
AtTune: A Heuristic based Framework for Parallel
Applications Autotuning

Hiago Mayk G. de A. Rocha1, Janaina Schwarzrock1, Monica M. Pereira2,
Lucas M. Schnorr1, Philippe Navaux1, Arthur F. Lorenzon3, Antonio Carlos S. Beck1

1Institute of Informatics – Federal University of Rio Grande do Sul – Porto Alegre, Brazil
2Department of Informatics and Applied Mathematics – Federal University of Rio Grande do Norte – Natal, Brazil

3Laboratory of Optimization Systems – Federal University of Pampa – Alegrete, Brazil
Email: {hmgarocha, jschwarzrock, schnorr, navaux, caco}@inf.ufrgs.br,

monicapereira@dimap.ufrn.br, aflorenzon@unipampa.edu.br

Abstract—Several aspects limit the scalability of parallel ap-
plications, e.g., off-chip bus saturation and data synchronization.
Moreover, the high cost of cooling HPC systems, which can
outweigh the cost of developing the system itself, has pushed the
parallel application’s execution to another level of requirements,
in terms of performance and energy. In this work, we propose
AtTune: a heuristic-based framework for tuning the number of
processes/threads and CPU frequency to optimize the parallel
applications’ execution. AtTune is transparent for the user,
independent of the input size, and it optimizes for different par-
allel programming models. We evaluated our proposed solution
considering five well-known kernels implemented in MPI and
OpenMP. Experimental results on two real multi-core systems
showed that AtTune improves up to 36%, 11%, and 32%
the energy efficiency, performance, and Energy-Delay Product,
respectively.

Index Terms—Automatic Tuning, Transparent Optimization,
Thread Throttling, DVFS, Thread-Level Parallelism, Energy-
efficiency

I. INTRODUCTION

The increasing number of processing resources in High-
Performance Computing (HPC) systems and the ability to
parallelize costly computations have made possible advance-
ments in diverse areas, such as medicine, bioinformatics, arti-
ficial intelligence, and weather and stock exchange forecasts.
However, the parallel environments and applications growing
complexity have been pushing their executions to another level
of performance and energy requirements [1], [2].

Several aspects can limit the scalability of parallel execu-
tion, such as off-chip bus saturation and data synchronization.
It means that not always using the maximum number of
processes or threads (processes/threads) will deliver the best
performance [3]. In the same way that HPC applications
require performance, they also need to save energy in their
executions. Many times, the costs related to energy supply
and cooling may outweigh the costs related to the hardware in
HPC/Cloud systems [2]. Hence, an approach to achieve even
higher performance over the constraint of power dissipation
and energy consumption is required [4].

A natural thought is giving to the users the option to adjust
these parallel applications’ non-functional requirements ac-
cords on their needs, e.g., optimizing for energy, performance,
or the trade-off between both, given by the energy-delay
product (EDP). This optimization is possible by adjusting
the number of processes/threads and applying the Dynamic

Voltage and Frequency Scaling (DVFS) technique to tune
the CPU frequency levels [4]. Adapting the number of pro-
cesses/threads may minimize energy consumption by reducing
the number of hardware components in the computation (e.g.,
functional units, cores, and cache memories). On the other
hand, the DVFS technique leverages time intervals of process
inactivity, commonly caused by I/O operations or memory
requests. Since the input voltage has quadratic influence in
dynamic power, a system supporting the DVFS technique can
take advantage of the CPU idleness (e.g., data-synchronization
or communication among processes/threads) to achieve cubic
power reduction [5].

In this work, we propose AtTune: a new framework for
tuning the number of processes/threads and CPU frequency
levels of parallel applications implemented with different
parallel programming models that run over HPC systems
environments. AtTune uses a three-phase heuristic algorithm
to reduce the search space by identifying the applications’
scalability and finding an optimized solution by applying a
binary search-based strategy. We evaluate our framework with
five kernels from the NAS Parallel Benchmark Suite [6].
Results on two real multi-core systems show that AtTune
achieves significant energy saving (up to 36%) and improves
up to 11% and 32% the performance and EDP when it
optimizes for each of them.

II. RELATED WORK

Several works have already proposed to optimize either the
number of processes/threads [3] or CPU frequency levels [7].
As AtTune optimizes both knobs, we focus on the works
that simultaneously optimize both processes/threads and CPU
frequency levels.

Li and Martinez [8] propose a heuristic to optimize OpenMP
applications. Their solution monitors the application execu-
tions and adjusts the number of threads and frequency levels
by running different optimization mechanisms.

An algorithm to optimize hybrid MPI+OpenMP applications
is proposed by Li et al. [9]. According to this approach,
the user instruments the source code with a system call for
each parallel region and MPI operation. The proposal uses a
prediction model to predict the best configuration at runtime.

LIMO is a dynamic system that monitors the application ex-
ecution and adjusts the TLP degree and CPU frequency levels



[10]. The approach monitors the application at runtime and
reduces the power consumption by disabling cores whenever
threads are not making progress and adjusting the frequency
levels of active cores.

Alessi et al. [11] propose OpenMPE, an OpenMP extension
designed for energy management. Using the OpenMPE, the
programmer instruments the source code inserting directives,
indicating parts of the code that can save energy.

In [12], Marathe et al. present Conductor, a system to
optimize the number of threads and frequency levels for
hybrid MPI+OpenMP applications. Conductor applies a local
search algorithm to find the best solution to reduce power
consumption with minimal execution time degradation.

Oliveira et al. [5] propose a framework that uses a Genetic
Algorithm to optimize the EDP. This framework modifies the
OpenMP runtime library. Also, the approach requires to run
the optimization process whenever the application’s input size
changes.

A. Our contributions

AtTune has the following advantages over the above-
presented works: (i) No programmer influence: our approach
does not require any modification on both the application’s
source code or runtime libraries. Only the work of [10]
provides that; (ii) Binary compatibility: AtTune does not
require recompiling the application, which makes our solution
to be applicable for legacy applications as well. Only the
work of [5] provides that; (iii) Generalization: our approach is
independent of the applications’ input size. Moreover, different
from some previous work that focuses only on OpenMP
or Pthreads, excluding the works of [9] and [12], AtTune
can be applied to different parallel programming models and
programming languages. Besides, it does not require any
hardware modification.

III. ATTUNE FRAMEWORK

In this section, we describe how AtTune works and explain
the proposed heuristic that supports it. We also analyze the
time complexity of the heuristic.

A. Overview

AtTune framework consists of an offline method for finding
an optimized solution for the degree of Thread (also Process)
Level Parallelism (TLP) and CPU frequency level for a given
parallel application. It allows the optimization for different
metrics, e.g., performance, energy consumption, or EDP (we
refer to this as the objective function). AtTune works as follow:
(i) the user first provides the inputs (a binary file, the hardware
configurations, a set of representative input sizes, and the
objective function). Note that the user can specify a specific
part of the entire target system that AtTune will perform
its optimization. Otherwise, AtTune automatically considers
all system’s cores and CPU frequency levels. (ii) Then, the
AtTune framework applies a search for the best configuration
of the TLP degree and CPU frequency level to optimize the
objective function (explained in Section III-B); and (iii) the
output of the AtTune framework is the best configuration
found for the given input set.

. . .

    freq.: max

. . .2 4 8  16      32              N 16              . . .              322                . . .              N

16    . . .     24      28     3216              . . .              32

    #pr/th: 26
1.2            . . .          2.301

16      . . .       26   . . .   32

3

9

6

promissing regionscalabilitypr/th search space

binary search binary search best #pr/th

binary search

1.2  ...    1.5     ...      2.301

freq. search space

1.2  ...    1.5     ...      2.301

best freq. level

Ph
as

e 
1

Ph
as

e 
2

Ph
as

e 
3

1 2

4 5

7 8

Fig. 1. Heuristic’s general idea.

For the AtTune’s search part, we proposed a heuristic
algorithm. However, this search part can be easily modified
to support any other search strategies, e.g., Local Search,
Genetic Algorithms, or other heuristics. The proposed heuristic
performs a three-phase search (see section III-B). It searches
for a given application’s best solution by considering its
execution with each input from the input set. AtTune performs
the heuristic once, but each search’s phase requires executing
the application a different number of times, depending on the
space exploration (i.e., number of available hardware threads,
CPU frequency levels, and the size of the input set), as
discussed in Section III-C. Next, we explain this main part
of our framework, which is our proposed heuristic.

B. Heuristic

We present the algorithmic idea of our proposed heuristic
in Figure 1. It consists of three phases:

• Phase1 works in the processes/threads (pr/th) search
space considering the maximum CPU frequency level (1).
This phase tests the parallel application’s scalability (2)
and identifies a promising region (3), i.e., a part of the
search space that has more potential to deliver optimized
solutions;

• Phase2 takes the promising region (4), yet considering
the maximum CPU frequency level, and applies a binary
search based algorithm (5) to find the best number of
processes/threads (6);

• Phase3 works in the frequency search space (7). This
phase takes the best number of threads found in the
previous one and applies another binary search variant
(8) to find the best CPU frequency level (9).

In the example of Fig. 1, the optimization search found that
the best solution is the execution with 26 processes/threads
and a frequency level of 1.5GHz. We present a detailed view
of how the heuristic works in Algorithms 1, 2, 3, and 4.

Algorithm 1 presents the Main flow of our heuristic. It
takes as input the metric to be optimized m, the application’s
executable e, a list containing the applications’ input set P
(a representative input set of the application to be optimized),
the considered number of system’s cores C, and the frequency
levels F . The heuristic performs the three phases in sequence.



Algorithm 1 Heuristic
Input: m ← Optimization metric,

e ← Application’s executable,
P ← InputSet{I1, I2, ..., Ik},
C ← Number of cores in the system,
F ← Freq{Fmin, ..., Fmax}.

Output: The best values of tbest ∈ [2, |P |] and fbest ∈ F .
1: linf , lsup,mbest ← Phase1(m, e, P,C, F [MAX])
2: tbest ← Phase2(m, e, P,C, F [MAX], linf , lsup,mbest)
3: fbest ← Phase3(m, e, P,C, F, tbest)
4: return tbest,fbest

Phase 1 and Phase 2 are called considering the maximum
frequency value F [MAX]. These phases optimize the number
of processes/threads, but they ensure the highest performance
potential by considering the highest frequency level. When
optimized for energy, a variant that considers the minimum
frequency level can be applied. For Phase 3, it optimizes the
CPU operating frequency level by executing the application
with the best number of processes/threads found by the previ-
ous phases. As a result, the algorithm returns the best solution
regarding the objective function m.

Phase 1 is described in Algorithm 2. Besides the inputs
m, e, P , and C, it also receives the maximum frequency
level of f . At the beginning, it is initialized the previous
tprev and current tcurr number of threads variables, and their
respective objective function values (tprev.m and tcurr.m).
While the number of evaluated threads is lower than the
considered number of cores, i.e., physical and logical cores,
tcurr < |C| and there is improvement in the objective func-
tion tprev.m > tcurr.m, the following steps are performed:
the number of processes/threads tcurr increases to the next
power of 2 regarding its previous value tprev; the program
is executed through all the input set elements p ∈ P i.e.,
each of them with different sizes, and the objective function
values e.g., energy, time, or EDP, are collected macc; the
collected objective function values are averaged, which repre-
sents the objective function value of current evaluated number
of processes/threads tcurr.m. In the end, Phase 1 returns a
promising region with the minimum and maximum number of
processes/threads indicated by tprev and tcurr, respectively.
Also, it results in the best objective function value found
mbest.

Phase 2 is presented in Algorithm 3. Besides the inputs m,
e, P , C, and f , it also receives the promising region with the
minimum and the maximum number of processes/threads to be
considered linf and lsup, and the best objective function value
found so far mbest. The procedure first checks if lsup.m =
mbest. If it is the case, the algorithm stalls because the applica-
tion is scalable, then the maximal number of processes/threads
will deliver the best objective function value. Otherwise, while
there exists elements not evaluated in the promising region
lsup − linf > 1, the following steps are performed: it is
identified the middle element in the region (lsup + linf )/2;
the program is executed through all the input set elements
p ∈ P and the objective function values are collected macc

and averaged mave, indicating the objective function value of
current evaluated number of processes/threads; the mave is

Algorithm 2 Phase1
Input: m ← Optimization metric

e ← Application’s executable,
P ← InputSet{I1, I2, ..., Ik},
C ← Number of cores in the system,
f ← Freq{Fmax}.

Output: Range of promising proc/thread values [linf , lsup] and the
best objective function value found so far mbest.

1: tprev , tcurr ← 1
2: tprev.m ← infinity
3: tcurr.m ← 0
4: while (tcurr < |C| and tprev.m > tcurr.m) do
5: tprev ← tcurr
6: tcurr ← Power2(tprev)
7: macc ← 0
8: for p ∈ P do
9: macc ← macc + Program(m, e, p, tcurr, f)

10: end for
11: tprev.m ← tcurr.m
12: tcurr.m ← macc/|P |
13: end while
14: mbest ← min(tprev.m, tcurr.m)
15: return tprev , tcurr , mbest

Algorithm 3 Phase2
Input: m ← Optimization metric,

e ← Application’s executable,
P ← InputSet{I1, I2, ..., Ik},
C ← Number of cores in the system,
f ← Freq{Fmax},
linf ← Minimum number of threads,
lsup ← Maximum number of threads,
mbest ← Best objective function value found so far.

Output: The best number of procs/threads med.
1: if (lsup.m = mbest) then
2: return lsup
3: end if
4: med ← lsup
5: while (lsup − linf > 1) do
6: med ← (lsup + linf )/2
7: macc ← 0
8: for p ∈ P do
9: macc ← macc + Program(m, e, p,med, f)

10: end for
11: mave ← macc/|P |
12: if (mave < mbest) then
13: mbest ← mave

14: linf ← med
15: else
16: lsup ← med
17: end if
18: end while
19: return med

compared with the best objective function value found mbest,
and if mave is lower than that, it means we should consider the
superior part of the searching region [med, lsup]. Otherwise,
we should consider the inferior part [linf ,med]. The procedure
returns the number of threads med that results in the best
objective function value being optimized m.

Phase 3 is detailed in Algorithm 4. Besides the inputs m, e,
P , C, and F it also has the best number of processes/threads
tbest. Initially, it is declared the minimum min and maximum
max available frequency levels of the target system. The
med variable is assigned as the maximal frequency because



Algorithm 4 Phase3
Input: m ← Optimization metric,

e ← Application’s executable,
P ← InputSet{I1, I2, ..., Ik},
C ← Number of cores in the system,
F ← {Fmin, ..., Fmax},
tbest ← Best number of procs/threads.

Output: The best frequency level fbest.
1: min ← F [MIN ]
2: max ← F [MAX]
3: med ← F [MAX]
4: while (max−min > 1) do
5: med ← (max+min)/2
6: macc ← 0
7: for p ∈ P do
8: macc ← macc + Program(m, e, p, tbest,med)
9: end for

10: mave ← macc/|P |
11: if (mave < tbest.m) then
12: tbest.m ← mave

13: min ← med
14: else
15: max ← med
16: end if
17: end while
18: return med

if the system has only one frequency level, no optimization is
needed, i.e., in that case, the algorithm indicates the maximum
frequency as the best. The program is executed through all the
input set elements p ∈ P . The objective function values are
collected macc and averaged mave. The heuristic compares
mave with the objective function value of the best number of
processes/threads found considering the maximal frequency
level tbest.m. If mave is lower than that, it means we should
consider the superior part of the searching region [med,max].
Otherwise, we should consider the inferior part [min,med].
The procedure returns the frequency level of med, resulting
in the best objective function value m.

C. Time Complexity Analysis
Considering the tackled problem with the P application’s

inputs, the C system’s cores, and F CPU frequency levels,
an exhaustive search requires a cubic asymptotic time over
the inputs sets, i.e., O(|P | × |C| × |F |). The time complexity
of our proposed heuristic depends on each phase: Phase 1 is
O(log(|C|) × P ); Phase 2 is O(log(lsup − linf ) × P ); and
Phase 3 is O(log(|F |)×P ). Therefore, putting it all together,
the time complexity of our heuristic is given by: O[(log(|C|)+
log(lsup − linf ))× P + log(|F |)× P ].

IV. METHODOLOGY

In this section, we describe the methodology used in our
experiments. Specifically, we present the used benchmarks,
system configurations, and framework implementation details.

A. Benchmarks
We used five kernels from the NAS Parallel Benchmark

Suite version 3.4.1 implemented in both MPI and OpenMP
[6]: Integer Sort (IS), Embarrassingly Parallel (EP), Conjugate
Gradient (CG), Multi-Grid on a sequence of meshes (MG), and

TABLE I
SYSTEMS CHARACTERISTICS.

Processor Intel Xeon CPU E5-2640 v2 AMD Ryzen 9 3900X
# Cores 2×16 12
# Threads 32 24
CPU Freq. Levels 1.2 - 2.001 GHz (10 levels) 2.2 - 3.8 GHz (3 Levels)
L1 cache 16×32KB 12x32KB
L2 cache 16×256KB 12x512KB
L3 cache 20MB 16MB
RAM 64 GB 32GB

Discrete 3D fast Fourier Transform (FT). Most of them are in
FORTRAN (only the IS is in C). We compile them with GNU
Fortran 8.3.0 and GCC 8.3.0, using the -O3 optimization flag.
For the MPI implementations, we used the OpenMPI 3.1.3
version. For evaluation, we considered the kernels’ inputs of
A, B, and C sizes.

B. Execution environment

We summarize in Table I the characteristics of the target
systems. We consider two multicore architectures: An Intel
system that can concurrently execute up to 32 threads and
has 10 distinct CPU frequency levels, and an AMD system
capable to run concurrently up to 24 threads and has 3 distinct
CPU frequency levels. The systems used the Ubuntu Operating
System with kernel v. 4.19 and v. 5.3 for Intel and AMD
systems, respectively.

For the experiments, we disabled the NUMA balance
effects and the turbo boost frequency. We also bound
the processes/threads in each core (to avoid threads mi-
gration) and mapped them in a round-robin fashion. For
that we used the –map-by socket and –bind-to core pa-
rameters of the mpirun and OMP PROC BIND=TRUE and
GOMP CPU AFFINITY=“0-31” values to these OpenMP
environment variables.

For comparison, we consider as baseline the parallel appli-
cation running with the maximum number of processes/threads
at the maximum frequency level. We also compare our pro-
posed solution with the parallel application running with
the maximum number of processes/threads and using the
ondemand DVFS governor that dynamically adjust frequency
levels. We executed each experiment five times, optimizing for
each metric: energy, time, and EDP. We averaged the results
(standard deviation of ∼1%).

C. AtTune Implementation

We implemented our framework using C++, compiled with
g++ v. 8.3.0. AtTune’s heuristic performs the execution of
the parallel applications by systems calls. To optimize the
number of MPI processes, AtTune uses the -np parameter of
the mpirun. For OpenMP applications, the AtTune framework
uses the OMP NUM THREADS environment variable. To
optimizing the CPU frequency, AtTune identifies the available
frequency levels and sets it according to our heuristic’ steps.

To collect the execution time and energy consumption of
each kernel, we embedded in the AtTune implementation
the std::chrono::high resolution clock C++ object; the Intel
Running Average Power Limit (RAPL) on Intel system and the



Application Power Management (APM) on AMD system. For
the energy, we consider the sum of the energy consumed by
the DRAM and core domains, i.e., CPU and cache memories.

V. RESULTS

In this section, we describe the results obtained by the
AtTune framework. Figures 2 and 3 present the values of
energy consumption, execution time, and EDP for all appli-
cations, in both implementations (MPI and OpenMP) running
on Intel and AMD systems. The results are normalized by
the baseline, i.e., the maximum number of processes/threads
and maximum frequency level. In Table II we summarize the
solutions of the best number of processes/threads (#P and #T)
and CPU frequency level (Freq.), in GHz, obtained for the
five executions of our framework.

On average, MPI implementations provided results of en-
ergy, time, and EDP worse than OpenMP in 32%, 57%, and
138% on Intel system, and 36%, 38%, and 114% on AMD.
However, MPI versions take more advantage of adjusting the
number of processes and CPU frequency levels (see solutions
in Table II).

By running the selected MPI kernels on a single node makes
them using the shared memory to communicate processes.
The MPI uses the vader Byte Transfer Layer (BTL) mech-
anism to perform the communication [13] (as we are using
the OpenMPI 3.1.3 version), which provides small message
latency and optimized support for zero-copy transfers. Despite
that, communication among MPI processes requires explicit
buffers declaration and explicit send/receive calls, which is
more costly than a simple memory accesses (load and store)
done by OpenMP threads.

When comparing the optimization performed on Intel
(Fig.2) and AMD (Fig.3) systems, the optimization on AMD
achieved more improvements over the baseline (and also over
the kernels’ executions using the ondemand governor). Several
factors imply these results, mainly the architectural difference
between the systems, i.e., number of cores, CPU frequency
levels, cache size, and main memory size. One of them is the
number of CPU frequency levels and the difference between
each level. In the Intel system, changing the frequency level

TABLE II
SOLUTIONS FOUND BY OUR PROPOSED HEURISTIC.

Intel AMD
MPI OpenMP MPI OpenMP

Opt. for Kernel #P Freq. #T Freq. #P Freq. #T Freq.

Energy

IS 32 1.8 1.6 32 2.0 2.001 8 2.8 24 2.8
EP 32 1.9 2.0 32 1.9 2.0 24 2.8 24 2.8
CG 16 1.5 1.6 16 2.001 2 4 2.8 4 2.8
MG 8 1.6 8 1.6 2 2.8 2 2.8
FT 16 2.001 32 2.001 4 2.8 8 6 2.8

Time

IS 32 2.0 2.001 32 2.0 2.001 16 18 20 3.8 24 3.8
EP 32 2.0 2.001 32 2.0 2.001 24 3.8 24 3.8
CG 16 2.0 2.001 32 2.0 2.001 4 5 6 7 3.8 10 3.8
MG 8 2.0 16 1.9 2.0 2.001 8 3.8 2 3.8
FT 16 2.0 2.001 32 2.0 2.001 8 9 10 3.8 10 3.8

EDP

IS 32 2.0 2.001 32 2.0 2.001 8 3.8 24 2.8
EP 32 2.0 32 2.0 24 3.8 24 3.8
CG 16 2.0 2.001 32 16 2.0 2.001 4 2.8 4 2.8
MG 8 2.0 2.001 8 2.0 2.001 2 2.8 2 2.8
FT 16 2.0 2.001 32 2.001 4 3.8 8 2.8

implies increasing or reducing at least 1MHz the current
frequency. On the other hand, for the AMD system, changing
the frequency level implies increasing or reducing at least
1GHz the current frequency. This difference in CPU frequency
levels makes our proposal more effective in the AMD system,
mainly when our strategy optimizes frequencies, as we can
see in Table II.

CG, MG, and FT present more potential for optimization
by adjusting the number of processes/threads and CPU fre-
quency levels. These kernels are memory-bound, then due to
the OpenMP implementations perform less memory access
than MPI ones, they present more scalability than the MPI
implementations. We can see that by observing in Table
II, our heuristic tends to find solutions with more OpenMP
threads than MPI processes. From these three kernels, the MG
is the one that takes more advantages of that optimization.
Notice that the MG kernel presents a lower number of pro-
cesses/threads, whatever the optimized metric, and it presents
lower frequency levels when optimized for energy. In MG, our
proposed approach optimizes by up to 49%, 33%, and %64%
the energy (Fig. 3d), execution time (Fig. 2b), and EDP (Fig.
2c), respectively.

IS and EP are CPU-bound and more scalable kernels than
the others. Therefore, as observed in Table II, they take more
advantage of more number of processes/threads. Due to the
fact that IS execution performs more memory accesses than
EP, when our heuristic optimizes the MPI implementation by
energy, it reduces the CPU frequency to intermediate values,
i.e., 1.6 - 1.8 GHz and 2.8 GHz on Intel and AMD systems (see
IS optimized for energy (Opt. for) in Table II). The adjust in
the IS’s frequency level incurs in reducing memory accesses
intensity, which impacts the amount of communication per-
formed by MPI processes by a time slice. Our heuristic allows
us to optimize the IS kernel in up to 25%, 2%, 12% the energy,
execution time, and EDP on the AMD system. Note that, on
Intel system, the IS behaves roughly the same as the baseline,
being IS better only in 1% when we optimize it for EDP (Fig.
2c).

In general, averaging all applications’ results (with geomet-
rical mean), for the Intel system, AtTune reduces energy in
up to 17% (Fig. 2a) and improves performance in up to 11%
(Fig. 2b). On AMD system, AtTune reduces energy in up to
36% (Fig. 3a) and improves performance in up to 6% (Fig. 3b).
Regarding the EDP results, our approach reduces in up to 25%
and 32% on Intel and AMD systems, respectively.

As a summary, over the considered baseline, AtTune
framework provides significant energy-saving, performance
improvement and significant balancing between them, as
shown in the EDP results (Figs. 2c,2f and Figs. 3c,3f). Besides,
although AtTune benefits both MPI and OpenMP implemen-
tations, the results are more expressive when we optimize the
MPI ones.

VI. CONCLUSION

In this work, we proposed AtTune: a heuristic-based frame-
work to optimize the parallel application execution by tuning
the number of processes/threads and the CPU frequency levels.
Experimental results on two real multi-core systems showed



IS EP CG MG FT GMEAN
0.25

0.50

0.75

1.00

1.25

No
rm

. E
ne

rg
y

Heuristic MPI - Ondemand

(a) Optimizing for energy.
IS EP CG MG FT GMEAN

0.25

0.50

0.75

1.00

1.25

No
rm

. T
im

e

Heuristic MPI - Ondemand

(b) Optimizing for execution time.
IS EP CG MG FT GMEAN

0.25

0.50

0.75

1.00

1.25

No
rm

. E
DP

Heuristic MPI - Ondemand

(c) Optimizing for EDP.

IS EP CG MG FT GMEAN
0.25

0.50

0.75

1.00

1.25

No
rm

. E
ne

rg
y

Heuristic OMP - Ondemand

(d) Optimizing for energy.
IS EP CG MG FT GMEAN

0.25

0.50

0.75

1.00

1.25

No
rm

. T
im

e

Heuristic OMP - Ondemand

(e) Optimizing for execution time.
IS EP CG MG FT GMEAN

0.25

0.50

0.75

1.00

1.25

No
rm

. E
DP

Heuristic OMP - Ondemand

(f) Optimizing for EDP.

Fig. 2. Result of Energy consumption, Execution time, and Energy-Delay Product (EDP) on Intel system. The results were normalized by the baseline.

IS EP CG MG FT GMEAN
0.25

0.50

0.75

1.00

1.25

No
rm

. E
ne

rg
y

Heuristic MPI - Ondemand

(a) Optimizing for energy.
IS EP CG MG FT GMEAN

0.25

0.50

0.75

1.00

1.25

No
rm

. T
im

e

Heuristic MPI - Ondemand

(b) Optimizing for execution time.
IS EP CG MG FT GMEAN

0.25

0.50

0.75

1.00

1.25

No
rm

. E
DP

Heuristic MPI - Ondemand

(c) Optimizing for EDP.

IS EP CG MG FT GMEAN
0.25

0.50

0.75

1.00

1.25

No
rm

. E
ne

rg
y

Heuristic OMP - Ondemand

(d) Optimizing for energy.
IS EP CG MG FT GMEAN

0.25

0.50

0.75

1.00

1.25

No
rm

. T
im

e

Heuristic OMP - Ondemand

(e) Optimizing for execution time.
IS EP CG MG FT GMEAN

0.25

0.50

0.75

1.00

1.25

No
rm

. E
DP

Heuristic OMP - Ondemand

(f) Optimizing for EDP.

Fig. 3. Result of Energy consumption, Execution time, and Energy-Delay Product (EDP) on AMD system. The results were normalized by the baseline.

that AtTune improves up to 36%, 11%, and 32% the energy ef-
ficiency, performance, and Energy-Delay Product, respectively.
As future work, we intend to extend the AtTune framework
to optimize hybrid MPI+OpenMP applications.

VII. ACKNOWLEDGMENT

This study was financed in part by the CAPES - Fi-
nance Code 001, FAPERGS and CNPq. Some experiments
in this work used the PCAD infrastructure, http://gppd-
hpc.inf.ufrgs.br, at INF/UFRGS.

REFERENCES

[1] A. F. Lorenzon, M. C. Cera, and A. C. S. Beck, “On the influence of
static power consumption in multicore embedded systems,” in ISCAS.
IEEE, 2015, pp. 1374–1377.

[2] P.-F. Dutot, Y. Georgiou, D. Glesser, L. Lefevre, M. Poquet, and I. Rais,
“Towards energy budget control in hpc,” in CCGRID. IEEE, 2017, pp.
381–390.

[3] A. F. Lorenzon, C. C. De Oliveira, J. D. Souza, and A. C. S. Beck,
“Aurora: Seamless optimization of openmp applications,” TPDS, vol. 30,
no. 5, pp. 1007–1021, 2018.

[4] A. F. Lorenzon and A. C. S. Beck Filho, Parallel Computing Hits the
Power Wall: Principles, Challenges, and a Survey of Solutions. Springer
Nature, 2019.

[5] C. C. De Oliveira, A. F. Lorenzon, and A. C. S. Beck, “Automatic tuning
tlp and dvfs for edp with a non-intrusive genetic algorithm framework,”
in SBESC. IEEE, 2018, pp. 146–153.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” IJSA, vol. 5, no. 3, pp.
63–73, 1991.

[7] E. L. Padoin, M. Diener, P. O. Navaux, and J.-F. Méhaut, “Managing
power demand and load imbalance to save energy on systems with
heterogeneous cpu speeds,” in SBAC-PAD. IEEE, 2019, pp. 72–79.

[8] J. Li and J. F. Martinez, “Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in HPCA, 2006. IEEE,
2006, pp. 77–87.

[9] D. Li, B. R. de Supinski, M. Schulz, K. Cameron, and D. S. Nikolopou-
los, “Hybrid mpi/openmp power-aware computing,” in IPDPS. IEEE,
2010, pp. 1–12.

[10] G. Chadha, S. Mahlke, and S. Narayanasamy, “When less is more (limo):
controlled parallelism for improved efficiency,” in CASES, 2012, pp.
141–150.

[11] F. Alessi, P. Thoman, G. Georgakoudis, T. Fahringer, and D. S.
Nikolopoulos, “Application-level energy awareness for openmp,” in
IWOMP. Springer, 2015, pp. 219–232.

[12] A. Marathe, P. E. Bailey, D. K. Lowenthal, B. Rountree, M. Schulz,
and B. R. de Supinski, “A run-time system for power-constrained hpc
applications,” in HiPC. Springer, 2015, pp. 394–408.

[13] S. K. Gutierrez, N. T. Hjelm, M. G. Venkata, and R. L. Graham,
“Performance evaluation of open mpi on cray xe/xk systems,” in HOTI.
IEEE, 2012, pp. 40–47.


