02T21:32:09Z. [Online]. Available: https://github.com/bytecodealliance/
wasm-micro-runtime

[9] OpenCV. (2019) Face detection using haar cascades. [Online]. Available:
https://docs.opencv.org/4.1.0/d7/d8b/tutorial py face detection.html

[10] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja, and
K. Wasielewska, “Towards semantic interoperability between internet of
things platforms,” in Integration, interconnection, and interoperability
of iot systems. Springer, 2018, pp. 103–127.

[11] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng,
“Iot middleware: A survey on issues and enabling technologies,” IEEE
Internet of Things Journal, vol. 4, no. 1, pp. 1–20, 2016.

[12] A. J. Jara, A. C. Olivieri, Y. Bocchi, M. Jung, W. Kastner, and A. F.
Skarmeta, “Semantic web of things: an analysis of the application
semantics for the iot moving towards the iot convergence,” International
Journal of Web and Grid Services, vol. 10, no. 2-3, pp. 244–272, 2014.

[13] M. Jacobsson and J. Willén, “Virtual machine execution for wearables
based on webassembly,” in EAI International Conference on Body Area
Networks. Springer, 2018, pp. 381–389.

[14] A. Moller, “Technical Perspective: WebAssembly: A Quiet Revolution
of the Web,” Commun. ACM, vol. 61, no. 12, pp. 106–106, Nov. 2018.
[Online]. Available: http://doi.acm.org/10.1145/3282508

[15] M. Schoeberl, S. Korsholm, T. Kalibera, and A. P. Ravn, “A hardware
abstraction layer in java,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 10, no. 4, pp. 1–40, 2011.

[16] O. Mazhelis, E. Luoma, and H. Warma, “Defining an internet-of-things
ecosystem,” in Internet of Things, Smart Spaces, and Next Generation
Networking. Springer, 2012, pp. 1–14.

[17] A. Rhayem, M. B. A. Mhiri, and F. Gargouri, “Semantic web technolo-
gies for the internet of things: Systematic literature review,” Internet of
Things, p. 100206, 2020.

[18] M. Tyagi, M. Sharma, and P. Sharma, “The future of the web,” Available
at SSRN 3563679, 2020.

[19] R. P. Putra, “Implementation and evaluation of webassembly modules
on embedded system-based basic biomedical sensors,” 2019.

[20] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not so fast: analyzing
the performance of webassembly vs. native code,” in 2019 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 19), 2019, pp. 107–
120.

[21] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.


