
Architectural Exploration of an FPGA-based
Hardware Accelerator for the Gaussian Filter using

Approximate Computing
Guilherme A. M. Sborz , Felipe Viel , and Cesar A. Zeferino

Laboratory of Embedded and Distributed Systems – LEDS
University of Vale do Itajaı́ – UNIVALI

Itajaı́ – SC, Brazil
sborzguilherme@edu.univali.br, {viel, zeferino}@univali.br

Abstract— The growing use of computer vision applications has
increased the demand for efficient image processing implemen-
tations. These applications have constraints that, in some cases,
can only be met by dedicated hardware implementations. This
work presents architectures that apply approximate computing
techniques to improve efficiency and scalability for implementing
digital image filters on FPGA. These architectures were imple-
mented as hardware accelerators for an embedded processor in
an FPGA-based System-on-Chip. The results show that the use
of approximate computing techniques can reduce costs without
affecting results for the target application, which is an essential
feature for further acceleration using parallel processing on
hardware.

Index Terms—Image Processing, Computer Vision, Approxi-
mate Computing, Hardware Accelerator, FPGA.

I. INTRODUCTION

Recent advances in computer vision techniques and their
use in applications such as object detection [1], motion
tracking [2], and semantic segmentation [3] have increased
interest in solutions that employ digital image processing
(DIP) techniques. These applications require technologies and
techniques for rapid prototyping, low power consumption, and
low latency. Hardware accelerators (also known as custom
processors and co-processors [4]) can be used as an alternative
to software implementations to achieve these goals. Another
technology typically used for rapid prototyping is Field-
Programmable Gate Array (FPGAs), which is an integrated
circuit (IC) technology that offers a good trade-off among the
design metrics offering the lowest time-to-market in compar-
ison with other IC technologies [5].

The development of hardware accelerators in FPGA can
be done by exploring different architectures. Aspects such as
the arithmetic used [6], approximate computing techniques
(ACTs) [7], and hardware/software communication architec-
ture [8] are some of the features and techniques that can
be explored during the implementation of DIP algorithms on

This work was supported by CAPES – the Brazilian Federal Agency for
Support and Evaluation of Graduate Education – Finance Code 001 and
CNPq – the Brazilian National Council for Scientific and Technological
Development – Processes 315287/2018-7 and 436982/2018-8.

hardware. In this context, assessing possible implementation
models and comparing their impact on system metrics is
essential to assist hardware designers in making decisions
about their designs.

DIP applications are good candidates for acceleration by
custom processors. As discussed in [9], low-level operations
that enable the exploration of parallelism are ideal for hard-
ware implementation. Furthermore, given the vast volume of
data to be processed, a software implementation is usually
slow and unable to fulfill time requirements. In this sense,
several works describe the implementation of DIP algorithms
on FPGA. For instance, in [10], the authors present a hardware
accelerator for the Sobel edge detection algorithm. They
assessed the number of logical resources occupied and the
quality of the output images. In another work [11], the authors
propose a novel Canny edge detection algorithm and imple-
ment it on FPGA. They apply approximate methods for com-
puting gradient magnitude and orientation, aiming at reducing
costs. The authors assess the similarity between the proposed
algorithm and a conventional Canny implementation, evaluate
the occupancy of logical resources, and compare the FPGA
performance with those of GPU-based deployments. In [12],
the authors present an FPGA implementation of a multidi-
rectional Sobel operator for edge detection. They demonstrate
that an eight directional approach is more effective in detecting
edges than the traditional Sobel. Results are limited to resource
usage and visual comparison of the two approaches to a single
image. Even though these works implement DIP algorithms on
FPGA, they did not investigate the impact of ACT techniques
employing a diversity of evaluation metrics.

Given the context above, this work explores the design space
for implementing hardware accelerators for digital image
filtering on FPGA by employing two ACTs [7]: precisions
scaling and memoization. The former consists of decreasing
the number of bits used to represent data, thus reducing
the requirements for processing and storing data. The latter
works by storing the result of functions in local memories,
called look-up tables (LUTs). This technique is useful for
applications in which the number of function entries is limited

https://orcid.org/0000-0002-1567-1582
https://orcid.org/0000-0002-0972-2160
https://orcid.org/0000-0003-3039-4410


as it determines the size of the memory that will be used.
The reader must take care to do not confuse the name of this
technique with the word.

In this work, we also evaluate the impact of different
architectures on performance and costs indicators of the hard-
ware accelerator. As a case study, we chose the Gaussian
filter because it is a classic low-level DIP algorithm and has
characteristics similar to several other image filters (e.g., Sobel
and Moving Mean). Comparisons among different implemen-
tation models are made through the quality of result (QoR),
the occupancy of logic resources, performance metrics, and
energy consumption. Thus, the contribution of this work is the
characterization of possible implementation models for low-
level DIP operations using ACTs, as well as demonstrating
the impact of each architectural solution in the primary design
metrics.

The remainder of this paper is organized as follows. Sec-
tion II provides background on the Gaussian filter. Section III
describes the architectures proposed for the Gaussian filter.
Section IV presents and discusses the materials and methods
employed in the tests and the results obtained from the
experiments. Finally, Section V gives the final remarks.

II. THE GAUSSIAN FILTER

The Gaussian filter is used for image smoothing [13], and its
primary use is as an initial stage of edge detection algorithms,
such as Canny, Sobel, and Laplace. These algorithms are
sensitive to noise, and an algorithm to reduce these distortions,
such as the Gaussian filter, is essential for its operation.

Smoothing filters inhibit the passage of the high-frequency
components of an image, functioning as low-pass filters. These
components represent, among other characteristics, the con-
tours of the objects in the scene—the more abrupt the change
of direction of the contour, the higher its frequency [14].
Therefore, smoothing filters tend to smooth these transitions,
serving, for instance, for the reconstruction of incomplete
contours caused by distortions resulting from low resolution.

As discussed in [13], the application of the Gaussian filter
in digital images is made from the discretization of the
continuous 2-D Gaussian function, described by (1). This
discretization enables the formation of a mask (or kernel)
of size n × n, with radially symmetric coefficients. The ob-
tained approximation is defined from the following parameters:
(i) σ, the standard deviation of the Gaussian function, and
(ii) n, the height and the width of the mask. The latter is
responsible for defining the precision of the filter since it limits
the number of values used to represent the Gaussian function.

f(x, y) =
1

2πσ2
e(−

x2+y2

2σ2
) (1)

Another important characteristic of the Gaussian filter is
its possibility of separation. As described in [15], separable
filters enable masks of size n × n to become two masks of
sizes n× 1 and 1× n. This property divides the convolution
in two operations, which allows the exploration of temporal
parallelism since the second operation can start before the end
of the first.

III. ARCHITECTURE

A. Convolution hardware

The main block of the Gaussian filter hardware accelerator
is shown in Fig. 1. The control block comprises counters and
comparators responsible for generating the control signals. The
delay line buffer is responsible for storing and sorting the
pixels of the window to be rendered. Finally, the processing
block executes the arithmetic operations between the pixels of
the current window and the filter coefficients (i.e., it executes
the convolution operation).

Fig. 1: Convolution datapath.

The delay line buffer is a memory that explores the char-
acteristics of storage and transmission of images and the
local properties of the sliding window operation to reduce the
number of accesses to memory. Typically, a digital image is
saved in a memory named frame buffer with its pixels stored
from left to right and from top to bottom. The access to
the pixels happens sequentially, with one pixel transferred at
each clock cycle. A convolution operation occurs by moving
a window (i.e., a small kernel such as a 3×3 square) over the
image in the same direction in which the image is accessed.
Taking advantage of these principles, a delay line buffer stores
the last values read in shift registers. Thus, the pixels that will
still be used in some convolution window are stored locally
by this buffer. Fig. 2 illustrates the internal structure of a
delay line buffer for a 3×3 window. It comprises nine 1-pixel
registers to store the nine pixels of the current window and
two row buffers that store the remaining pixels of the first two
rows of the current sliding window.

Fig. 2: Delay line buffer.

The different architectures for implementing the Gaussian
filter consist of variations of the processing block of Fig. 1 –
the convolution operator. The following subsections describe



the four variations implemented in this work, which are based
on architectures described in the literature.

1) 2-D Gaussian: The first architecture, illustrated in Fig. 3,
uses a multiplier for each filter coefficient and an adder tree
to compute the sum of products and generate the output pixel.
The adder tree enables several sums to be performed in parallel
and the use of pipeline stages to break the critical path and
increase performance. As Fig. 3 shows, the nine pixels of the
3×3 window are multiplied by a 3×3 mask composed of the
filter coefficients, i.e., the weights wi,j , where i = 0..2 and
j = 0..2.

Fig. 3: The 3×3 2-D Gaussian filter.

2) Modified Gaussian: This architecture considers a par-
ticular feature of the Gaussian filter, which repeats some
coefficients used to multiply the values of the current window.
This feature makes it feasible to reorder the operations so that
the pixels multiplied by the same values are added before
multiplication. As a result, this approach enables reducing
the total number of multipliers required, thus saving logic
resources. Fig. 4 illustrates how this architecture is imple-
mented to process a 3×3 window. Considering that the four
pixels at the corners of the window are multiplied by the same
coefficient (wc), and the four pixels in the neighborhood of the
central pixel are also multiplied by the same coefficient (wn),
this architecture requires only three multipliers to execute the
convolution on a 3×3 window. However, using this technique
can generate overflow, which can be avoided by using a larger
data word. Therefore, the costs regarding the adders are higher
than in the 2-D Gaussian filter.

3) Separate Gaussian: Another feature of the Gaussian
filter, which is found in other low-level processing filters, is
that it can be applied separately. For instance, the same result
of applying a 3×3 window can be achieved by horizontally
convolving a 1×3 window with the input image, followed

Fig. 4: The 3×3 Modified Gaussian filter.

by a vertical convolution over the image resulting from the
horizontal convolution. The architecture developed for this
implementation model is illustrated in Fig. 5. It comprises two
1-D Gaussian filters. It executes an 1×3 horizontal convolution
followed by a 3× 1 vertical convolution. The main difference
among the two filters relies on the delay line buffer since the
vertical filter uses a 1×3 buffer, whereas the vertical filter uses
a 3× 3 buffer. As in the previous architecture, it is necessary
to use a data word larger than that of the 2-D Gaussian filter
to avoid overflow.

Fig. 5: The 3× 3 Separate Gaussian filter.

4) LUT-based Gaussian: The fourth architecture uses the
memoization technique, and the multipliers of the Gaussian
filters are replaced by look-up tables. These tables store all
possible results of the multiplication between a pixel and
a given coefficient. As the input image is composed of 8-
bit pixels, a 256-entry LUT is implemented to replace each
multiplier of the convolution operator. It is worth noting that
these LUTs store constant values and can be implemented
using ROMs. This approach results in greater cost savings
than using RAMs, for example. Fig. 6 exemplifies how the
2-D Gaussian filter is implemented using LUTs to replace the
multipliers.



Fig. 6: The 3× 3 LUT-based Gaussian filter.

B. Communication

The transfer of data between the FPGA and the ARM
processor of the System-on-Chip (SoC) uses direct memory
access (DMA) employing the Intel DMA Controller® FPGA
IP core. The hardware architecture of the implemented com-
munication model is shown in Fig. 7. As we can see, the Hard
Processor System (HPS) uses bridges to communicate with the
input and output DMA controllers for writing the image into
the input frame buffer and reading the filtered image from the
output frame buffer, respectively.

Fig. 7: Hardware/Software Communication.

IV. IMPLEMENTATION AND RESULTS

A. Materials and Methods

First, we implemented the Gaussian filter in Python using
floating-point and fixed-point arithmetic. The goal was to
identify the impact of the use of the precision scaling technique
(described in Section I) on the resulting image quality. This
evaluation was made for data words composed of an 8-bit
integer part and different sizes for the fractional part (the
precision). We then performed the tests on the three 512×512
grayscale images shown in Fig. 8, which are classic images
for testing and evaluation of DIP algorithms. In both images,
we used virtual borders and applied the Gaussian filter using
a standard deviation of 1, as well as the kernels most used
in this kind of application (i.e., 3×3, 5×5, and 7×7). The
metrics used to assess the quality loss were Normalized
Mean Square Error (NRMSE) and Peak Signal-to-Noise Ratio
(PSNR). RMSE identifies the similarity of two images, and
the closer RMSE is to zero, the higher is the similarity.
PSNR expresses the ratio between the maximum power of
a signal and the power of the noise that affects the signal

representation. Images with PSNR above 20 db are considered
acceptable [16].

(a) (b) (c)

Fig. 8: Image data set: (a) Lena; (b) Baboon; (c) Barbara.

Next, we described a parameterizable synthesizable VHDL
model of each architecture designed for the Gaussian filter.
After description, we evaluated the need for larger data words
to avoid overflow in the Modified and Separated Gaussian
filters. Experiments demonstrated that the integer part of the
Modified Gaussian filter should equal 10 bits for the 3 × 3
window size, and 11 bits for the 5 × 5 and 7 × 7 sizes.
Experiments also showed that the Separated Gaussian filter
requires a 9-bit integer part for all the three window sizes.
With this approach, all the hardware implementations produce
results identical to those generated by the software fixed-point
implementation.

The synthesizable models were validated through simula-
tions using ModelSim simulator and employing physical pro-
totyping on the Cyclone V SoC 5CSEMAF31C6N device from
Intel®FPGA. This device integrates 3,972 Kbits of embedded
memory, 32,075 ALMs (Adaptive Logic Modules), and 87
multipliers (DSP blocks). Each ALM is composed of an 8-
input fracturable look-up table – LUT with four dedicated flip-
flops (or registers). The reader should not confuse the LUT
of the FPGA with the LUT of the memoization technique.
While the former is a 2m-bit RAM block (where m is the
number of inputs), the latter is a table of constants that can be
implemented in the FPGA using a ROM or logical equations
by defining an equation for each bit of the output data word.

After verification, we assessed the costs (occupancy of
logic resources and power dissipation) and performance (max-
imum operating frequency and processing latency) using the
toolset provided with the Intel® Quartus® Prime software
suite (version 18.1). From these indicators, we computed the
throughput, energy consumption, and power efficiency.

Following, we evaluated the impact of hardware/software
communication on the response latency for sending and receiv-
ing images and the acceleration of the hardware to a software-
based implementation running on the hard-core processor
embedded on the FPGA device. These tests were done using
a smaller version of the input image (100×100) due to the
memory constraints of the FPGA used. The communication
tests were performed on the Terasic DE1-SoC development
kit, which contains the above FPGA with a Dual-Core ARM®

Cortex™-A9 Hard Processor System (HPS) embedded on the
FPGA. In this experiment, we did not use the NEON unit
available in the Cortex™-A9. This unit provides a single-



instruction multiple-data (SIMD) instruction set to accelerate
media and signal processing applications. This assessment will
be done in future work.

B. Experimental Results

Table I summarizes the results obtained from the exper-
iments performed to assess the quality loss. It presents the
average of the indicators measured for the three images of
the data set. As we can see, using only four fractional bits is
sufficient to generate a PSNR greater than 20 (lower precisions
resulted in a PSNR below 20db). We can also observe that the
3× 3 kernel produces better quality indicators than the larger
kernels because the accumulated error rises when the number
of multipliers increases, indicating more similarity with the
image represented using floating-point. It is worth noting that
we do not consider the impact of the precision or the window
size in the noise removal of a noisy input image. Usually, the
wider the window, the better the filtering result. Evaluating the
quality of the filtering process with different window sizes is
outside the scope of this work.

TABLE I: Fixed-point versus floating-point representation

Format 3×3 5×5 7×7

NRMSE PSNR NRMSE PSNR NRMSE PSNR

Q8.4 0.06 29.86 0.06 29.77 0,06 29.75
Q8.6 0.02 41.91 0.03 35.88 0.03 36.59
Q8.8 0.00 81.55 0.01 44.40 0.01 44.48

Table II presents the costs and performance results obtained
for the 3×3 window using the 8-bit data precision, which was
the one with the best quality of results. Concerning the silicon
costs, we can see that the Modified and Separate architectures
use wider data words to avoid overflow, resulting in a higher
occupancy of ALMs than in the 2-D Gaussian filter. We also
note that the LUT-based filter is the architecture that occupies
more ALMs because it replaces the DSP blocks by ROMs (the
memoization’s LUTs), which are implemented through logic
equations in the ALMs. The number of DSP blocks in the
first three architectures varies with the number of multipliers
used, and the FPGA utilized can share the same block by two
operations. This feature is the reason why the number of DSP
blocks is a bit smaller than the number of multipliers of each
architecture (as it was shown in Fig. 3, 4, and 5).

TABLE II: Results for a 3× 3 window and 8-bit precision

Metric/Architecture 2-D Modified Separate LUT-based

Data format Q8.8 Q10.8 Q9.8 Q8.8
Number of ALMs 217 258 237 273
Number of DSP blocks 8 3 5 0
Fmax (MHz) 242 266 271 249
Latency (ms) 1.092 0.993 0.975 1.062
Throughput (frames/s) 916 1007 1026 942
Power (mW) 471.52 475.52 516.32 475.45
Energy (µJ) 514.75 472.25 503.22 504.84
Efficiency (kframes/s/W) 1.94 2.12 1.99 1.98

Regarding performance, all the architectures take a similar
number of clock cycles to process the image (about 264
Kcycles). However, the Modified and Separate architectures
achieved higher operating frequency and throughput. This
result is probably due to the balance between the number
of ALMs and DSP blocks occupied, which can facilitate
placement and routing by the compiler, thus producing a
shorter critical path.

Concerning the power costs, we observe that the Separate ar-
chitecture dissipates more power than the other filters because
it has two delay line buffers and control blocks, which increase
the switching activity. We also observe that the Modified
Gaussian filter consumes less energy and has a higher power
efficiency than the other architectures because it offers the best
trade-off between performance and power dissipation.

Table III presents the costs and performance results obtained
for the 3 × 3 window using the 4-bit data precision, which
was the one that obtained the lower acceptable PSNR. As
expected, the reduction of data precision enables obtaining
lower silicon costs because fewer ALMs are necessary, higher
performance (clock frequency and throughput) as the critical
paths are shortened, lower power costs (power and energy)
because the switching activity and the processing latency are
reduced, and higher power efficiency (an average of 7%) in
comparison with the 8-bit precision. This approach is a viable
solution for silicon- or power-constrained designs.

TABLE III: Results for a 3× 3 window and 4-bit precision

Metric/Architecture 2-D Modified Separate LUT-based

Data format Q8.4 Q10.4 Q9.4 Q8.4
Number of ALMs 187 212 213 201
Number of DSP blocks 8 3 5 0
Fmax (MHz) 248 278 268 265
Latency (ms) 1.064 0.949 0.988 0.996
Throughput (frames/s) 940 1054 1013 1004
Power (mW) 452.62 456.51 487.05 469.56
Energy (µJ) 481.56 433.12 481.01 467.82
Efficiency (kframes/s/W) 2.08 2.31 2.08 2.14

Table IV presents the costs and performance obtained for the
7×7 window using the 8-bit data precision– the configuration
expected to have the higher costs because it is designed to
process the larger window and the highest precision among
those evaluated in this work. By comparing these results
with the data presented in Table II, we can observe the
impact of increasing the window size to the indicators of the
hardware accelerator. First, the 2-D Gaussian filter has poor
scalability as it consumes much more DSP blocks than the
other architectures. Also, the larger the window size, the higher
is the number of ALMs occupied. Regarding performance, we
observe a degradation of the maximum operating frequency
and throughput due to the longer wires resulted from placing
and routing a larger circuit. The power dissipation is smaller
because the lower operating frequency reduces the switching
ratio. On the other hand, the energy is higher, and the power
efficiency is lower than those of the filters designed to work
with the 3× 3 window due to the lower throughput.



TABLE IV: Results for a 7× 7 window and 8-bit precision

Metric/Architecture 2-D Modified Separate LUT-based

Data format Q8.8 Q11.8 Q9.8 Q8.8
Number of ALMs 676 558 476 547
Number of DSP blocks 46 6 11 0
Fmax (MHz) 225 240 254 258
Latency (ms) 1.190 1.116 1.058 1.038
Throughput (frames/s) 840 896 946 963
Power (mW) 469.95 471.46 492.74 473.78
Energy (µJ) 559.25 526.28 521.09 491.87
Efficiency (kframes/s/W) 1.79 1.90 1.92 2.03

Fig. 9 summarizes the average indicators obtained for the
four architectures for three different window sizes. For each
indicator, the values are normalized regarding the maximum
value measured. This chart enables better assessing the impact
of the window size on the design metrics.

Fig. 9: Average indicators.

We also assessed the impact of the hardware/software inter-
face in the total execution time of the system and the speedup.
As mentioned before, we needed to downscale the image
resolution to 100×100 pixels due to the memory constraints
of the device available in the development kit used. Table V
presents the comparison between the software implementation
of the Gaussian filter running on the ARM processor and
the hardware implementations for the smallest data word
size of each architecture. The total latency includes the time
to transfer the image between the ARM processor and the
hardware accelerator (i.e., 130 µs) and the time to process
it on the hardware accelerator. From the results, we can see
that communication is responsible for more than 70% of the
time spent with the co-processing. However, as the software
execution is costly, the co-processing provides an acceleration
higher than 200 times over the embedded software execution.

V. CONCLUSION

This work presented a study on the impact of using archi-
tectures and two ACTs on the costs and performance of an
image filter implemented in FPGA. The results showed that
the use of approximate computing techniques could reduce
costs without affecting results for the target application, which
is an essential feature for further acceleration using parallel

TABLE V: System acceleration

Platform/Architecture Data
Format

Latency
(ms)

Throughput
(frames/s)

Hardware
Speedup

ARM/Software 32-bit IEEE 754 36.076 27.72 1
FPGA/2-D 8.4 0.1789 5591 202
FPGA/Modified 11.4 0.1726 5795 209
FPGA/Separated 9.4 0.1764 5668 204
FPGA/LUT-based 8.4 0.1730 5779 208

Note: ARM running at 800 MHz. Hardware accelerators working at their
maximum clock frequency. Kernel size = 7×7.

processing on hardware. Also, the exploration of the filter
features and parallelism enables to reduce costs and increase
performance.

As future work, we intend to compare the performance and
development effort of the filters implemented in FPGA with
software implementations based on the NEON of the ARM
Cortex-A9 processors integrated with the FPGA.

REFERENCES

[1] J. Redmon et al., “You only look once: Unified, real-time object
detection,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2016, pp. 779–788.

[2] A. Filippeschi et al., “Survey of motion tracking methods based on
inertial sensors: A focus on upper limb human motion,” Sensors, vol. 17,
no. 6, p. 1257, 2017.

[3] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, 2015, pp. 3431–3440.

[4] M. Dossis, “High level synthesis for embedded systems,” in Embedded
Systems: Theory and Design Methodology, K. Tanaka, Ed. BoD, 2012,
ch. 16, pp. 341–266.

[5] F. Vahid, Digital design with RTL design, VHDL, and Verilog. John
Wiley & Sons, 2010.

[6] F. Cabello et al., “Implementation of a fixed-point 2D Gaussian filter
for image processing based on FPGA,” in 2015 Signal Processing: Al-
gorithms, Architectures, Arrangements, and Applications (SPA). IEEE,
2015, pp. 28–33.

[7] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput Surv, vol. 48, no. 4, p. 62, 2016.

[8] T. Li et al., “Efficient parallel implementation of morphological opera-
tion on GPU and FPGA,” in Proc. of the IEEE Int. Conf. on Security,
Pattern Analysis, and Cybernetics (SPAC). IEEE, 2014, pp. 430–435.

[9] D. G. Bailey, Design for embedded image processing on FPGAs. John
Wiley & Sons, 2011.

[10] R. Menaka, S. Janarthanan, and K. Deeba, “FPGA implementation of
low power and high speed image edge detection algorithm,” Micropro-
cess Microsyst, pp. 103 053–1–103 053–7, 2020.

[11] D. Sangeetha and P. Deepa, “Fpga implementation of cost-effective
robust Canny edge detection algorithm,” J Real Time Image Process,
vol. 16, no. 4, pp. 957–970, 2019.

[12] Z. Xiangxi et al., “FPGA implementation of edge detection for sobel
operator in eight directions,” in IEEE Asia Pacific Conf. on Circuits and
Systems (APCCAS). IEEE, 2018, pp. 520–523.

[13] C. Solomon and T. Breckon, Fundamentals of Digital Image Processing:
A practical approach with examples in Matlab. John Wiley & Sons,
2011.

[14] R. Szeliski, Computer Vision – Algorithms and Applications, ser. Texts
in Computer Science. Springer, 2011.

[15] A. Joginipelly et al., “Efficient FPGA implementation of steerable
Gaussian smoothers,” in Proc. of the 2012 44th Southeastern Symp. on
System Theory (SSST). IEEE, 2012, pp. 78–82.

[16] D. Salomon, Data compression: the complete reference. Springer, 2004.


	Introduction
	The Gaussian Filter
	Architecture
	Convolution hardware
	2-D Gaussian
	Modified Gaussian
	Separate Gaussian
	LUT-based Gaussian

	Communication

	Implementation and Results
	Materials and Methods
	Experimental Results

	Conclusion
	References

