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Abstract—IEEE 1516-2010 High Level Architecture (HLA) is
a standard used to build simulators that support interoperability.
This standard requests a set of rules described in a Federation
Object Model (FOM), which is an agreement for the simulation
interoperability. In this context, developing a simulation with
several simulators is a challenging task for developers due to
the complexity of the HLA in handling the data provided in the
FOM. Tools and techniques that seek to optimize the development
process of simulators based on HLA have been emerging in recent
years, bringing different types of approaches and ranging from
the use of MDA to the source code, however, with little emphasis
on the generation from the FOM file. In order to make the
development process in the architecture more flexible, this article
proposes an approach to HLA code generation from FOM file,
hiding HLA specific functionalities and allowing developers to
fully focus on the business rules of their simulators.

Index Terms—simulation, High-Level Architecture, code gen-
eration

I. INTRODUCTION

A computer simulation is a computer program developed to
help the development of new technologies and to gain insight
into the operation of systems and procedures. For example,
operating procedures can be done through experiments in a
controlled (virtual) environment. The distributed simulation of
a system can satisfy the concurrent needs of multi-users and
it is employed on systems of systems design. However, the
challenge is the significant efforts required for producing a
distributed simulation model and analyzing simulation results.
One of the most popular efforts to mitigate this problem was
the proposition of the IEEE 1516-2010 - High Level Architec-
ture (HLA) standards [1], a general-purpose architecture for
distributed computer simulation systems.

In HLA, a simulator is called federate and a distributed
simulation with a set of simulators is called federation and
are executed in a middleware called Run-Time Infrastructure
(RTI). For the simulation development, it is mandatory the
existence of a Federation Object Model (FOM), in which
must be defined object classes, interactions, and data types.
The FOM defines the agreement on how different simulators
should operate in a federation. In this context, entities of a
federate are represented by object classes and each object class
has a set of attributes. Communication between federates is
achieved by requests for objects and attributes manipulation.

It is required that federates own an object or attribute instance
before they can update its state or value. There is no global
state and each federate is responsible for maintaining its own
local information about objects simulated by other federates.
Also, federates declare their interests via subscription and
publication. Hence, developers must deal with distributed data
and its serialization and deserialization procedures.

Coding and decoding complex data types can be a chal-
lenging task. Errors in coding and decoding information, data
typing, and incorrect interpretation of the specification func-
tioning are common problems in HLA simulation development
[2] [3]. To help HLA developers, it was proposed the Encoding
Helpers API [1], a common exchange model that covers all
data that is produced and consumed by a HLA federation.
Using Encoding Helpers on both sending and receiving side
minimizes the risk of data mismatches, but no amount of help
can handle a missing, incomplete or misinterpreted federation
agreement. For that reason, it is desired a solution that reads a
definition of a data type and generates HLA source code with
correct encode and decode structure.

To help HLA developers, commercial solutions [4] [5]
build source code from FOM definitions, but the dependence
on proprietary external libraries makes it difficult to users
to choose its preferable RTI. The Model-Drive Architecture
(MDA) [6] has also been explored [7], but the management
of encoding and decoding of complex data types is still a
challenge.

This work proposes a new approach for building a HLA
source code generator from FOM definitions. The approach
explores text models to generate HLA source code that hides
the complex coding of HLA API functionalities, facilitat-
ing the development/coding process, and the generated code
can be executed in any RTI solution. It is fully compatible
with the specification defined by the IEEE 1516 2010 OMT
standard. By exploring pre-modeled text templates to create
a more clean programming interface, our approach hides
HLA functionalities programming needs and solve common
problems [2] [3], such as the difficulty of coding and decoding
information and incorrect interpretation of the specification.
As result, the proposed solution generates flexibility for teams
of developers who create federations in different contexts
and domains. It enables them to use the tool or approach



they consider most appropriate for building the FOM file,
safeguarding the ability to adopt a desired RTI solution.

The paper is organized as follows. Section II describes
related works. Section III details our approach of building the
HLA code generator. Section IV presents the execution of the
code generator with an example FOM file, and finally, section
V presents the conclusions of the work.

II. RELATED WORKS

This section presents existing approaches in this research
field, with the purpose of identifying the main shortcomings
and provide a better understanding on how the proposed
solution addresses the shortcomings.

In [7] was proposed the Model Driven Architecture for Dis-
tributed Simulation (MONADS), a model-oriented architecture
focused on distributed simulation. Its general operation is to
take a SysML specification as input to explore model-to-model
and model-to-code transformations. Its source code generation
tool is carried out by the HLA Development Kit (DKF) [8] that
complies with the interface of the IEEE 1516-2010 standard
to supports different RTI solutions. However, according to [9],
DKF does not perform the encoding and decoding of complex
data types.

Commercial tools [4] [5] also focused on generating source
code for HLA developers. The tools create HLA source code
hiding the HLA functionalities such as encoders and decoders,
object updates, and RTI callbacks. Like our proposal, they
work on FOM definitions to generate sketches for all defined
classes and interactions, but the generated code depends on
dynamic libraries and does not run over distinct RTIs. Their
code generation approaches sounds good but are not open.

In [10] is presented the SimGe, a distributed simulation
modeling and development environment focused on HLA.
SimGe performs HLA code generation from the Federation
Architecture Metamodel (FAMM) [11]. The SimGe environ-
ment allows the creation and modification of HLA object
models and the import and export of HLA related files
(configuration data and FOM). The SimGe code generation is
oriented only for RACoN component, a wrapper for Microsoft
.NET designed to make transparent the use of RTI interface.
However, RACoN wrapper supports only a subset of federate
interface specification of HLA 1.3 standard [12] [13] and
SimGe did not comply with distinct RTI solutions.

III. OUR APPROACH FOR HLA CODE GENERATION

The proposed source code generation is designed and de-
veloped to assist developers to perform the transformation
of a FOM file into HLA source code that complies with
the HLA Evolved standard [1]. The goal is to achieve good
abstractions for HLA functionality, contributing to reduce the
time consuming on source code development, and to provide
flexibility to run over distinct RTI.

Figure 1 summarizes the approach for generating generic
source code in compliance to the IEEE 1516-2010 standard.
The process starts with the XSD format specifications from
HLA standard (ieee1516-OMT-2010.xsd), a XML Schema

that is used to validate conformance with the HLA OMT
specification. From this XML schema, and using the XML
Schema Definition Tool (XSD Tool) [14], it is possible to
generate classes that conform to OMT schema. These classes
(called ModelCode) are base source code used on model-to-
code process. The information presented on ModelCode is
than used to verify if the structured information of a FOM
file (FOM.xml) is well formed and if it complies with HLA
specification. Finally, from a set of source code templates
(Template Text), base classes and valid FOM definitions, the
Transformer generates the source code (Source) that helps the
user on its development task.

Fig. 1. Proposed Code-Generation Approach

Note that our approach corresponds to a model-to-code step
in the MDA and its base elements are:

• XSD file that contains the standard rules for building a
FOM file;

• COTS tool that reads the XSD file and transforms it
into a model code, a file with strongly typed classes that
complies with IEEE 1516-2010 standard;

• FOM file made for users or template adopted for them;
• Source code templates to turn the generated code robust,

ease to use and portable.
To present details of the proposed approach, this section is

structured as follows. Section III-A defines items referring to
the XSD and the implementation of strongly typed classes,
including the FOM validation. Section III-B specifies the
construction of the templates files and the generation of the
source code. Finally, Section III-C presents details of the
generated source code.

A. Model Classes and FOM Validation
As the FOM is specified in XML (in one or more files), the

IEEE 1516-2010 standard provides an XSD file that describes
how the structure of a FOM should be defined. When mod-
elling the distributed simulation, the designers should adopt
a template FOM developed by a third part organization, like
SISO, or develop a new template for its designed federation.
The reuse of template FOMs is a very useful practice on
HLA designs. However, when adopting a FOM, the designers
frequently need to extend it for its simulation requirements.
Nevertheless, the development or extension of a FOM is an
error prone task and the designers must take care of a set of
rules when formatting it [15].



In our process, to automate the generation of base code
classes from HLA standard (XSD) and user definitions (FOM),
we used two steps. The first step adopted the XML Schema
Definition Tool [14] to extract a set of classes from the XSD
file. These classes were then stored on a called ModelCode,
a serial format for storage, manipulation or transport. The
second step read the FOM file and mapped its definitions to the
ModelCode classes, enabling us to check the FOM validation.

Note that once the ModelCode classes were built, the
information could be loaded into memory for FOM validation.
Without checking, the FOM definitions become susceptible to
problems such as the miss specification of some object or data
type. Thus, our building process checks if there is no duplicate
information and no dependencies to be solved.

To deal with these dependencies, our process considers the
ModelCode and FOM on building base code classes and it
follows the below steps:

• Generate a set of classes that complies with the HLA
standard and storage them as ModelCode;

• Load the FOM files and map it on ModelCode classes.
This step performs the mapping of the information con-
tained in the FOM for strongly typed classes;

• Analysis of FOM defined information. This step analyzes
the FOM specifications and verifies if each object, inter-
action or data type is correctly defined. It ensures that all
information provided by FOM files is consistent.

B. Transformer Process

The Transformer process is the core process of the model-
to-code MDA transformation step. This process works on
three sources of information: the strongly typed classes that
complies with IEEE 1516-2010 standard (ModelCode), the
validated FOM, and the source code templates. The process
goal is to generate a HLA compliant source code that in-
corporates the FOM definitions and that offers to the user
a friendly application programming interface (API) based
on designed source code templates. Note that the templates
must be previously build but they can change over time to
improve the usability over the built API. Each elaborated
source code template corresponds to a pattern for source
code generation. In our approach we design templates to
object classes, interaction classes, data types, and simulation
information management.

The following subsections define how transformations are
performed for object and interaction classes (Section III-B1)
and for data types (Section III-B2).

1) Generating Object and Interaction Classes: In HLA two
simulators interoperate only objects defined in FOM and the
used FOM must be known for the RTI middleware. It means
the generated code must be able to exchange each object or
interaction class defined on the FOM. Hence, in a FOM object
definition a designer defines the object name, its attributes and
the object sharing format (publish and/or subscribe). However,
an object or interaction class definition probably depends on
different data types definitions and other classes that must be
also defined in the FOM.

As result of our approach and considering all mentioned
transformation tasks work in the same way for any object
or iteration defined in the FOM, we have a pattern for the
transformation process. It is always necessary: i) to instantiate
the attributes or parameters; ii) to search for references in
the RTI; iii) to insert the attributes or parameters into a
dictionary; and iv) to decode the attributes or parameters from
the dictionary.

2) Generating Data Types Manipulation Support: Follow-
ing the IEEE 1516-2010 HLA standard, each data type has
a rule for encoding and decoding. Standard-compliant RTI
solutions offer the implementation of encoding and decoding
functionalities by supporting Encoding Helpers API. However,
the usability of this API is complex and it makes it difficult
for developers to use it, increasing development time.

In order to generate a good abstraction for HLA encoding
and decoding functionalities, we explore the use of data type
definition templates, like illustrated on figures 2 and 3. Figure
2 shows templates for basic, simple and enumerated data types.
On our template, basic data types can still be defined by setting
data name, bit size, interpretation, type of endian and type of
encoding, maintaining the ability to low-level declarations.

Fig. 2. Transforming simple data types to source code

For simple data types, their representations are defined by
some basic type already defined, either by the standard itself
or by the developer in the FOM file. Therefore, macros are
used to define simple data types.

Fig. 3. Transforming complex data types to source code

For enumerators data type, it is generated a class that
inherits the encoder type specified in the FOM, maintaining
the FOM defined values. Based on the enumerators data type,



setters and getters methods work to validate the information
as pre-defined in the FOM before sending it to RTI.

The transformation template for arrays data type defined on
FOM is showed in Figure 3. The encoder offered by Encoder
Helpers API is the HLAfixedArray, which is intended for
fixed cardinality and works on encoding each element in order
of occurrence. For dynamic arrays, it is necessary to use
the approach proposed by HLAvariableArray, which has
variable cardinality and the number of elements is encoded in
HLAinteger32BE.

The solution for fixed record data type is also shown in
Figure 3 and it is defined as follows: each field defined in
the FOM within a fixedRecordData structure, in order
of occurrence, is transformed into a variable with its FOM
name, and its corresponding data type. When performing
the data type construction, an address of each type added
to the table is referred to an instance of this field in the
table. Thus, methods are generated methods for: setters and
getters, structure serialization and data management. Due to
the inheritance of the HLAfixedRecord class, it is only
necessary to implement the fields defined in the structure of
interest.

Similar to what happens with the Fixed Record data type,
the VariantRecordData type structures contain several
fields with different types. The types must be defined in
the HLA standard or in the FOM file, but they can be
built from several type alternatives, where each alternative
must be related to a previously defined enumerator from
FOM. In our approach, the discriminant values are defined in
VariantRecordDiscriminant and each of the alterna-
tives are defined in VariantRecordAlternatives (see
Figure 3).

C. Architecture of the Generated Code

This section presents the source code architecture that
hides the HLA functionalities by creating methods from the
Encoding Helpers routines, model classes and source code
templates. This implies that the generated code must meet the
following functionalities:

• Connect to a federation as a federate;
• Publish and subscribe objects and interactions specified

in the FOM file;
• Encode any information using IEEE 1516-2010 OMT

encoders;
• Decode information received from the RTI for use in a

simulation;
• Intemperate with any RTI solution that complies to the

IEEE 1516-2010 OMT standard.

Based on these functionalities, the architecture of the gen-
erated code is developed aiming to hide these HLA services.
By exploring text models to orient the language interfaces
we reduced the number of steps to build the code generator,
as it allows isolate implementation to manage objects and
interactions. Hereafter, we explain how the transformer process
builds source code classes and we detail each generated class

model and its functionalities. The architecture of the generated
code is shown in Figure 4.

Fig. 4. Pre-modeled models and built models

The Federate class is used for the representation
of Federate in a Federation. It hides the federation am-
bassador functionalities and inherits the features of the
FederateAmbassador class specified on HLA standard.
Its main task is to get reference to an RtiAmbassador
object and to establish communication with RTI to connect the
federate to federation and create, delete, update and discovery
objects and interactions, hiding details for the developer.

The ManagerObjects class is the class designed to be
responsible for managing the functionality related to objects. A
dictionary of remote and local objects is defined in it, and also
methods with the information of discovering, deleting, updat-
ing and reflecting attributes. We highlight these object related
functionalities are represented on Federate class interface
but in fact are redirected to implementation in this class.
Methods for managing publishing and subscribing objects are
also implemented in this class. Similarly, we designed the
ManagerInteractions class to manage the functionality
related to the interactions classes.

The HlaObjects class implements the functionalities of
federation objects. It implements each object class found in the
FOM and it defines the attributes and methods for updating
each one. This classes inherits the HlaObjectBase class
to deal with HLA functionalities defined on IEEE 1516-2010
OMT. The HlaInteraction is similar to HlaObjects
class. It defines each of the interaction class defined in the
FOM and is responsible to implement interaction functionali-
ties.

The HlaObjectBase class is unique and defines common
declarations independently of the object class specification in
the FOM. HLA functionalities are defined in it, such as the
attribute dictionary, reference to RtiAmbassador, location
in the FOM file and references to object instance in RTI.

The HlaInteractionBase class is similar to the
HlaObjectBase class. It is a single class that defines
common declarations independently of the interaction class
specification in the FOM. It deals with the reference to
RtiAmbassador and with references to interactions in-
stances in RTI.

Finally, the HlaDatatypes class is defined for modelling
each data type according to the code model rules described in



the Section III-B2.

IV. EXPERIMENTS

This section shows a case study with a set of experiments
considering the SpaceFOM [16], a FOM modelled for dis-
tributed simulation of aerospace industry.

The algorithm in Figure 5 illustrates the code of this
case study, generated from SpaceFOM files. The de-
veloper works on the PhysicalEntity class, which con-
tains a AccelerationVector attribute defined by a
AccelerationVector basic data type referenced to a
HLAfixedArray. The first step of the code is to define a
name and federation type for the federated. Right after the
Connect method is called, the connection is made with the
RTI in the federation named Federation. In line 6, the
connection status is awaited, and if the connection is not
successful, it returns in the condition of line 8. It is clear to
note that this code hides federation connection functionalities
for the developer.

Fig. 5. Algorithm with example of implementation using SpaceFOM

Lines 11 and 12 request to subscribe and publish
PhysicalEntity object class. These requests hide the
search for attributes and object class references on RTI,
like detailed in the Section III-B1. Once the interest
of publishing and subscribing is concluded, the alloca-
tion of resources corresponding to the PhysicalEntity
class is carried out (lines 16-17). The allocation pro-
cess hides the construction of the PhysicalEntity at-
tributes, encoders, object location information and attribute

dictionary. The same occurs with the interaction class
ModeTransitionRequestInteraction in line 19.

In lines 23 to 43, it is declared a loop to make changes
in the values of the AccelerationVector attribute of the
PhysicalEntity class and in the MTRMode parameter of
the ModeTransitionRequestInteraction interaction
class. The value of each field AccelerationVector is
changed every loop cycle by 1.2.

Finally, when completing the changes, in lines
45 to 53, the search for remote information from
PhysicalEntity classes is performed and their
values are displayed in the console window. The
GetAllRemoteObjectsOfType method hides the search
for instances referring to the HlaPhysicalEntity class
in the dictionary of remote instances. The values related to the
ModeTransitionRequestInteraction interaction
class are displayed when the receiveInteraction
method of Encoding Helpers is called. The algorithm related
to this event searches for the name of the interaction in the RTI,
allocates the resources of the interaction class using the class
constructors dictionary and ends up displaying the information
if it is a ModeTransitionRequestInteraction.

When running the algorithm with two federates, it can be
seen (see Figure 6) that the connection was made successfully
in the Pitch RTI. The two federates (FederateOne and Feder-
ateTwo) join the federation named Federation that agree with
SpaceFOM definitions.

Fig. 6. Connection of 2 federates with SpaceFOM in Pitch RTI

Figure 7 illustrates traces that explain what happens on
encoding and decoding of attributes and parameters in Pitch
RTI. The figure shows the prompt command window for
each federate after the federates join the connection to the
federation and start the interest on PhysicalEntity’s publish
and subscribe events. At the beginning, each federate starts by
registering its objects on RTI and sending updates. It is noticed
that the execution runs correctly and objects were created in
both federates. As each federate executes asynchronously in
the federation, the process of discovery, update and provide
information for each object is requested by Federate and
each information is displayed in the window. We can observe
that the algorithm performs 5 times the changes in object
attributes and interaction parameters.

After submission and changes are complete, the value
assigned to the AccelerationVector attribute of the
PhysicalEntity object class that was sent from FederateTwo
to RTI is displayed at the end of figure 7. Note that in



Fig. 7. Encoding and decoding attributes and parameters in Pitch RTI

FederateTwo, no value referring to FederateOne is displayed
on the PayRate attribute of the Cashier object class, because
as the federate had already finished its execution, the objects
related to FederateOne are removed from its list of remote
objects.

We repeated the experiment using the same algorithm but
updating the RTI libraries to MAK RTI. Figures 8 and 9 show
the results. It can be noted that the execution was also carried
out with success on MAK RTI. The federation connection
and the attribute updates were performed correctly. The values
were displayed in the console window as expected.

Fig. 8. Connection of 2 federates with SpaceFOM on MAK RTI

Fig. 9. Encoding and decoding attributes and parameters in MAK RTI

As experiments have showed, our approach hides a set of
HLA functionalities and contributes to reduce the time needed
to develop HLA based distributed simulations. The experi-
ments have also shown that our implemented tool generates
source code that is able to run on different RTIs.

V. CONCLUSION

The development of HLA based distributed simulation
is a challenging task, since errors in coding and decoding

information, data typing, and incorrect interpretation of the
specification functioning are common mistakes that increase
the risk and cost for the development. This work proposed
an approach for building a tool that automatically generates a
source code from federation object model (FOM) definitions
and that hides complex codes of HLA functionalities.

Our approach explores source code templates (text models)
to create an friendly programming interface and HLA standard
definitions. Hence, the developer does not need to worry about
basic HLA functionalities, which are handled automatically,
nor with the adopted RTI. Moreover, since FOM definitions
are validated, any FOM file can be used. As result, with our
approach developers can focus on the simulator’s business
rules, optimizing their development time. A case study showed
the approach works well in practice.
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