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Abstract—In this century, intelligent devices are increasingly
present in our lives, such as at work, in sports, or in household
chores. In this context, wearable devices can help people with
health monitoring or sports activities. With the integration of
artificial intelligence (AI), these devices can identify injuries in
athletes or care for the elderly in rehabilitation from human
activity recognition (HAR). AI techniques, such as image classi-
fication or HAR, are commonly applied for pattern recognition.
In this context, we seek to develop a smart wearable device
to recognize walking activities. To improve the identification of
these tasks through AI algorithms, we propose the fusion of data
between four sensors called SPUs. Each SPU has NodeMCU ESP-
32 and BNO080 IMU hardware in its architecture. The data
from these hardware provides information in high precision. A
Raspberry pi zero W collected this information. After extracting
and manipulating this data, we trained a deep learning model.
The model accuracy was higher than 92% reaching an overall
accuracy of 97%. Therefore, the smart wearable device showed a
new tool for recognizing walking activity, which could be applied
in the future to recognize more complex tasks.

Index Terms—HAR, LSTM, Wearable, Sensors, Walk, AI.

I. INTRODUCTION

Computing devices are being improved due to advances in
internet of things (IoT) technologies and AI, enabling new
applications. Given this, wearable sensors are increasingly
present in our lives [1]. Using these devices in HAR, such as
walking monitoring, can provide valuable information about
the user’s lifestyle or health status [2]. The integration of
wearable sensors in the HAR can help people in health care,
such as detecting neurological disorders that affect motor
activities, home rehabilitation, and evaluating the effectiveness
of treatments [3].

Systems intended for HAR usually use deep learning meth-
ods to identify tasks based on data sent by sensors [4]. This is
due to the efficiency of these models in the learning phase, as
they do not entirely depend on pre-processed data like machine
learning models, so their performance is higher in performing
these tasks. Wearable devices commonly used in this context

are smartwatches, as they have several integrated sensors,
such as an accelerometer and gyroscope [4], and smartphones
which, in addition to having several sensors in their physical
system, interface with real-time applications [5]. The data
collected and stored by these devices provide the information
for intelligent algorithms and consequently present significant
decisions to the user.

Single sensors have disadvantages in using the generated
data compared to other wearable devices for HAR [6]. Sames
studies have proposed data fusion methods where they com-
bine information from multiple sensors to increase the relia-
bility of the systems for the HAR, which addresses possible
problems in recognition of activities by generated data [7].
However, for the system to perform an activity recognition
efficiently, it is necessary to integrate other sensors into the
recognition system [8]. Thus, the work presents the HAR from
the data received by multiple sensors. This becomes possible
due to the use of deep learning methods as they perform data
learning with data fusion techniques [9].

Therefore, we propose a novel smart wearable device to
HAR. The main contribution of this work is: The main
contribution of this work is:

• The proposal of novel smart wearable sensors to classify
walking and stand positive for future sports analysis.

For that matter, Section II presents the theoretical references
used in this work. In Section III, we describe the system’s
main features. We present the methodology for validating
aspects of this system in Section IV. In Section V, we display
the results of an analysis of the data and its interpretation.
Finally, in Section VI, we discuss the results obtained and a
comprehensive discussion of this work and future applications.

II. THEORETICAL REFERENCES AND RELATED WORK

This section presents the results of some literature reviews
with an overview of wearable devices. It covers the fundamen-
tal aspects and applications in this context.



A. Wearable Systems
Wearable systems can be defined as a device that involves

a type of technology that the user can wear or as an accessory
on the body, for example, watches or headphones [10]. This
type of device is expanding in the market and research areas
[11], a promising area that will likely be present in several
niches in the coming years.

The main components of wearable devices are micro-
controllers, sensors, actuators, and Software [12]. The com-
munication between wearable systems or sensors can be done
through textile conductors, which are flexible and used for the
construction of circuits. Also, for wireless connectivity, wi-fi
or BLE has lower power consumption than classic Bluetooth
[13]. Another important factor is the electrical energy used
to run the entire system. This energy can be needed through
portable batteries, being independent for each component of
the system or centralized for the entire wearable system.

Thus, wearable devices can be simple, including sensors
and raw data capture [14]. However, improved solutions, with
integrated AI algorithms and real-time image processing tech-
niques [15], expand the possibilities of using this technology
for the end-user.

B. Wearable Systems Design
Understanding wearable systems and their components is

essential to define the design and architecture to optimize the
resources used [16], such as memory and energy consumption
[17]. The way the components are organized can define
their architecture. In a decentralized architecture, tasks are
divided, and there can be communication between hardware
and sensors via wireless or Bluetooth [18]. In a centralized
architecture, the task is processed on the leading hardware,
and the components are connected directly to the hardware
[19].

In developing the wearable device in this work, we tried to
distribute the task of sending information in four sensors. This
information is sent via Bluetooth to a central device to store
the data. Thus, we preserve the device’s energy resources that
are resource constrained.

C. Applications of Wearable Systems to HAR
In the literature, we find applications of HAR with wearable

sensors [20] [21]. These applications can be integrated into
different areas, such as the health area [22]. One of the appli-
cations in this context is the identification of a neurological
disorder in the user, such as Parkinson’s [23].

However, these works found in the literature use simple
sensors for activity recognition, as well as a single sensor
[24]. These aspects differ from the proposed work because,
in addition to using four sensors in accord with Figure 1,
the hardware used has high precision in providing space
information.

D. Wearable Edge AI
The AI integration in wearable systems is intended to

provide users with information about data collected and pro-
cessed at the device’s edge. There are still many challenges

in applying Deep Learning (DL) in a wearable device [25],
which can be due to a large number of neurons and layers of
the network. Also, privacy and system latency problems are
to be solved in this context.

Deng et al. [26] propose a model adaptation, Framework
Design, and Processor Acceleration to solve a resource restric-
tion. They show that these challenges can be addressed through
new system architecture, thus increasing AI performance.
Other literature shows that there is difficulty in running an
AI model on a wearable device due to the requirements of the
system [27]. The authors apply low latency offload techniques
to solve the classification problem and improve accuracy for
detecting critical points on objects.

III. SYSTEM DESCRIPTION

In the previous sections, we presented the context and
importance of the presented work and the main concepts and
related work within this topic. In this section, we present the
proposed system architecture, covering the hardware used by
the sensors and its elements.

A. Wearable Sensors

The data used throughout this project is gathered and
pre-processed using a specific wearable solution attached to
the user’s lower body. This device trusts a set of high-end
IMUs (Inertial Measurement Unit) to collect the leg’s physical
movement.

Fig. 1. Wearable device used to collect individual’s movement data. High-
lighted areas indicate the location where each device is positioned.

Within this project scope, two distinct classes of hardware
have been used and compose the final solution: The Sensor
Processing Unit (SPU) and the Wearable Processing Unit
(WPU). Figure 1 outlines the position of each element when
attached to the individual’s body. Briefly, the data is collected
in a distributed manner using the SPUs, then forwarded to



the WPU. At the WPU, received information may be pre-
processed and sent to an external server or stored locally
within an SD-card (flash memory).

1) Sensor Processing Unit – SPU: The SPU uses four
different units attached to the user’s legs to collect raw real-
time information according to the activities performed by the
individual. Each of these units embeds the following hardware:

• BNO080 IMU: 9-degrees inertial sensor comprising ac-
celerometer, gyroscope, and magnetometer readings. It is
used to retrieve body parts’ physical orientation.

• Lithium-Ion battery;
• NodeMCU ESP-32: Hardware platform based on Espres-

sif ESP-32 solution. It is in charge to read data sensed by
IMU and continuously forwarding it to WPU hardware
using the Bluetooth interface.

2) Wearable Processing Unit – WPU: The WPU comprises
hardware in charge of receiving data collected by the SPUs,
sequencing it – timestamping each received packet – and: a)
Store it locally for further analysis, or b) Send it to a remote
server/service using the IEEE 802.11 wireless interface. The
WPU embeds the following hardware:

• Raspberry Pi Zero W:
• Humidity and temperature sensors:
• BNO080 IMU: 9-degrees inertial sensor comprising ac-

celerometer, gyroscope, and magnetometer readings. It
retrieves upper body physical orientation, temperature,
and humidity.

Fig. 2. Full walk cycle [28]

B. Long short-term memory (LSTM)

Long short-term memory (LSTM) are recurrent neural
networks (RNN) capable of classifying sequential data due
to their learning memory storage characteristics [29] [30].
These deep learning networks are commonly used for event
recognition by time series analysis, as in HAR [20].

Data from the SPUs is sent to the raspberry pi zero W over
time. With this, the fusion of data from the four sensors forms
a specific event over time. This condition enables the LSTM
to classify the activity within a specific time series interval.

IV. EXPERIMENTAL METHODOLOGY

In the last section, we presented an overview of the proposed
system. This proposal embraces the usage of an AI algorithm
for HAR. This section presents the experimental methodology
to validate some aspects of the proposed solution.

A. Data Preparation

We mount a database [31] to validate the use of the smart
wearable device. This dataset has three categories: Walking,
standing, and sitting. The four SPUs send data to the Raspberry
pi zero W at a particular sampling frequency, with a specific
range of values. The signal received by the Raspberry pi zero
W is composed of the components I, J, K, REAL, and Radians,
corresponding to the quaternions. Although the sensors are
identical, the constructive aspects can influence data sending
at a non-constant sampling frequency.

The input data for training the algorithm must have a
normalized format, for example, a certain number of samples
per second over time. The literature suggests that about
50Hz is an adequate sampling rate that allows for modeling
human activities [32], so it does not interfere negatively with
the machine learning model results. It is also important to
emphasize that, for the purpose of this study, the data were
collected by a single person, thus ensuring the homogeneity
of the information. The pre-processing of the collected data
sets was carried out to make them homogeneous in terms of
the sampling rate to maintain the data’s homogeneity.

B. LSTM model

For developing the deep learning model with LSTM, we
adopted a value of 10 for the sliding window length with steps
equal to 2. We see that the model achieves better precision
in this small interval compared to steps and sliding window
lengths with superior values. The sequential LSTM model
is composed of the first bidirectional layer with orthogonal
kernel and L2 regularizers, as well as a Flatten layer, another
Dense layer of 128 Relu activation followed by a dropout of
0.2, and finally, another Dense layer with softmax activation.
Also, the model was compiled with the Adam optimizer using
the categorical loss function cross-entropy and standard metric
accuracy. However, the model was trained for 20 epochs, an
adequate amount for this amount of input data in the algorithm.

The choice of metrics is essential for evaluating the AI al-
gorithm [33]. For evaluation of the model, using the following
standard metrics: Precision, representing the number of data
classified as belonging to a class, is the true positive; Recall,
which evaluates the system’s ability to find all positive samples
in the set; F1-score, the weighted harmonic mean between
precision and recall.

C. SPU’s

For this matter, we make a data collecting in a fixed position
to make calibration of the algorithm according to Figure 1.
Before building the AI model, data analysis was performed
to understand how the sensors send data to the Raspberry pi
zero W. The sensors were positioned as shown in Figure 1. We
considered the four components, I, J, K, and R, to compose the
training data. These components receive the following names
respectively:

• Quaternion I + ID = Q-I-ID
• Quaternion J + ID = Q-J-ID
• Quaternion K + ID = Q-K-ID



• Quaternion R + ID = Q-R-ID

V. RESULTS

In the last section, we presented the experimental set for
evaluating the proposed method. We evaluate significant fea-
tures for the creation of sensors. In this section, we present
the results obtained from the proposed tests. Also, we display
our preliminary conclusions based on each result.

A. Sensors Performance Test

Fig. 3. Cycle for walking activity: collecting data.

The sensors collected the data for the walking activity as
shown in Figure 3 and also in two other positions, sitting and
standing. For the analyses, 30 executions of the systems were
performed for each of the three states. After each run, we
turned off the equipment and recharged the sensors and the
Raspberry pi zero W battery. This measure was necessary to
ensure that the system always worked the same way.

Figure 4 shows data collected by the sensors for the walking
activity as shown. In the time interval of approximately 60
seconds, we can see that in this activity, the components of the
lower sensors suffer oscillations with larger amplitudes com-
pared to the upper sensors. In the Quaternion-Real component,
this information is more evident. Thus, we see the importance
of adding four sensors to perform HAR in this context.

Figure 5 shows the data in a time window of approximately
60 seconds, representing a person in the standing position. We
can see more considerable oscillations between the intervals
of 40 to 60 seconds. This observation can be due to small
movements of the user’s foot position, being rotations of the
foot positions outwards or inwards. It is also noted that most
of the time, the data remains with almost constant values.

Finally, in Figure 6, we have the last position under analysis,
with the user seated. In this window of data components, we
observe that there are not four significant amplitude variations
in the sensors. This result is why in this temporal window, the
static is used, with almost imperceptible movements. Slight
movements can be important to analyze in future work. As in
the literature review, recognizing neurological diseases, such

Fig. 4. Walk

as Parkinson’s, can be with the help of intelligent systems
based on the data observed by these wearable sensors.

B. LSTM - Performance Tests

This section shows the results of training tests on the deep
learning model developed for HAR. Table I, presents the
results of the validation metrics of the AI model mentioned
in section IV. For the precision, recall, and F1-score of the
model, the results were higher than 92%. Thus, the LSTM
model used presents a high performance in this context.

TABLE I
METRICS FOR THE LSTM MODEL

Precision Recall F1-Score Support
Seated 1.00 1.00 1.00 68
Stand 0.98 0.95 0.95 63
Walk 0.92 0.98 0.95 59
Macro average 0.97 0.97 0.97 190
Weighted average 1.00 1.00 1.00 190
Global Accuracy: 97%

Figure 7 shows the training results for the LSTM model.
Despite containing some oscillations in error at each epoch in
training, it is noted that there is a tendency towards zero. Thus,
these results do not show overfitting, showing a satisfactory
convergence for the model. However, after 26 epochs, the
model obtained a validation accuracy of 97%. Finally, Figure



Fig. 5. Stand

8 displays the results for the test for LSTM model. In this test,
we see that the model accurately classified the data between
the three classes.

The intelligent wearable device developed in this work
showed satisfactory results for recognizing walking activity.
Using single sensors for HAR can present similar information
in different activities. Thus, using the four sensors was an
essential aspect of constructing the deep learning model. for
future work, we can use this smart wearable device in other
HAR with high performance.

VI. DISCUSSION

This work presents the importance of smart wearable de-
vices in the HAR context for walking activities. In the first
sections of the work, we understand the need to develop a new
smart wearable device and the constructive aspects necessary
for integrating a deep learning model.

The literature review showed that HAR using wearable
devices allows applications in several areas. The HAR theme
has become a relevant approach in mobile computing. This is
due to the increasing development of new technologies such
as more compact hardware and the increase in the computing
powers of these devices, which allows the integration of
increasingly efficient AI algorithms. Thus, it creates new ap-
plication perspectives for new wearable devices in the context
of HAR.

Fig. 6. Seated

Fig. 7. Evaluation of the accuracy and loss values for the training and
validation sets.

Extracting information is challenging in the HAR pipeline
based on wearable sensors. The complexity of the data, such
as the sampling rate at which the data is sent, can influence
the performance of the AI model. Thus, we adopt wireless
communication methodologies to avoid problems in data trans-
mission to the WPU. In the data collection, we tried to leave
the sensors always positioned uniformly, allowing our samples
to present more homogeneous results without many variations.

Data fusion between the sensors proved to be effective for
the recognition of walking activity. With these input data in
the LSTM model, we achieved a high accuracy of 97%. Thus,
with the aid of the AI model, the new wearable device proved
to be effective for the recognition of walking activity based



Fig. 8. Confusion Matrix

on the extraction of information by four SPU sensors sent to
the WPU.
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