Performance Analysis of Embedded Control
Algorithms used in UAVs

Iago de Oliveira Silvestre*, Leandro Buss Becker*
*Graduate Program on Automation Systems Engineering (PGEAS)
Federal University of Santa Catarina - Floriandpolis, SC, Brazil
Email: iago.silvestre @posgrad.ufsc.br, leandro.becker @ufsc.br

Abstract—Performance analysis of embedded systems is crit-
ical when dealing with Cyber-Physical Systems that require
stability guarantees. They typically operate having to respect
deadlines imposed during the design of the related control system.
In a recent past performance analysis was typically done only
by executing the code, and making measures, on the target
embedded platform. Nowadays, code execution/measuring can
also be done on simulation software, which offers greater degree
of liberty for designers to configure the system for the desired
tests. This paper presents results obtained from analyzing the
performance of two control algorithms developed for controlling
an Unmanned Aerial Vehicle (UAV) running on simulated and
real embedded platforms. Such analysis is important for twofold
reasons: better understand the timing behavior or the algorithms
and evaluate architectural issues related with the target em-
bedded platform. Raspberry Pi 3 Model B+ (with Cortex-AS3
processor) is used as reference platform and serves as basis
for creating different simulated versions for the analysis. Initial
results highlighted the important role played by cache memory
in the performance of the control algorithms and were able to
detect a major bottleneck in one of the control algorithms that
could compromise system stability.

Index Terms—full-system simulation, gem5, embedded com-
puting systems, UAV

I. INTRODUCTION

An embedded computing platform combines one or more
processors, memories, and input/output devices. They are
typically used in the context of Cyber-Physical Systems (CPS),
that is, the software running on the embedded platform con-
trols the movements of the mechanical system that they are
coupled with. For this reason they are commonly classified
as real-time applications, as they need to respect computation
deadlines to ensure the system stability [1].

A typical application of embedded control systems in the
context of CPS relates to Unmanned Aerial Vehicles (UAVs).
Such aircrafts can be controlled remotely by a human operator
or can fly autonomously through a control program [2]. In
both cases the use of an embedded control algorithm is
required to ensure the flight stability [3], this is known as
the low-level control of the aircraft. The study of control
techniques for UAVs is one of the research areas explored by
the ProVANT project, a collaborative research effort between
Federal Universities of Santa Catarina and Minas Gerais.

This paper presents the analysis of two embedded control
algorithms developed to control the flight stability of UAVs.
Such analysis is valuable for embedded systems designers

for allowing to observe the temporal performance of the
algorithms and the platform architectural aspects that influence
such performance. In the first case, it allows to: (i) test if
the control program can be executed within its designed time
window (deadline): (ii) if it does not meet the deadlines, help
to detect where are the bottlenecks in the control algorithm im-
plementation. From the perspective of the embedded platform,
it provide means for the embedded architect to better select the
most appropriate target platform. These analysis should allow
to iterate and explore modifications in software and hardware
[4] that need be to made so that deadlines are fulfilled and the
system stability is not compromised [5].

The remainder parts of the paper are organized as follows.
Section II describes modern means/tools to simulate embedded
systems, also detailing gem5, the simulation tool used in our
study. Section III describes the control algorithms that are
being analyzed in the paper. Section IV shows the results
obtained in our simulation studies. Section V draws some
conclusions and highlights future works directions.

II. FULL-SYSTEM SIMULATORS

The simulation of an embedded system can be accomplished
through various means, which differ from each other in various
ways but mostly on the level of abstraction used on its
models that represent the function of microprocessors and
other parts of the computer system [6]. The lowest level of
abstraction to simulate an embedded system can be reached
using hardware description languages, such as VHDL, which
when well utilized can reach the highest level of accuracy
when comparing to the real system [7]. This approach however
is extremely time consuming and normally higher level of
abstractions are used to model the embedded system.

For our project we focused on Full-System Simulators
(FSS), they are software programs that simulate a computer
system hardware and the operating system being used, so that
the user program of interest executes just like in the real
physical hardware.

A FSS allows the user to simulate operating systems,
devices drivers, kernels, and middleware. For this reason one
of its common use is to detect system failures before the
hardware design phase is completed. It can also can be used to
test the performance on different configurations of hardware
to guide later design phases.

A. gem5 Simulation Platform

The present work makes use of the gem5 simulation plat-
form [8]. It is a modular discrete event-driven simulator that
originated from the merge of two existing simulation tools:
the M5 from the University of Michigan and GEMS from
the University of Wisconsin-Madison. The gem5 simulator
offers various CPU and memory system models that differ
on the level of accuracy. For instance, the more complex CPU
models include the simulation of the CPU branch predictor and
instruction pipelines [9], both common features of a modern
CPU architecture.

The gem5 tool most accurate simulation mode which was
utilized in this paper is called Full System Mode which
allows to simulate a complete system with its components
and operating system (see Figure 1 for an overview of its
data flow).

gems

Y

Cycle-Accurate
Full-System
Simulation

0.5
image

Y

System
Parameters

e

Fig. 1. Overview of gem5 Full System mode.

Gem5 also supports a high variety of ISA (Instruction
Set Architecture) such as ARM, RISC-V, x86, Alpha, MIPS,
Power, and SPARC, which allows among other things the
study of the impact on performance by using either reduced
or complex instructions set architectures [10].

Another important feature of gem5 simulation platform is
M5ops, a set of opcodes that can be added to the program/code
under test in order to provide very useful information. For
instance, it allows the user to determine the part of the program
code where the simulation tool should collect the performance
data. In our case we wanted to analyze the performance of the
control loops that are executed in the embedded system after
the initialization, as shown in Figure 2.

int main()
= {

hinfinity* control = new hinfinity () ;
control->config() ;

= while (k<20) {

m5 reset stats{0,0);
out=control-»execute () ;

m5S dump stats(’,7);

k++;

- }

return ;

Fig. 2. MS5ops being used to isolate the program portion under analysis.

The simulation analyses conducted on this paper were
performed using the following gem5 models, binaries, and
parameters:

o ISA: ARM

e CPU Model: HPI and O3

e Memory Model: Classic

o gem5 simulation binary: gem5.fast

Once a gem5 simulation is finished, it is possible to extract
results by analyzing the generated stats files. These files keep
a detailed log of every parameter of the hardware components
used on the simulation and require some filtering by the user
to extract a comprehensible overview of the test performance.

III. SYSTEM UNDER TEST

Fig. 3. VANT prototype used on this investigation.

To make the performance analysis envisioned in this in-
vestigation, we selected two C++ control programs developed
within the ProVANT project. Both algorithms were designed
to control the UAV prototype shown in Figure 3 and both were
compiled with the floating point operations being solved by
software. They differ from each other on the control technique,
one uses a common LQR strategy while the other uses a mix of
Hs> e Hoo strategies with a feedforward control [11] to control
a scenario where the UAV is carrying a load. An important
characteristic is that both algorithms must be executed within
a 12 millisenconds windows, otherwise the UAV may not
stabilise. Table I compares source code information extracted
from both control algorithms, available for download in our
repository’.

TABLE I
COMPARISON OF LQR AND H2/Hoo SOURCE CODES
LQR H2/Hoo
Number of characters in source code 21 597 2 410 134
Compiled Binary Size 2.69 MB 19.9 MB

The difference between code characters and binary size is
most likely due to the feedforward implementation on the
H2/Hoo control program, with a header file of 2.3 MB and
approximately 2.3 million characters.

Ynttps://github.com/iagosilvestre/ProVANT-Control-Test-gem5

Regarding their source code structure, both share a lot in
common, like the use of a C++ class structure. The Eigen
library is used by both of them for solving matrix calculations
and both use the Robot Operating System (ROS) libraries to
package sensor data and communication info.

However, they differ in some important aspects. One differ-
ence relates with their matrix sizes, as in LQR the Expanded
State Vector has 20 states and in H2/Hoo it has 24. They also
distinguish on the Feedforward implementation. In LQR the
disturbance is dealt as a constant value and the Feeforward
can be performed as a simple addition before the output. In
H2/Hoo, however, since it is designed to control a scenario
where the UAV has to carry an attached load, the Feedforward
implementation has to calculate the disturbance with a set of
complex matrix operations in every iteration of the control
loop.

A. Hardware setup

For our initial test setup we chose to configure the sim-
ulation by cloning the specifications of the Raspberry Pi 3
Model B+ (see Table II), a very common ARM architecture
development board. We chose this configuration in order to
compare obtained results with the results of tests executed on
the real hardware.

TABLE 11
RASPBERRY P1 3 B+ SPECS - BASELINE SETUP

CPU 4 Core Cortex-A53 (ARMvS8) 1.4Ghz
L1 I Cache 16 kB

L1 D Cache 16 kB

L2 Cache 512 kB

RAM 1GB LPDDR2 SDRAM

Regarding the Operating System image and Kernel, the tests
executed in this paper used a compact aarch64 OS image file
and a Linux kernel. These were chosen to be similar to the
Raspberry Pi default ambient and can be found in the gem5
resources 2, however they can be built and modified freely to
test different configurations, like expanding and removing the
cache memory and replacing the CPU.

The simulations were conducted using a Dell G3 3590 host
machine, which has a 9300h Intel quad-core CPU with a clock
speed of up to 4.1 GHz, and 8 GB of 2666 MHz DDR4 RAM.

IV. OBTAINED RESULTS
A. LOR

The first control program tested was the one using the LQR
strategy. Tests consisted of executing 50 LQR control loops
and took around a minute to simulate on the host machine.
The results from LQR execution is shown in Tables III and
IV. The following observations can be highlighted from these
executions:

2 http://dist.gemS5.org/dist/current/arm/aarch-system-20180409.tar.xz

o The first control loop took 83 us to complete, after that
the reminder 49 tested loops needed an average of 48 us
to be computed.

o After the first control loop the memory bus utilization
dropped considerably, with several control loops being
the best case scenario where 0% of the memory bus was
used. The worst case scenario after the initialization loop
incurred 0.31% of memory bus utilization. These results
suggests that one of the reasons for needing more time
to compute the first control loop is connected with the
RAM usage, which is slower to access.

¢ During the first control loop 46.4% of the CPU cycles
were idle, for the rest of the control loops that value
dropped to an average of 8.5% with small variance. The
higher amount of idle cycles during the first loop can be
related with the RAM data readings mentioned before,
since one of the most common events that lead to a CPU
to become idle is when it is processing instructions that
require data from variables that have to be fetched from
RAM.

TABLE II
CPU DATA FROM LQR PROGRAM

LQR CPU Data min max avg avg*
Execution time 47 ps | 82 us 50 pus | 48 us
Idle Cycles 82% | 45.6% | 10.3% 8.4%
Cycles Per Instruction | 1.598 2.762 1.677 1.621
Instructions Executed 40894 | 42313 | 41654 | 41650
Operations Executed | o007 | 51378 | 50812 | 50806
(including micro ops)

*-Excluding data from the first control loop
TABLE IV
MEMORY DATA FROM LQR PROGRAM

LQR Memory Data min max avg avg*
L1 I Cache Occupancy 100% 100% 100% 100%
L1 D Cache Occupancy 100% 100% 100% 100%
L2 Cache Occupancy 99.8% 100% 100% 100%
Memory BUS Utilization 0% 10.98% | 0.57% | 0.02%
RAM READ 0B 27 KB | 562 B 8B
RAM WRITE 0B 11 KB | 229 B 11B

* Excluding data from the first control loop

The types of operations executed by the CPU are presented
in Table V. More than half of the instructions are executed
on the Arithmetic Logic Unit (ALU). These operations can
basically consist of simple logical and arithmetic operations.

TABLE V

INSTRUCTION COUNT FROM LQR PROGRAM

Instruction Type | Total Count | Percentage
IntAlu 31744 62.46%
MemRead 9953 19.58%
MemWrite 8794 17.30%
IntMult 329 0.65%
IntDiv 0 0%

B. H2/Hoo

While LQR executed very fast, the mix of Hy and Hoo took
much longer to execute. Therefore tests consisted of executing
only 20 control loops and took approximately 21 minutes to
execute on the host machine. An overview of the H2/Hoo
execution results is shown in Tables III and VII. Follows
discussions related with the obtained simulation results:

o The first control loop took 52.7 ms to compute, after that
the other 19 executions had an average of 33.5 ms, well
above the designed 12 ms control period.

« It showed higher RAM data transfers, with the worst case
scenario being the first control loop where 25.2 MB were
used. For the rest of the control loops this value dropped
to an average of 12.3 MB with small variance.

« It showed a high percentage of idle CPU cycles during its
entire execution, averaging at 45%. This highlights that
during a big part of the program execution the CPU is
waiting for data to complete its calculations.

TABLE VII
MEMORY DATA FROM H2/Hoo PROGRAM
H2/Hoo Memory Data min max avg
L1 I Cache Occupancy 100% 100% 100%
L1 D Cache Occupancy 100% 100% 100%
L2 Cache Occupancy 99.5% 100% 100%
Memory BUS Utilization 8.97% 11.73% 9.12%
RAM READ 121 MB | 13.6 MB | 12.2 MB
RAM WRITE 35 KB 120 MB | 0.63 MB
TABLE VIII

INSTRUCTION COUNT FROM H2/Hoo PROGRAM

Instruction Type | Total Count | Percentage
IntAlu 13 089 591 79.20%
MemRead 1 553 578 9.39%
MemWrite 1790 873 10.83%
IntMult 92 936 0.57%
IntDiv 109 ~0%

TABLE VI
CPU DATA FROM H2/Hoo PROGRAM

H2/Hoo CPU Data min max avg
Execution time 33.43 ms 52.77 ms 34.44 ms
Idle Cycles 38.53% 45.02% 44.94%
Cycles Per Instruction 3.02 3.63 3.58
Instructions Executed 12,932,425 | 24,512,688 13,522,197
Operations Executed

16,501,948 | 30,322,905 | 17,199,833

(including micro ops)

Table VIII details the types of operations executed by the
CPU. Like for LQR, these values did not change much during
the 20 executed control loops.

We can see that similarly to the LQR program, the heavy
majority of the CPU operations were executed on the ALU.

C. Bottleneck Analysis

With these results showing such poor performance, we went
ahead and tested the same control programs on the Raspberry
Pi development board to verify if the simulation data can be
used to infer the performance of this control algorithm. The
comparison of the execution time between the gemS5 simulation
and physical hardware can be seen in Figure 4 and Figure 5.

After the first control execution the average mismatch was of
around 20%. Despite the mismatch one can note that for the
H2/Hoo control simulation and physical hardware executed
above the 12 ms deadline imposed by control designers,
compromising the system stability. Besides that, it is also
important to remind that the validation and improvement of
the gem5 models is a constant work in development [12], that
means that it is possible to achieve more realistic simulation
results by finding and fixing the mismatch sources.

Mismatch of Execution Time vant2_Iqr
[

B raspbenyFi
O gemS sim

time(us)

Fig. 4. Execution time of simulation and physical hardware - LQR control.

On the process of trying to find the bottleneck of this control
program we noticed that one of the features that differentiates
this control program from LQR is the implementation of
a feedforward control with a huge 2 MB header file. To

tme(us) Mismatch of Execution Time vant2_Hinfinity
60000 T T T T

55000

[raspberry
@ gems sim

50000

45000

40000

35000

30000 {JR-TRH—BH—IH—RH- B - B
25000 1/ R SRR R SR R
200001 | HE LA AL LA A R
130004 [F LD H T T HE LR HE L HE T

10000

5000 1A MR- SN M- - - - O -

0737273 A 5 6 1 % 9 30 13 A2 13 3A 35 16 41 38 10 30

Fig. 5. Execution time of simulation and physical hardware - H2/Hoo control.

better understand the problem the feedforward function was
analyzed with help from the m5ops library and the following
observations could be measured:

o From the 33.5 ms average execution time, 33.3 ms was
used on the feedforward section, evidencing that it is the
bottleneck of this control strategy.

o The feedforward section was responsible for the entire
RAM usage found during the control execution.

o The feedforward section is also responsible for approxi-
mately 99% of the CPU idle cycles.

D. Expanding the H2/Hoo Simulation Ambient Cache Size

An advantage of using a simulation tool like gemS5 is that the
simulated hardware can be easily modified. Therefore it was
conducted a test where the L1 and L2 caches of the CPU were
increased to 128 MB each. Although this is a very unrealistic,
since most modern CPU have level 1 cache in the kB scale,
the test intended to isolate the CPU operation, avoiding idle
cycles due RAM interactions. Like if the data to be computed
is always “ready” (near) when needed. So we executed 10
control loops with these changes and observed drastic changes
in the obtained results.

o The average execution time dropped from 33.5 ms to
17.7 ms, a 52% drop in the execution time.

o As expected, the number of CPU idle cycles dropped
from an average of 45% idle cycles to around 2%. This
shows that the program has no longer to wait for data to
be transferred from the slow RAM, as it is available in
the faster data cache.

However, even with this huge cache increase, it is still
evident that the feedforward control presents a bottleneck. It
requires 17.6 ms to be computed, out of the 17.7 ms of the
entire program. This means that either the control has to be
redesigned for a larger control window if it wants to be able
to run on a similar hardware to a Raspberry Pi 3 Model B+,
or that the feedforward implementation should be simplified.

E. Enhancing the CPU to Cortex-A72

We also performed experiments using a faster CPU, more
specifically the Cortex-A72, which is used in the recently
launched Raspberry Pi 4. Its main differences in comparison
with Cortex-A53 are presented in Table IX.

TABLE IX
CPU ARCHITECTURES COMPARISON

Architecture Comparison Cortex-A53 Cortex-A72
Decode 2-wide 3-wide
Pipeline depth 8 15

Type of Execution In-Order Out-of-Order
L1 Cache (Instr + Data) | 8-64 KB + 864 KB | 48 KB+ 32 KB
L2 Cache 128 KB - 2 MB 0.5-4MB

Since the type of execution changes, the tests on this section
were conducted with the O3 cpu model. Two sets of tests were
then conducted, with the first one using the Rasp. 3 B+ cache
values (16kB+16kB for L1 cache and 512kB for L2) and the
second set intending to use the maximum amount of cache
memory available in Cortex-A72 architecture. However, due
to a gem5 limitation, the cache cannot assume values that are
not power of two (2™). Therefore this second test was executed
with 32kB+32kB for L1 cache and 4MB for L2. It is important
to mention that CPU cores and frequency were not changed
during these tests and it remained as a 1.4 GHz quad-core.

For LQR, again the tests consisted of 50 executions of the
control loop. An overview of the obtained results are presented
in Table X. It is possible to observe a significant improvement
in the execution time in comparison with the Cortex-A53 (32%
faster on average in test 1).

TABLE X
OVERVIEW OF THE LQR ON CORTEX A72

Test 1: 16 kB + 16 kB L1 & 512 kB L2
min max avg
Exec Time 32 ps (-32%) 60 s (-27%) 34 ps (-32%)
Idle Cycles 10.0% (+22%) 38.8% (-15%) 11.3% (+10%)
Mem Bus 27% (++2.7%) | 15.6% (+42%) 3.0% (+426%)
RAM READ 4 KB (++4KB) | 32 KB (+19%) | 4.4 KB (+700%)
RAM WRITE 0 B (+0%) 7 KB (-36%) 0.18 KB (-20%)
Test 2: 32 kB + 32 kB L1 & 4 MB L2
min max avg
Exec Time 27 ps (-43%) 56 ps (-32%) 29 us (-42%)
Idle Cycles 4.0% (-51%) 36.7% (-20%) 5.3% (-48%)
Mem Bus 1.2% (++1.2%) | 13.5% (+23%) 1.5% (+163%)
RAM READ 1 KB (++1KB) | 31 KB (+15%) 2 KB (+264%)
RAM WRITE 0 B (+0%) 1 KB (-91%) 34 B (-85%)

For H2/Hoo, again the tests consisted of 20 executions of the
control loop. An overview of the obtained results is presented

in Table XI. Similarly to the LQR execution in the A72, it is
possible to notice a significant improvement in the execution
time in both tests (33% and 35% for tests 1 and 2 respectively).

TABLE XI
OVERVIEW OF THE H2/Hoo ON CORTEX A72

Test 1: 16 kB + 16 kB L1 & 512 kB L2
min max avg
Exec Time 22.1 ms (-34%) 44.5 ms (-16%) 23.2 ms (-33%)
Idle Cycles 34.7% (-10%) 35.2% (-22%) 35.2% (-21%)
Mem Bus 13.5% (+50%) 17.7% (+51%) 13.7% (+50%)
RAM READ 12.1 MB (+0%) | 19.6 MB (+44%) | 12.5 MB (+2%)
RAM WRITE 28 KB (-20%) 12.5 MB (+5%) | 0.65 MB (+3%)
Test 2: 32 kB + 32 kB L1 & 4 MB L2
min max avg
Exec Time 21.3 ms (-36%) 41.2 ms (-22%) 22.4 ms (-35%)
Idle Cycles 32.7% (-15%) 34.1% (-24%) 34.0% (-24%)
Mem Bus 13.1% (+46%) 17.3% (+47%) 13.3% (+46%)
RAM READ 11.4 MB (-6%) | 159 MB (+17%) | 11.6 MB (-5%)
RAM WRITE | 12.6 KB (-64%) 13.1 MB (+9%) | 0.66 MB (+5%)

It is important to highlight that these set of tests should
be interpreted as an indicator of the performance tendency.
They should not be seen as absolute or definitive performance
statement of the analyzed control algorithms. This comes from
the fact that there are several parameters in the simulation tool
configuration that might change to more or less some of these
numbers.

V. CONCLUSIONS AND FUTURE WORKS

The gem5 simulator showed to be as a very valuable asset
to test and determine programs characteristics, especially in
regarding analyzing their time behavior on specific hardware
configurations. This tool can be used for multiple ends but
one that is very noticeable is the ability to test how the
hardware configuration can impact a given program, so that
designers can make the proper tuning to achieve the envisioned
performance levels. It also helps designers to find bottlenecks
in their programs.

A. LOR

The LQR control program showed great performance in
Cortex-A53 with the Rasp. 3 B+ configuration, executing the
control loop with ease inside the 12 ms control window. It
also showed a relative low percentage of idle CPU cycles,
which shows that the CPU is not waiting too much for data
to complete its operations. This was most likely due to being
a control program that had almost insignificant usage of the
RAM after its first control loop. This allows to conclude that
this LQR implementation was not memory-intensive for the
utilized architecture and its performance was mostly led by
the CPU capabilities.

B. H2/Hoo

The H2/Hoo control program showed poor performance for
the envisioned application needs using Cortex-A53 standard
configuration (well above the 12 ms time window). With the
help of gem5 we were able to easily detect that the bottleneck
responsible for the poor performance was the feedforward
implementation. The tests concerning the system upgrade to
a Cortex-A72 CPU presented considerable execution time
improvement (circa 33%), however the execution time would
still be above the envisioned 12 ms time window.

We have discussed these results with the control develop-
ment team and some solutions are being studied such as some
matrix calculations that could have been calculated outside of
the feedforward function and modifying the matrix declaration.

C. Future Works Directions

« Evaluate the impact of changing the ISA [10].

o Explore the gem5-gpu tool [13] since nowadays it is not
too expensive to include GPUs on embedded platforms.
Analyze additional other control methods used in Provant,
such as MPC (Model Predictive Control) [14].

Evaluate the results of binaries compiled with floating
point hardware enabled.

REFERENCES

[11 A. Aminifar, Analysis, Design, and Optimization of Embedded Control
Systems. Linkoping University, 2016.

[2] G. V. Raffo, M. G. Ortega, and F. R. Rubio, “An integral predic-
tive/nonlinear hoo control structure for a quadrotor helicopter,” Auto-
matica, vol. 46, no. 1, pp. 29-39, jan 2010.

[3] F. Silvano, “Projeto da arquitetura de software embarcado de um
veiculo aereo ndo tripulado,” Master’s thesis, Federal University of Santa
Catarina, 2014.

[4] R. Tashiro and M. S. Oyamada, “An environment for design space
exploration using gem5-McPAT,” in 2016 VI Brazilian Symposium on
Computing Systems Engineering (SBESC). 1EEE, nov 2016.

[5]1 B. P. Lathi, Linear systems and signals. Oxford University Press, 2005,
ch. 9 - Time-Domain Analysis of Discrete-Time Systems.

[6] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation
of GEMS simulator system,” in 7th International Workshop on Re-
configurable and Communication-Centric Systems-on-Chip (ReCoSoC).
IEEE, jul 2012.

[71 V. Pedroni, Circuit Design and Simulation with VHDL. MIT Press Ltd,
2010.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1-7,
may 2011.

[9] M. R. Zargham, Computer Architecture. Prentice Hall, 1996.

[10] A. Akram, “A study on the impact of instruction set architectures on
processor’s performance,” Master’s thesis, Western Michigan University,
2017.

R. Donadel, “Modeling and control of a tiltrotor unmanned aerial vehicle
for path tracking,” Master’s thesis, Federal University of Santa Catarina,
2015.

A. Akram and L. Sawalha, “Validation of the gem5 simulator for x86
architectures,” in 2019 IEEE/ACM Performance Modeling, Benchmark-
ing and Simulation of High Performance Computer Systems (PMBS),
2019, pp. 53-58.

J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “gem5-
gpu: A heterogeneous cpu-gpu simulator,” IEEE Computer Architecture
Letters, vol. 14, no. 1, pp. 34-36, 2015.

G. M. T. Miranda, “Multi-core model predictive control strategy for a
tilt-rotor uav in system-in-the-loop simulation,” Master’s thesis, Federal
University of Minas Gerais, 2018.

(11]

[12]

[13]

[14]

