
An Analysis of the Implementation of
Edge Detection Operators in FPGA

Douglas A. Santos , Daniel Zolett , Mateus Belli , Felipe Viel , and Cesar A. Zeferino
Laboratory of Embedded and Distributed Systems – LEDS

University of Vale do Itajaı́ – UNIVALI
Itajaı́ – SC, Brazil

{douglasas, daniel.zolett, mateusbelli}@edu.univali.br, {viel, zeferino}@univali.br

Abstract— Computer vision systems have several stages, and
one of the operators used in these systems is the edge detection
filter. High-performance computing is required in many applica-
tions and stages of computer vision systems, and many designs use
FPGA technology to improve performance and decrease power
consumption. In this context, this work presents an analysis of five
edge detection filters synthesized to FPGA, including Laplacian,
Roberts, Prewitt, Sobel, and Canny. In the experiments, we
compared the hardware implementations with software versions
to identify the impact of fixed-point representation on the quality
of the output images. We have also assessed metrics regarding
performance, silicon costs, and energy consumption. The results
obtained show that the Laplacian filter has the lowest costs, while
the Canny operator provides the best output image at the price
of much higher silicon costs and energy consumption.

Index Terms—Image Processing, Computer Vision, Edge De-
tection, Hardware Accelerator, FPGA.

I. INTRODUCTION

The evolution of computing systems made possible the
development of new applications. Among the emerging appli-
cations, we can highlight those using computer vision systems
such as unmanned underwater vehicles [1], 3D environment
mapping [2], and stereo image processing for robots [3]. A
growing area of research that has a high interest in fast image
processing at low cost is that of autonomous electric vehicles,
as evidenced in [4]. These applications often demand solutions
that fulfill performance and energy consumption requirements,
primarily when they are used in systems that rely on battery
power. In this sense, FPGA (Field-Programmable Gate Array),
combined with fixed-point arithmetic, have been employed
as a promising approach to fulfill all these requirements,
while providing design flexibility and meeting time-to-market
constraints.

Computer vision systems apply edge detection algorithms
to identify the boundaries of objects in an image in the early
stages of processing [5]. Edge detection is an elementary
operation in low-level image processing [6] and, therefore,
the search for efficient implementations becomes recurrent.
In view of this, several filters have been proposed for edge

This work was supported by CAPES – the Brazilian Federal Agency for
Support and Evaluation of Graduate Education – Finance Code 001 and
CNPq – the Brazilian National Council for Scientific and Technological
Development – Processes 315287/2018-7 and 436982/2018-8.

detection, and the implementation of them in hardware must
find a trade-off to fulfill the application requirements (i.e.,
image quality, performance, power budget, and silicon costs).

Some examples of hardware-based implementation of edge
detection filters are reported in the literature. In [7]–[10], the
authors implemented Sobel, Roberts, Prewitt, LoG (Lapla-
cian of Gaussian), and Canny filters on FPGA, and have
only analyzed their silicon costs. Other studies [7] [10] also
compared the quality of the images resulted from similar
implementations in FPGA. Few works also evaluated the
energy costs of edge detection filters, which is a crucial metric
for embedded computer vision applications. For instance, the
authors of [9] and [11] evaluated the energy consumption of
hardware implementations of Canny filters, while the authors
of [12] analyzed similar implementations of Sobel filter in
FPGA. However, none of these works performed an analysis
of different filters to compare their energy consumption.

In light of the context above, this work describes a study
that analyzes the energy and silicon costs of hardware imple-
mentations of Laplacian, Roberts, Prewitt, Sobel, and Canny
filters, also evaluating their performance and the quality of
their output images. The results obtained allow identifying the
relationship between the different design metrics and provide
information for further implementations of computer vision
systems. Therefore, the main contribution of this paper relies
on the evaluation of FPGA-based implementations of edge
detection operators in FPGA, applying a complete set of
metrics usually employed in hardware designs.

The remainder of this paper is organized as follows. Sec-
tion II describes the experimental setup used in this work,
presenting the materials and methods employed, as well as
the architecture of the edge detection filters implemented
in FPGA. Following, Section III presents and discusses the
experimental results and Section IV concludes with the final
remarks.

II. EXPERIMENTAL SETUP

A. Materials and methods

This study evaluates software and hardware implementa-
tions of Laplacian, Roberts, Prewitt, Sobel, and Canny edge
detection operators. We first implemented each operator using
Python with floating-point representation to serve as a baseline

https://orcid.org/0000-0002-6502-4682
https://orcid.org/0000-0002-9107-7702
https://orcid.org/0000-0002-0484-6340
https://orcid.org/0000-0002-0972-2160
https://orcid.org/0000-0003-3039-4410


to specify the hardware implementations. We also used the
software implementations processing a 220×220 grayscale
Lena image to help us choose the number of bits required
to represent each pixel in the fixed-point arithmetic of the
hardware implementations. Our goal was to find a trade-off
between the costs and the quality of the output image. After
that, we described each operator in VHDL using fixed-point
arithmetic for synthesis in FPGA. It is worth noting that we
applied the convolution kernels most used in literature [13]–
[15] – i.e., a 2×2 kernel for Roberts and 3×3 kernels for the
other filters.

For evaluation, we employed images from the Berkeley
Segmentation Dataset and Benchmark (BSDS500) [16], which
contains 500 481×321 RGB images (300 for training and 200
for testing). This data set is used in other works that implement
edge detection algorithms [17]–[21]. To evaluate the quality
of the image resulting from the processing performed by the
hardware implementations, we employed ModelSim Altera
Starter Edition to simulate the execution of each operator.
We then used the complex wavelet structural similarity (CW-
SSIM) index [22] to quantify the similarity between the
processing of the images on software and hardware. According
to [22], it is possible to categorize a pair of images as different
if the CW-SSIM index is below 0.6, and highly similar if it is
greater than 0.9.

To assess the silicon and energy costs, we utilized the set
of tools available within the Intel® Quartus® Prime software
suite. All the synthesis and power analyses were carried out
for the Cyclone V SoC 5CSEMA6F31A7 device.

It is worth noting that a comparison between FPGA and
GPU implementations is beyond this work scope. Evidence
from [11] and [23] proves that edge detection algorithms have
a lower energy cost in FPGA, although GPU results are better
when considering quality metrics.

B. Hardware design

The main block used for all the implementations is the slid-
ing window, which is responsible for temporarily storing the
input pixels and outputting valid windows. The input pixels go
to the delay line block, which moves the pixels among registers
to generate the valid windows; a controller is necessary to
define when the window is valid. Fig. 1 depicts the structure of
the sliding window block. It comprises the delay line, registers
to count the current pixel, and comparators to identify when
the window is valid. The registers are incremented under the
command of the controller. In Fig. 1, the lowercase labels are
the input and output signals of the datapath, and the uppercase
tags are constants defined at synthesis time and depend on the
image size.

Fig. 2 presents the diagram block for the Gradient filters.
The input image is convolved with the Gx and Gy masks
separately. We have employed this architecture to all the
Gradient filters by changing only the convolution kernel. As
the Roberts filter does not consider the central pixel, we chose
the upper left pixel to play this role in this case.

The Canny filter uses the gradient method. However, it
differs from the Gradient filters because it is a multi-stage
algorithm. As a result, the Canny filter has high computational
complexity, taking significantly longer to process an image.
The multiple stages attenuate image noise and provide a
more accurate edge detection [13]. These additional features
make the Canny filter perform better than the Gradient filters,
especially when processing noisy images.

Fig. 3 depicts the diagram block of the Canny filter. The
image initially enters the Gaussian filter for noise reduction.
The Sobel filter calculates the magnitude and direction of the
gradient, and Theta block finds the direction of the gradient.
Next, the Suppress block sets the gradient direction by taking
into account the outputs of Normalize and Theta blocks. The
Threshold block identifies whether the magnitude of the pixel
is more significant than its neighbors in the gradient direction.
Based on previously defined thresholds, the output pixel is
then marked as an edge or background. Finally, the Hysteresis
block removes any weak edge. It is worth noting that Canny
differentiates itself from the Gradient filters because it applies
the Suppress, Threshold, and Hysteresis steps [15]. The output
image produced by Canny is binarized, simplifying processing
in further steps of computer vision systems and reducing the
image size. As Canny has a noise-removal stage (the Gaussian
filter), it is less sensitive to noise than the other filters analyzed
in this work.

III. EXPERIMENTAL RESULTS

Initially, we simulated the hardware processing of a
220×220 grayscale Lena image to identify the data word
configuration (the sizes of the integer and fractional parts)
to obtain a similarity (CW-SIMM index) greater than 0.8.
The similarity index was obtained by comparing the images
processed by software (using double-precision floating-point
representation) with the images obtained after the simulation
of the models described in VHDL (using a fixed-point repre-
sentation of different sizes for each filter).

As Table I shows, all operators were configured with
eight fractional digits. The number of integer digits varied
according to the complexity of the operations performed and
need for preventing overflow. The Gradient filters achieved
a similarity between 0.990 and 0.999, while Canny obtained
0.876 with 22 integer bits (the highest similarity obtained)
and 0.846 with 10 integer bits. These results are due to
theta calculation, which is performed by the two-argument
arctangent function between the results of the X and Y
convolutions – i.e., atan2(x, y). The implementation of this
function was carried out using the COordinate Rotation DIgital
Computer (CORDIC) technique [24]. CORDIC performs sev-
eral iterations to calculate the angle, and our implementation
executes twenty pipeline iterations. As a result, errors caused
by convolutions along with theta calculation error cause a
loss of accuracy in some situations. Although the Q22.8
configuration produced a higher similarity index, we chose
to use the Q10.8 configuration to reduce silicon overhead and
energy consumption.



Fig. 1. Sliding Window block.

Fig. 2. Gradient filters architecture.

Fig. 3. Canny filter architecture.

TABLE I
SIMILARITY AMONG THE SOFTWARE-AND HARDWARE-BASED

IMPLEMENTATIONS FOR THE PROCESSING OF THE LENA IMAGE

Q4.8
Laplacian

Q2.8
Roberts

Q2.8
Prewitt

Q4.8
Sobel

Q10.8
Canny

Q22.8
Canny

0.998 0.998 0.990 0.999 0.876 0.846

To evaluate the silicon costs, performance, and energy,
we used the BSDS500 test images converted to grayscale.
Tables II–IV present the results obtained. Silicon costs are
expressed by the occupancy of resources of the FPGA. The
performance metrics include the maximum operating fre-
quency, the latency for processing a single 481×321 grayscale
image, and the throughput. The power and energy consumed
were obtained using the Intel® Quartus® Prime PowerPlay tool
and the switching activity files obtained from the simulation
of all operators operating at 100 MHz. These simulations
comprised the execution of each operator when processing the
images of the data set for 100ms. As expected, the Canny filter

had the highest silicon and energy costs. On the other hand,
all the Gradient filters had similar power consumption levels
when operating at 100 MHz, with Roberts having the lowest
silicon cost.

TABLE II
SILICON COSTS

Filter ALUTs FFs Memory
(bits) DSPs

Q4.8 Laplacian 158 189 11,472 0
Q2.8 Roberts 219 426 478 1
Q2.8 Prewitt 326 547 954 1
Q4.8 Sobel 451 681 11,448 1
Q10.8 Canny 3,882 62,402 4,385,229 6

TABLE III
PERFORMANCE METRICS

Filter Fmax
(MHz)

Latency
(cycles)

Latency
(ms)

Throughput
(frames/s)

Q4.8 Laplacian 130 154,401 1.188 845
Q2.8 Roberts 181 154,425 0.853 1,175
Q2.8 Prewitt 146 154,425 1.058 950
Q4.8 Sobel 104 154,425 1.485 679
Q10.8 Canny 107 305,663 2.857 352

TABLE IV
POWER AND ENERGY METRICS*

Filter
Static
Power
(mW)

Dynamic
Power
(mW)

Total
Power
(mW)

Energy
per pixel

(nJ)

Q4.8 Laplacian 411.33 5.92 434.82 4.35
Q2.8 Roberts 411.32 5.72 433.77 4.34
Q2.8 Prewitt 411.34 8.62 437.92 4.38
Q4.8 Sobel 411.38 11.21 441.18 4.41
Q10.8 Canny 420.25 600.85 1034.98 20.49

*Both operators operating at 100 MHz.



Finally, we calculated the average CW-SIMM for the
BSDS500 images processed by each operator. Table V presents
the results obtained. We can observe that the Gradient filters
produced output images highly similar to the images produced
by their software implementations. Canny, on the other hand,
has obtained a lower similarity with its software implemen-
tation. We consider that obtaining a higher similarity index
would require employing internal floating-point units, which
would imply an even higher silicon and energy overheads.

TABLE V
AVERAGE SIMILARITY AMONG THE SOFTWARE-AND HARDWARE-BASED

IMPLEMENTATIONS FOR THE PROCESSING OF BSDS500 DATASET

Q4.8
Laplacian

Q2.8
Roberts

Q2.8
Prewitt

Q4.8
Sobel

Q10.8
Canny

0.986 0.989 0.943 0.988 0.759

Fig. 4 and 5 show the results of the processing of some
images on software and hardware. As we can see, Canny is
the filter that better detects the edges of the images. Also,
we can note that the hardware implementations can visually
produce results that are visually similar to those obtained from
their software implementations.

IV. CONCLUSIONS

This work evaluated the performance, costs, and quality of
hardware-based edge detection filters. Results showed that the
Gradient operators have lower costs than the Canny filter, but
the latter generates the best output image, with sharper and
thinner edges. As the silicon and energy costs of the Canny
filter are much higher than those of the Gradient filters, we
consider that it is worthwhile in cases where a better output
is needed, and its higher energy consumption is acceptable.

The results obtained point out that the different operators
could be applied in dynamically reconfigurable systems to
enable the selection of the architecture that best fits the
constraints. For instance, it is useful to tradeoff quality and
energy to save battery in mobile computer vision systems.

As future work, we intend to use Otsu method [25] to define
the threshold and improve the quality of the Canny filter. We
also intend to extend this study by integrating the filters in a
computer vision system to evaluate their impact on the system
metrics.

REFERENCES

[1] A. Manzanilla, S. Reyes, M. Garcia, D. Mercado, and R. Lozano,
“Autonomous navigation for unmanned underwater vehicles: Real-time
experiments using computer vision,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 1351–1356, Apr. 2019.

[2] S. Asaly, B. Ben-Moshe, and N. Shvalb, “Accurate 3D mapping algo-
rithm for flexible antennas,” Int. J. of Antennas and Propagation, vol.
2018, 2018.

[3] C. Ttofis, C. Kyrkou, and T. Theocharides, “A low-cost real-time
embedded stereo vision system for accurate disparity estimation based
on guided image filtering,” IEEE Trans. on Computers, vol. 65, no. 9,
pp. 2678–2693, Sep. 2016.

[4] M. Yih, J. M. Ota, J. D. Owens, and P. Muyan-Özçelik, “FPGA versus
GPU for speed-limit-sign recognition,” in 2018 21st Int. Conf. on
Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 843–850.

[5] P. Ganesan and G. Sajiv, “A comprehensive study of edge detection for
image processing applications,” in 2017 Int. Conf. on Innovations in
Information, Embedded and Communication Systems (ICIIECS), Mar.
2017, pp. 1–6.

[6] M. Mittal, A. Verma, I. Kaur, B. Kaur, M. Sharma, L. M. Goyal, S. Roy,
and T. Kim, “An efficient edge detection approach to provide better edge
connectivity for image analysis,” IEEE Access, vol. 7, pp. 33 240–33 255,
2019.

[7] G. B. Reddy and K. Anusudha, “Implementation of image edge detection
on FPGA using XSG,” in 2016 Int. Conf. on Circuit, Power and
Computing Technologies (ICCPCT), Mar. 2016, pp. 1–5.

[8] G. N. Chaple, R. D. Daruwala, and M. S. Gofane, “Comparisions of
Robert, Prewitt, Sobel operator based edge detection methods for real
time uses on FPGA,” in 2015 Int. Conf. on Technologies for Sustainable
Development (ICTSD), Feb. 2015, pp. 1–4.

[9] J. Lee, H. Tang, and J. Park, “Energy efficient Canny edge detector
for advanced mobile vision applications,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 28, no. 4, pp. 1037–1046, Apr. 2018.

[10] P. Selvakumar and S. Hariganesh, “The performance analysis of edge
detection algorithms for image processing,” in 2016 Int. Conf. on
Computing Technologies and Intelligent Data Engineering (ICCTIDE),
Jan. 2016, pp. 1–5.

[11] M. Qasaimeh, K. Denolf, J. Lo, K. A. Vissers, J. Zambreno, and
P. H. Jones, “Comparing energy efficiency of CPU, GPU and FPGA
implementations for vision kernels,” in 2019 Int. Conf. on Embedded
Software and Systems (ICESS), 2019, pp. 1–8.

[12] C. Schlaak, M. Fakih, and R. Stemmer, “Power and execution time mea-
surement methodology for SDF applications on FPGA-based MPSoCs,”
in 2019 Int. Wksp. on High Performance Energy Efficient Embedded
Systems (HIP3ES), 2017, pp. 1–7.

[13] O. R. Vincent, O. Folorunso et al., “A descriptive algorithm for Sobel
image edge detection,” in Proc. of Information Science & IT Education
Conference (InSITE), vol. 40. Information Science Institute California,
2009, pp. 97–107.

[14] S. S. Al-Amri, N. Kalyankar, and S. Khamitkar, “Image segmentation
by using edge detection,” Int. J. on Computer Science and Engineering,
vol. 2, no. 3, pp. 804–807, 2010.

[15] L. Ding and A. Goshtasby, “On the Canny edge detector,” Pattern
Recognition, vol. 34, no. 3, pp. 721–725, 2001.

[16] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2010.161

[17] J. He, S. Zhang, M. Yang, Y. Shan, and T. Huang, “Bi-directional
cascade network for perceptual edge detection,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[18] A. Akbarinia, C. A. Parraga et al., “Biologically-inspired edge detection
through surround modulation,” in Proceedings of the British Machine
Vision Conference, 2016, pp. 1–13.

[19] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proceedings
of the IEEE International Conference on Computer Vision (ICCV),
December 2015.

[20] P. Dollar and C. L. Zitnick, “Structured forests for fast edge detection,” in
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), December 2013.

[21] X. Hu, Y. Liu, K. Wang, and B. Ren, “Learning hybrid convolutional
features for edge detection,” Neurocomputing, vol. 313, pp. 377 – 385,
2018.

[22] M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik, and M. K. Markey,
“Complex wavelet structural similarity: A new image similarity index,”
IEEE Trans. on Image Processing, vol. 18, no. 11, pp. 2385–2401, 2009.

[23] I. Sugiarto, G. Liu, S. Davidson, L. A. Plana, and S. B. Furber, “High
performance computing on spinnaker neuromorphic platform: A case
study for energy efficient image processing,” in 2016 IEEE 35th Int.
Performance Computing and Communications Conf. (IPCCC). IEEE,
2016, pp. 1–8.

[24] J. E. Volder, “The cordic trigonometric computing technique,” IRE
Trans. on Electronic Computers, vol. EC-8, no. 3, pp. 330–334, Sep.
1959.

[25] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–
66, 1979.

http://dx.doi.org/10.1109/TPAMI.2010.161


(a) Software Laplacian (b) Software Roberts (c) Software Prewitt (d) Software Sobel (e) Software Canny

(f) Hardware Laplacian (g) Hardware Roberts (h) Hardware Prewitt (i) Hardware Sobel (j) Hardware Canny

Fig. 4. Output images from edge detection filters implemented on software and hardware processing of Lena image.

(a) Software Laplacian (b) Software Roberts (c) Software Prewitt (d) Software Sobel (e) Software Canny

(f) Hardware Laplacian (g) Hardware Roberts (h) Hardware Prewitt (i) Hardware Sobel (j) Hardware Canny

Fig. 5. Output images from edge detection filters implemented in software and in hardware processing an image of BSDS500.

.


	Introduction
	Experimental Setup
	Materials and methods
	Hardware design

	Experimental Results
	Conclusions
	References

