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Abstract—Odometry is a common problem in navigation sys-
tems where there is a need to estimate the position of the vehicle
or carrier in the environment. To perform autonomous tasks,
robotic or intelligent devices need to be aware of their position in
the environment. There are many strategies to solve an odometry
problem. This work explores a visual odometry solution with a
deep neural network to infer the robotic vehicle’s position in a
known and mapped environment. The first robot, equipped with
a LIDAR, IMU, and camera, maps the environment through
a SLAM technique to perform this task. The data gathered
by this first robot is used as ground truth to train the neural
network, and later, other robots with only one camera can locate
themselves in the environment. We also propose a validation and
evaluation of the neural network.

Index Terms—mobile robotics, odometry, edge-computing,
deep neural networks, Robot Operating System

I. INTRODUCTION

Odometry is a common problem in navigation systems
where there is a need to estimate the position of the vehicle
or carrier in the environment. To perform tasks such as
autonomous navigation and obstacle avoidance, the platform
needs to contain and preserve information about its position
and orientation in space [1]. However, the odometry problem
can be solved by many different strategies. The most common
strategy to locate the vehicle position is through GPS (Global
Positioning System) devices [2]. These devices rely on global
satellites and radio waves to output a position on the earth’s
surface. Hence, GPS devices sometimes are not the best choice
for self-localization because of low signal in forests, caves, or
even underwater.

To the use mentioned above cases, alternative strategies can
be used to determine the position and orientation of the vessel.
Hereafter we present the most common strategies: visual, laser,
wheel, and IMU odometry. The visual odometry consists of
estimating the position from the difference between images
and can be done with stereo cameras [3] or monocular cameras
[4]. The laser odometry is based on the estimation of the robot
position by finding environment features through planar or
spatial LIDARs (Light Detection and Ranging) [5]. The wheel

odometry is measured by wheel encoder sensors that sense
how much and how fast the vehicle wheels are spinning, thus
calculating the wheel revolutions such as early NASA’s Mars
rovers [6]. The IMU (Inertial Measurement Unit) odometry
uses the IMU measurements to calculate the position. In order
to perform this task, the IMU outputs the acceleration and
gyroscope on each of the three axes [7].

All of the mentioned strategies contain limitations and an
associated cost, both computational and financial. In this work,
we explore deep neural networks to solve a visual odometry
problem. Deep neural networks are artificial neural networks
that mimic the behavior of biological neural networks and have
been used to solve a vast number of computer vision problems,
as shown by Voulodimos et al. [8].

We also explore a SLAM (Simultaneous Localization and
Mapping) approach to gather the needed data to build our
network ground truth. SLAM is a technique in which the vessel
both maps the environment and locates itself in it, and it can
be achieved in several ways, with multiple sensor types [9].
In this paper, we propose a different approach to the visual
odometry problem. We trained a regression neural network
to locate a vehicle/vessel in an already known and mapped
environment. To perform this task, we used the map generated
by the SLAM algorithm as our ground truth. This allows us
to relate an image with a given position and orientation on the
map. This strategy can be applied to a use case where there are
two or more robots. The first robot explores the environment
first and then creates the map and builds the dataset to train
the network. This network enables other robots to extract a
position from a monocular image.

To describe our approach, we present the theoretical ref-
erences used to complete this work in Section II and III. In
Section IV, we describe the robot’s features and configurations
used. We also present the training, evaluation, and dataset col-
lection methodology for the regression deep neural network.
In Section V, we show the results obtained by our approach.
Finally, in Section VI we discuss the results achieved and
future improvements.



II. THEORETICAL REFERENCES

In this section, we present the theoretical references for the
presented proposal. Initially, we discuss the Edge AI perspec-
tive and its implications, as well as some implementations.
Then, we present some discussions on mobile robotics and
SLAM algorithms. These are the two key concepts behind the
idea proposed in this work.

A. Edge AI

The information age, driven by the significant increase in
computing and storage devices, is taking cloud computing
services to the edge [10]. Artificial Intelligence (AI) appli-
cations through Deep Neural Networks (DNNs) highlighted
the challenge of performing intensive tasks in the cloud and
with limited computing resources and, currently, the benefits
of artificial edge intelligence (edge AI) can be introduced in
the Internet of Things (IoT), with more powerful edge devices
[11]–[13].

The combination of edge computing and cloud computing
applications brings benefits such as backbone network allevi-
ation, reducing network overhead, increased response speed,
and robust cloud backup when the edge cannot afford [10].
In addition, edge computing takes cloud computing power to
the edge, bringing tasks and data closer to end devices and
allows DNN-based applications to run responsively with real-
time edge AI support [11], [13].

Shi et al. (2020) [13] presented the main challenges for the
communication of edge AI systems and presented efficient
communication techniques for training and inference tasks.
For Lin et al. (2020) [14], the explosive growth of internet-
connected mobile computing and IoT applications will gener-
ate zillions of bytes of data at the network edge pushing the
boundaries of AI to the edge.

Mazzia et al. (2020) [15] implemented an embedded edge
AI solution for real-time apple detection in orchards, with the
YOLOv3-tiny algorithm on three embedded platforms. Klippel
et al. (2020) [16] implemented an edge AI solution to detect
failures in iron ore conveyor belts. Thus, work with edge
AI applications increasingly contribute to the deployment of
intelligent solutions on edge.

B. Mobile Robotics and SLAM

Mobile robots are mechanical systems capable of interact
and move in the environment. However, regulate the commu-
nication between sensors, actuators, and algorithms can be a
challenging task. To perform this task, a series of sensors,
actuators, and a type of intelligence (through algorithms or
routines) must be implemented in the robot [17].

The ROS (Robot Operating System) is an open-source meta
operating system for robots. ROS has a series of services
and other OS features for robots. It can facilitate the pro-
cess of building a modular and cohesive robot due to its
publisher/subscriber architecture [18]. ROS also comes with
a powerful tool for 3D visualization and interaction with the
robot’s environmental sensing, called RViz [19]. RViz helps
understanding how the robot is interpreting the sensed data,

which is also helpful for debugging. Another advantage of
ROS is the wide availability of open-source algorithms, from
simple motor controllers to more complex SLAM techniques.

There are numerous SLAM algorithms available to use in
ROS, and each one will fit a use case. In this work, we use a
planar LIDAR for the SLAM process. Santos et al. [20] pro-
pose an evaluation for 2D planar LIDAR’s SLAM algorithms
available in ROS. According to their work, gmapping [21] and
HectorSlam [22] show one of the smallest error accumulations
in SLAM for 2D planar LIDARs. In Section IV we present
the results of applying both of these algorithms in our robot.

Mobile robots are required more processing power given the
growing features a robot needs to perform complex tasks. In
this case, two approaches are viable: using powerful embedded
hardware or distributing the computation through the network.
Due to its publisher/subscriber architecture, ROS enables an
easy way to distribute the computation across multiple devices
[23] [24].

Silva et al. [25] shows a data quality test between multiple
devices consuming data from a robot. Their work displays that
the real-time quality factor decreases as more devices connect
to the network. This information indicates that for real-time
processing use cases that rely on multiple devices connected
to the same network, it is interesting to have more powerful
platforms embedded in the robot. This analysis outlines the
edge computation paradigm [26].

III. RELATED WORK

Odometry has a critical role in robotic devices, and as pre-
viously mentioned, there are different techniques to measure
it. Our related works section focuses on papers that use deep
learning, LIDARs, or visual odometry in mobile platforms.
Then we outline the differences between our approach to
theirs.

In Shan et al. [5], they introduce a lightweight and ground-
optimized lidar-based odometry. Their work concerns keeping
a lightweight application to improve performance on embed-
ded devices like NVIDIA’s Jetson family products. The critical
part of their approach is that their odometry measurement
relies on the LIDAR sensing the ground, making the use case
of their strategy restricted to 3D lasers, which can increase
the robotic platform’s cost. Our approach focuses on having
only one robot with a lower-cost planar lidar to map the
environment and then using the created map to feed a neural
network that enables other robots to traverse the mapped
environment with only a monocular camera.

Both Zhan et al. [27] and Li et al. [28] propose monocu-
lar camera-based odometry through pixel motion prediction.
These approaches also use deep learning to predict the move-
ment between the pixel motion from frame t1 and t2. This
data enables their network to extract depth information on the
monocular image and predict the position and pose of the
vehicle/robotic platform. They also outline their performance
on KITTI dataset benchmarks but cannot be compared due to
different metrics used to measure their error. In our work, we
do not measure pixel variation. We only relate a frame with



a position on the mapped environment. Then we feed these
positions with their respective images to a regression neural
network to predict the vessel position within the mapped
environment.

Yan et al. [29] fuses two popular visual odometry algo-
rithms, LOAM (Lidar odometry and mapping) [30] and viso2
[4] to extract odometry information. The viso2 algorithm has
a known error rate for monocular cameras. They propose and
compare three fusion methods to benefit from both algorithms
and thus strengthening the accuracy and decreasing the odome-
try drift error. In our approach, we fuse the rf2o ROS package
with IMU information for a more accurate position ground
truth training for the network. This data fusion increases
odometry precision due to the robot’s orientation given by
the IMU which strengthens the measurements.

IV. METHODOLOGY

In this section, we introduce the robotic platform and the
adopted training methodology for the neural network. The
text splits into three subsections, one to describe the robotic
platform, the other to outline the ground truth building process,
and the last one to detail the neural network’s training process.

A. Robotic Platform

The robotic platform used in this work uses a Raspberry Pi
4 as the central hardware unit. This unit represents our master
node in ROS architecture, where most of the algorithms exe-
cute. The robot is equipped with four motors with mecanum
wheels for omnidirectional locomotion in the environment.
We also have an IMU connected to an Arduino Uno, which
communicates to the master node through the serial ports. Our
main SLAM sensor bases on the planar LIDAR X2 by Ydlidar.
The X2 LIDAR is a low-cost laser with a scan frequency of
7hz and a range distance of 8 meters, which is enough for
our indoor testing purposes. We use the company’s ROS node
to publish the laser information as a native ROS LaserScan
message type. Regarding the robot’s alimentation system, the
motors are fed by a 12V Li-Po battery, and the rest of the
system is powered by a regular 5V power bank.

We also created a URDF (Universal Robot Description
File) with the purpose of better visualization of the robot’s
interaction with the map in RViz tool. The URDF is also
needed to display the correct transformations from the robot’s
position in the SLAM map. Figure 1 shows the robotic
platform and its URDF on RViz.

B. Ground Truth Collection Methodology

To collect our ground truth, as mentioned in Section II, we
evaluated two SLAM methods. In the process of environment
mapping through SLAM, we developed a teleoperation mod-
ule. Due to its mecanum wheels, our robot can move freely
in both x and y axes, so we developed an omnidirectional
teleoperation script.

At first, we used HectorSlam with no specific odometry
data. HectorSlam has a configuration mode where it only gets
the odometry through the laser and other global optimizers.

Fig. 1. Real robotic platform and its virtual representation in URDF.

This configuration mode can be useful for robots or mobile de-
vices that cannot retain more reliable odometry measurements.
We achieved good mapping results with this configuration, but
laser-only odometry resulted in a few mapping errors when
the teleoperation needed to maneuver the robot to rotate in its
axis. This condition is where the omnidirectional model of our
robot was helpful to get a good map, but visually, it was still
not accurate enough to use as a neural network’s ground truth.
Figure 2 shows the errors we got using HectorSlam with this
configuration.

Fig. 2. HectorSlam rotation errors.

To improve our map, we configured odometry through ROS
package rf2o [31] planar laser odometry. This package outputs
the robot position in the three possible axes (x,y,z), and these
values measurements are in meters. For better odometry data,
we added an IMU and fused its orientation output with the
position information from the laser, given by the rf2o package.
We publish the fused data on the /odom topic. From this
odometry data, we validated the output laser position with a
measuring tape, measuring the robot displacement in both x
and y axis.

The rf2o package fused with orientation from IMU had
better mapping results in HectorSlam when the robot spin
on its axis. However, if we spin the robot too fast, the laser
feature-based odometry would still be lost, and consequently,
the map accuracy decreases. To improve this, we changed
the SLAM algorithm to Gmapping. The results achieved by
Gmapping were better, considering the robot’s spin on its axis
problem. Figure 3 shows the environment map, captured by
Gmapping.



Fig. 3. Mapped robot environment through Gmapping algorithm.

Once we were able to get a good SLAM map, we built a
script to relate an image to a specific position within the map.
The script captures an image through a Logitech C922 USB
camera and then subscribes to the /odom topic to register the
current robot’s position and pose. Our ground truth annotation
file consists of an image filename, the robot’s current x and y
position, and we also compute the robot’s orientation through
the yawn Euler angle value.

To create the dataset, we teleoperated the robot through the
environment capturing the images and relating these images
to a particular position. We fixed a starting point in the
environment to be the origin of our map. Thus, all of the
collections needed to start at this same point so that the data
could make sense. The created dataset contains 6203 images
for training and other 1183 images for testing. The robot’s
environment considered for this work is a domestic scenario,
where the robot does the mapping.

C. Training Process

To train the network, we tested three different neural
network architectures. The proposed network architectures
receive a 640x480 RGB image and output the x and y position
in the map and the robot’s orientation. Therefore, we trained
a custom model architecture and other two with literature
known backbones. Our custom model is a simple network with
five convolutional layers, alternating with five 2D max-pooling
layers. We also add two dense layers at the end for the output.
We use ReLu as the activation function for all layers, except
the last layer, which has a linear activation function. We also
used MAE (Mean Absolute Error) as our loss function and
Adam as the optimizer. The second network that we used is
based on VGG-18, and the third uses a ResNet50 backbone.
We also added two dense layers at the end of each network

to output the desired values. Using these pre-trained weights
benefits the model to learn faster. All models were trained
through 250 epochs.

V. RESULTS

To evaluate the trained model’s accuracy, we used the mean
Euclidean distance as a metric. This metric calculates the
distance in centimeters between the predicted robot’s position
and ground truth. The mean distance from predictions and
ground truth and the standard deviation from each model are
shown in Table I.

Model Mean Error Distance (m) Standard Deviation

ResNet50 0.4587 0.4924
VGG-18 0.7587 0.5752

Custom Model 0.6299 0.8774

TABLE I
MODEL COMPARISON WITH THE EUCLIDIAN DISTANCE METRIC.

Table I shows that the ResNet50 model has the smallest
mean error and deviation. We have to consider that this model
has 50 layers, which is considerably larger than the others.
It had a 45.87 centimeters mean error which corresponds
to roughly 10.02% of the biggest distance in our mapped
environment, which is 4.5758 meters. The VGG-18 model
had the largest mean error, which corresponded to 75.87
centimeters, a 16.58% variation from our biggest distance.
Lastly, our custom architecture performed 62.99 centimeters
mean error, which corresponds to 13.76% of the biggest
distance. Although our model performed better than the VGG-
18 architecture, its deviation was considerably larger.

We also propose a visual form of evaluation of the models.
Through a scatter plot, it shows the correspondence of the
ground truth positions with the predicted ones. The scatter
plot is useful to visualize whether the predicted points fit the
ground truth since we use a regression model. Figure 4 shows
our custom model scatter plot, where we can observe that there
are still some errors in predicting the robot’s position. While
in Figure 5 we show the scatter plot of the VGG-18 indicating
that it also makes wrong predictions, as Table I shows. Figure
6 displays the scatter plot of the ResNet50 model, and it was
the model that best fitted the ground truth. These visual graphs
agree with our metric of evaluation, displayed in Table I. Thus,
we chose the ResNet50 model for further evaluation.

For better evaluation of the ResNet model, we analyzed an
error histogram. Figure 7 shows this error histogram performed
by this model. It displays that most of the errors are within the
mean error distance showed in Table I. We also built a boxplot
to analyze the error dispersion. Figure 8 shows this boxplot. In
this graph, we can see that the error is well distributed through
the mean error showed in Table I.

VI. CONCLUSIONS AND FUTURE WORK

This work presented a deep learning approach to the visual
odometry problem applied to a mapped domestic environment.
We collected the ground truth relating an image to a position



Fig. 4. Custom model prediction/ground truth scatter plot. Ground truth points
in red, and prediction points in blue.

Fig. 5. VGG-18 prediction/ground truth scatter plot. Ground truth points in
red, and prediction points in blue.

and orientation in the map. We also evaluated three neural
network architectures to predict the robot’s position and pose.

For this matter, we proposed a methodology using a Robotic
Platform containing a raspberry pi 4, four motors with omnidi-
rectional mecanum wheels, and an Inertial Measurement Unit
(IMU). Furthermore, the platform also uses an Arduino Uno to
handle some tasks. There is also a virtual correspondent model
integrated using the Robotics Operational System (ROS). The
robot performed planar laser odometry with the help of the
IMU and related the positions with images captured from a
camera.

To obtain a model to approach the visual odometry, we col-
lected 6203 images using the process described above. Then,
we proposed the usage of three different CNN architectures.
At first, we tried to use a custom CNN model with five
convolutional layers with 2x2 max-pooling layers afterward.

Fig. 6. ResNet50 prediction/ground truth scatter plot. Ground truth points in
red, and prediction points in blue.

Fig. 7. ResNet50 model error histogram.

Fig. 8. ResNet50 model error boxplot.



We experimented with the VGG-18 layer as the backbone,
changing the final layers to the proposed function. Finally, we
also tried using ResNet50 as the backbone.

The evaluation process showed that a ResNet50 model was
able to learn more of the environment’s features. This model
displayed the lowest error rate between the three evaluated
models. The mean error of 45.87 centimeters is still high,
considering the environment’s total size of 4.5758 meters. To
improve this, we can collect more data and analyze it through
our defined metrics.

In future improvements of this work, we will evaluate a
metric to validate the orientation information of the network.
This evaluation method was not found in the literature within
a scope that would make sense to our application. Another
future improvement is a method of validating the LIDAR’s
measurements through a computer vision algorithm.
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