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Abstract—Intel SGX is not accessible from the most privileged
execution level, known as ring zero, where the operating system
kernel is placed. However, it is possible to split the execution
responsibility between kernel and userspace by creating a de-
pendency among these two levels that allow internal kernel data
to be stored or processed within SGX private enclaves.

In this paper we present SKEEN, an enhanced way to
isolate internal operating system components and structures with
Intel SGX technology, preventing information leak to different
components of the same operating system. A proof-of-concept is
provided to exemplify its usage.

Index Terms—Intel SGX, Operating System, Linux Kernel,
Isolation.

I. INTRODUCTION

Security of Operating Systems (OS) is a broad subject
mostly if the size and complexity of each of its subsystems [1]
are considered. Recently, OS security has been a trending topic
between researchers and conferences throughout the world due
to its importance on current business models adoption leaning
towards cloud computing solutions [2].

Cloud computing has its bases on virtualization technology,
which in turn has its foundation built upon features provided
by the host hardware and the underneath kernel abstraction
layer of operating systems, like hypervisors and containers [3].
Although they have different architectures, both are susceptible
to underneath OS kernel vulnerabilities: once OS components
get compromised, internal functionalities are also exposed
to the attacker, giving it partial or full control over system
resources, including the virtualization layer [4].

Considering the correlation between system components,
possibly sharing multiple points of exposure, a concept named
Trusted Execution Environment (TEE) was defined. It was
built upon other basic and older concepts of resource isolation,
e.g. virtual barrier between the user applications and the
rest of the system, including both, superuser applications and
kernel [5].

Intel Software Guard eXtension (SGX) technology, is a
materialization of the TEE concept released for the x86 archi-
tecture as a hardware-based implementation. By design, SGX
defines a secure area (named enclave) that can be accessed
only by the least privileged process (user applications running
on processor ring 3), preventing access of any code with higher
privilege, such as the operating system [6].

Although this limitation ensures that kernel code will not
hijack userspace data processed within an enclave, kernel
subsystems are unable to make any direct use of such hardware

feature. Therefore, there is no way a kernel thread can process
or store sensitive data inside enclaves to avoid kernel parts
being exposed if any other component is compromised.

This paper will describe SKEEN, a Secure Kernel Execu-
tion ENvironment architecture, that allows kernel subsystems
to use the features exposed by Intel SGX. Its architecture offers
a generic interface that can be extended by each subsystem
to match their own needs. Such architecture has two basic
components: (1) a builtin kernel module that defines the inter-
face for internal subsystems, and (2) a userspace program that
directly interacts with the SGX technology. The interaction
between these two components allows data from the kernel
to be transmitted to userspace and then processed inside SGX
enclaves.

With this architecture many different mechanisms can be
created aimed at data privacy and isolation, increasing the dif-
ficulty for an attacker to gather system information by simply
reading runtime memory content or by tracking the data eval-
uation process. Our experimental evaluation of SKEEN has
demonstrated how an internal kernel subsystem can perform
a cryptographic operation, like cryptographic key generation,
encryption and decryption, within an SGX enclave, despite
its limitation of being accessible only by programs in the
operating system ring three level.

This paper is organized as follows: Section II briefly
presents a project with similar concepts proposed in this
project; Section III presents few important topics for under-
standing the project; Section IV proposes some use cases
for the proposed architecture; Section V describes the threat
model and the assumptions made before conceiving this
project; Section VI depicts the system architecture; Section VII
presents the test case developed; Section VIII walks through
future ideas to enhance the current state of this project, and
Section IX concludes with all achievements and considerations
brought by this project.

II. SIMILAR PROJECTS

SKEEN was inspired on the TresorSGX [7] project, which,
from an external perspective, has the same goal, however, the
architecture implementation differs significantly when com-
pared to the chosen interprocess communication mechanism,
simultaneous request handling, UMH interface usage, archi-
tecture design, and other internal details.

Some other comparisons can be done in relation to per-
formance, security level (e.g. attack surface length), data



flow transparency, and interface extensibility. Nonetheless, a
comparison of these dynamic factors (that may vary depending
on the case or workload) is out of the scope for this paper.

III. BACKGROUND

A. Software Guard Extension

Intel Software Guard Extension (SGX) is a new instruction
set with a conjunction of architectural data structures that
allow userspace applications to ensure the confidentiality and
integrity of sensitive data, even if any privileged software
(operating system, hypervisor, or BIOS) is compromised [2].
The two guarantees offered by the SGX are:

• Confidentiality: any data or process state handled within
the trusted environment cannot be observed by another
system component; only the input and output are observ-
able.

• Integrity: system components, external to the trusted
environment, cannot change internal process behavior or
content.

The protection against irregular accesses, from malicious
privileged software to standard direct memory access (DMA),
is guaranteed by hardware-assisted memory access control
mechanisms in conjunction with several metadata stored in
different architecture data structures dedicated to the SGX
functionality. This control creates secure areas main memories
known as enclaves.

Enclaves are stored within the userspace application virtual
memory, restricting the ownership of each enclave to a single
process. An enclave holds a variable number of memory pages
(to store user application trusted data and code), in a structure
called Enclave Page Cache (EPC). Although each page within
EPC has a fixed size of 4KB and initially is allocated within
the system cache, they may be evicted to the main memory
as any other regular memory page. Therefore, applications
demanding a large amount of pages are not restricted to
the EPC maximum size. Whichever EPC page is evicted to
memory, it will be encrypted by the Memory Encryption
Engine (MEE), ensuring the confidentiality and integrity of
that data from any read or write attempt [8].

The memory access control is done by the processor with
some additional information contained into the Enclave Page
Cache Map (EPCM): each entry on this structure has an at-
tribute mapping to a single page within EPC. These additional
information are: page type, access (read, write and execute)
permissions, validity, and so forth, all data are used as filters
to the access control engine.

The SGX instruction set, added to 6th Intel processors
generation and onward, is divided in three main mnemonics,
with several underneath leaf functions. These main mnemonics
are: ENCLS, ENCLU and ENCLV [6]. As can be seen from
above, the core ENCL three suffixes are:

1) S: stands for supervisor, meaning that all leaf function
can be executed by privileged software, like the operat-
ing system kernel, generating an software exception in

case it is issued by any other software beyond ring 0
privileged level;

2) U: stands for user, giving the right to the user applica-
tions to issue any leaf function under this category. In
case any privileged software issues a function belonging
to this set a software exception is raised, blocking further
execution;

3) V: stands for virtualization, being used as support for
VTX technology, Intel processor virtualization exten-
sion [9].

In short, supervisor functions are restricted to privileged
software and are used to manage the underlying enclave
control structures, regarding enclave creation, initialization and
maintenance. User functions are related to memory access
within enclaves by user applications.

That is the reasoning behind the general goal of this paper:
to create an architecture that enables ring 0 software to
indirectly interact with Intel SGX feature, allowing sensitive
data to be held and processed within such enclaves to protect
OS sensitive data from its own internal components.

B. Linux Usermode Helper

A user program can interact with internal kernel functional-
ities via system calls, which have their own special meanings
and calling arguments. Sometimes a call from inside the kernel
to a userspace program is needed, for example, when a new
device is attached to the machine and the kernel requests a
specific userspace application to load a device driver as soon
as the device gets recognized.

This process is done through the usermode helper API
(UMH) [10], which is a kernel API that enables kernel code to
invoke userspace applications on demand. There are a couple
of ways to actually execute userspace programs:

1) Direct path: the simplest way is to call a binary located
in a well-known path, possibly passing some program
and environments arguments through API specific struc-
tures;

2) In-kernel binary: the binary is physically located into
kernel memory, which was statically compiled during
kernel compiling time and executed as a user process
when requested.

Caution must be taken when using the second approach:
the binary may be executed before any real filesystem was
effectively mounted in the system, preventing any dynamic
linkage of shared libraries on such binary. Because of that
and other possible side effects the in-kernel binary must be
statically compiled.

The user process created to run the program receives
superuser privileges, thus it has full control over system
configuration.

By default, the in-kernel binary approach creates a inter-
process communication channel between the kernel and the
user program using pipes. Section VI details about the UMH
interface implementation, which was enhanced with shared
memory handling code in order to improve overall perfor-
mance.



IV. USE CASES

With the ability of both processing and storing information
within SGX enclaves, many different kernel subsystems may
employ such mechanism to secure their sensitive data.

A. Firmware TPM

Trusted Platform Modules (TPM) are known as secure
processors to store, process and also generate cryptographic
sensitive information such as user asymmetric key pairs.
These platforms are deployed in different range of systems,
from embedded devices to personal and server computers. In
general, there are three different modes of implementation for
TPMs [11]:

1) Dedicated: a real and small dedicated hardware im-
plementation, delivered as a single microchip usually
soldered to computer motherboard.

2) Integrated: part of a different component on the moth-
erboard, sharing the same silicon dice of a certain
microchip, for instance, inside PCH (also known as
chipset).

3) Firmware: software implementation into platform TEE.
Although a TPM is usually meant to be used as a source of

trust for the entire system - from its bootstrap to its runtime -
and in firmware mode it would only be available once the
TEE is fully initialized, it still has a valid usage beyond
the platform source of trust: cryptographic operations ranging
from hashing to digital signing and data sealing [12], that
can be used for internal kernel subsystems like the Integrity
Measurement Architecture (IMA) and Extended Verification
Module (EVM) [13], through the concept of encrypted and
trusted keys [14] from the Key Retention Subsystem (KRS)
for ensuring some aspects of the system were not changed
during normal operation.

B. Kernel Internal Structures

Some kernel structures are referenced only in specific
moments and may contain sensitive information, like crypto-
graphic keys managed by the key retention subsystem. These
structures could be stored and/or processed within the TEE,
without exposing its real content to userspace or kernel,
noticeably increasing the difficulty for an attacker to get access
to the data.

V. THREAT MODEL AND ASSUMPTIONS

The primary software assumption is that the overall sys-
tem runtime is not trusted and is possibly compromised by
a malicious user - including the operating system kernel
(consequently, the SKEEN itself) and the entire userspace
environment - and therefore all components are treated as hos-
tiles. In case of any kernel subsystem gets compromised, any
subsystem data or algorithm implementation already stored
within a SGX enclave must not be accessible.

Although the runtime kernel is not trusted, its compilation
and code are considered sane and trustworthy. Consequently,
no known security holes or backdoor are intentionally added
to the code.

Deny of Service (DoS) attacks can be performed in many
different ways, preventing any SKEEN service to run. With
that said, handling DoS attacks is out of scope for the current
state of this project.

Cache timing attacks that can affect SGX, for instance,
L1TF (L1 Terminal Fault) [15], are not checked for their
presence, but we assume their respective mitigation are applied
if necessary. Other side-channel attacks, like power analysis
or any other with hardware access level are also out of scope
of this project.

VI. ARCHITECTURE

Figure 1 presents an overview of the SKEEN architecture
proposed in this paper and used as the basis for further
discussion.

Fig. 1. In the insecure side of the platform the SKEEN kernel module is
used as the interface for the underneath kernel subsystems to interact with the
userspace program, that is launched to every new subsystem request, through
a shared memory IPC scheme. The data is then insecurely forwarded to secure
SGX enclaves where the data is finally protected against eavesdropping and
malicious modification.

Nonetheless, Figure 1 can be exploded in order to observe
the layered design of the architecture as shown in Figure 2.
This design was used to accommodate differences between
each customer subsystem, allowing specific behavior handling
in all three execution environments: kernelspace, userspace
and SGX enclave. Another aspect to be noted is the common
core, which behaves as the arbitrator for the whole architec-
ture.

A. Userspace Program

To allow better isolation between subsystems operating with
SKEEN, each initialization request made to its core launches
a new process application in a unique process memory and
also a unique shared memory region (not shared to any other
subsystem). Once all transactions are finished, the customer
can request to SKEEN to terminate - by freeing and zeroing
any memory region allocated - the userspace program and



Fig. 2. Layered view from customers in the kernelspace to the Intel SGX
enclaves, where the core acts as the main component and communication
arbitrator between kernel and userspace. Each customer-specific component
has its relative counter part in both userspace and within Intel SGX, creating
the code and data isolation between customers.

other structures held within the architecture used to manage
each operation context.

The userspace program is statically compiled against any
external library, thus dynamic linkage attacks are not feasible.
At the same time, the program is placed directly within the
kernel image.

Also, the program has a reactive behavior, where it only
responds (send data to kernel) when it is requested to (via
request coming from the kernel). Every program response is
tied to a single kernel request.

B. Interprocess Communication

Shared memory was the chosen approach to be used on
SKEEN IPC mechanism, employing near-zero overhead in its
raw format. However, two this approach has two issues: data
synchronization and access control.

1) Data synchronization: Since there is no data synchro-
nization in shared memory, the concurrency control in the
data exchange among different processes needed to be im-
plemented.

Our strategy consisted on not sharing the same memory
region among different subsystems, which allow us to manage
a small data rate flowing through the shared memory. Also,
each half of this memory is used strictly by each flow
direction: upwards for data flowing from kernel to userspace,
denoted by request, and downwards for data flowing in the
other direction, denoted by response. These data objects have
fixed size and are composed of different fields.

This memory split, plus the fact that the userspace program
operates reactively, helps to mitigate data concurrence issues.
Thus, each side of the channel needs to be careful only to not
exceed the buffer boundary and to signalize which message
was already handled. Also, requests and responses are handled
sequentially, thus data ordering is kept and parallelism is not
supported.

2) Access control: The shared memory mechanism does
not imply any access control to the memory, allowing any
concurrent process to map the same memory the other process
is using. However, any shared memory created to be used
as the IPC is tied to a single user process in the SKEEN
architecture, the one launched by the SKEEN core code. Any
mapping operation by another process to the same memory
region is denied.

Additionally, from kernel side, it is still unknown how to
control the memory access by different kernel threads. This
topic is revisited in Section VIII.

C. Kernelspace Module

The kernel module contains many separate components that
are responsible for enabling and launching the userspace pro-
gram, the communication channel and the interface exposed
to subsystems willing to use SGX features.

SKEEN core component acts as an arbitrator between the
different subsystems generating requests and the userspace
program responding back to subsystems data that was pro-
cessed inside SGX enclaves. This in-between component,
structured as presented in Figure 3, was designed to be as
transparent as possible, hiding the entire bookkeeping, data
tracking, and IPC mechanism that guarantees that data reaches
its respective destination. Also, considering that each customer
can make use of different structures and expects different data
types, the core exposes an extendable interface that supports
an additional subsystem-specific abstraction layer as a plugin.
Therefore the proposed solution is flexible enough to allow
each customer specificity be handled and maintained in a
separate codebase.

Fig. 3. The core component coordinates different instances of customer-
specifics smaller components and also manages the data flow from both up
and downwards directions with a work queue holding operation requests in
different states. Customers wait on completion callbacks that are triggered by
the event dispatcher.



The only object that is shared among core and customer-
specific components is the context, which is the structure used
to perform all bookkeeping and the aforementioned tracing.
This object is initialized before any request is created and lives
until the customer explicitly destroys it when the answers to
the requests are sent to userspace. A more detailed explanation
of the data flow throughout the architecture will be given in
Section VI-E

D. SGX Enclave

The trusted program, running within the SGX enclave, is
built alongside the userspace program since it is also customer-
specific and also because both must be aware of each other
existence with the notion of what interface is being exposed.
The user (untrusted) program makes ECALLs to functions
from the program running on the trusted side. While OCALLs
are performed for the other way.

E. Data Flow

Due to the layered architecture, the data objects are also
required to be wrapped in layers to keep it transparent
throughout the processing chain. Figure 4 depicts the core
data components from the subsystem operation request to the
highest level of abstraction.

Fig. 4. Kernel module layered data view. The deeper inside the data is, the
closer to the subsystem requesting data process on Intel SGX.

The context is the core data transferred between kernel
components, since it holds both the userspace program infor-
mation, UMH info, and both the request data to be processed
in userspace and its response. SKEEN core wraps the context
in another request abstraction to maintain and trace the state
of that specific flow, thus it has the ability to destroy it when
requested.

Figure 5 depicts the data flow through the architecture
using a generic abstraction layer (GAL) for a subsystem as
an example.

A subsystem first calls a common operation, exec 1 , as it
would normally do if the actual interface is used, and not an
abstraction layer to SKEEN; then a context is created 2 by the
core and kept within GAL for possible further operations and
for matching the response code it will be sent from userspace.

Fig. 5. Data flow throughout the SKEEN layered architecture considering a
test case with a cryptographic abstraction layer.

The core then wraps the context content, as shown in Figure 4,
with enough data to trace it in a work queue, and launches the
send (or receive depending on what the exec call actually does)
operation 3 that moves the most basic object (kernel request)
from within the context through the IPC channel 4 . The
userspace program notices a non-processed request is waiting
in the shared memory, and then reads 5 the request by checks
its internal content in order to select the correct ECALL that
matches the exec operation to be performed within the SGX
enclave 6 . Once the process is completed an OCALL, from
the enclave to the userspace program, is performed, returning
the response value. The returned value is then wrapped in the
object user response and send back to kernelspace through
the IPC channel. In the kernel, once the user response data is
available in memory, an event triggers the receive operation
8 , waking up the dispatcher component in the core, as seen

in Figure 3. The dispatcher evaluates the overall state of that
request and execute the callback placed in the GAL code. A
final check or processing might take place before returning the
response value to the subsystem.

VII. RESULTS

We used a crypto algorithm driver as the test case for
validating the entire architecture behavior. A crypto driver
exposes an interface of allowed operations to be performed
with specific algorithms. The test driver wraps the AES
algorithm, which uses an implementation from within the SGX
enclave instead of using the existent kernel implementation.
Therefore, although the data arriving to the enclave might have
been tampered, the cryptographic operations are guaranteed to
be correct.

The abstraction layer follow the specification for registering
the driver in the kernel and, at the same time, implement the
wrapper functions that will send all data to be encrypted or
decrypted through our SKEEN infrastructure. In this way, any
other code directly request AES encryption/decryption opera-
tion can normally use the generic crypto interface, while our
driver handles all translation between crypto data structures to
SKEEN structures.



Another important aspect to be noted is that both the
abstraction component and the userspace program must be
aware of specific cases an AES driver may face: data bigger
than the algorithm block size are split in different chunks of
fixed size. With that, both sides of the channel must have a
common way of handling it. Situations like this may force
the subsystem-specific components to handle fragmentation in
somewhat non-trivial ways, possibly creating different usages
for the request and response internal fields - header, payload
and generic data field.

VIII. FUTURE WORK

Shared memory is the mechanism chosen to represent the
IPC among kernel and userspace programs in the current state
of this project, however new IPC mechanisms are proposed to
upstream Linux kernel community regularly for many different
use cases [16]. With that in mind, deeper research on new
IPC mechanisms or improvements on well-known ones [17]
is a tackle point for future enhancement. Also, a research on
how to control memory access from kernel components to the
SKEEN spawned shared memory is being performed.

Integrating SKEEN to early boot security mechanisms could
also improve the overall security of the system and enhance the
SKEEN security scope: leveraging Intel TXT [18] technology
in order to gather pre-boot platforms measurement values
(BIOS, Chipset, and others) enabling a more robust chain of
trust for the entire system.

Following the same thought of booting a system with pos-
sible malicious components, SKEEN userspace process could
have its hash measured and verified before it is effectively
running with the help of the IMA (Integrity Measurement Ar-
chitecture) Linux subsytem. Also, the userspace program can
apply the usage of a sandbox mechanism like seccomp [19],
preventing any not allowed system calls to be performed in
case it gets compromised.

A final suggestion is to compare the overall architecture
performance and security against TresorSGX project, mostly
due to the mechanisms and technologies differences applied
in each project.

IX. CONCLUSION

The architecture proposed in this paper employs the Intel
SGX technology for data and process isolation of internal
kernel components, which, at first glance, are not allowed to
have access to such technology. It is accomplished by moving
data from kernel to userspace and then wrapping it into SGX
enclaves. A test case creating a crypto algorithm driver was
created, giving in-kernel code the ability to perform encryption
and decryption of data directly from within SGX enclaves
using the standard Linux Kernel Crypto API.

The code for both the architecture implementation and test
cases are being kept with open source license1.

1https://gitlab.com/radlab-utfpr/skeen-linux-kernel - Linux Kernel code
with SKEEN patches applied on top.
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