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Abstract—The financial market generates a large volume of
data daily, allowing the increasing use of machine learning
algorithms in building predictive models for the stock market. In
this environment, time is a crucial factor since stock prices change
daily, so the training time of models is a critical factor. This
paper proposes a method to optimize the overall training time
of 5 reinforcement learning algorithms that predict the weights
of each stock in a stock portfolio. Experiments were conducted
by varying the number of algorithms executed simultaneously.
In addition, the computational characteristics of each algorithm
were analyzed concerning the use of memory and processing.
From the proposed combination of running the algorithms
concurrently, it was possible to reduce the total training time by
33% compared to running the algorithms sequentially. Moreover,
this execution led to a commendable 15% decrease in energy
consumption.

Index Terms—Reinforcement learning; Performance and en-
ergy consumption; Stock market

I. INTRODUCTION

The financial market is essential for trading stocks, cur-
rencies, and options. It is essential for the economy, as it
facilitates companies and governments in acquiring capital
through shares and bond issuance, which, in turn, funds
investments that foster economic growth. In this scenario, due
to the vast amount of data generated daily within the financial
market, high-performance computing (HPC) becomes essential
to process information swiftly. Consequently, the abundance
of data has paved the way for employing machine learning
algorithms in this domain to predict market movements, price
fluctuations, and stock prices [1].

Training machine learning algorithms with extensive data
sets is inherently time-consuming, often taking even days to
complete. Although these machine-learning approaches are
trained using historical data, they do not interact with market
dynamics. Consequently, they can struggle to adapt to extreme
and unpredictable scenarios, such as the drastic fall in the stock
market during the onset of the COVID-19 pandemic. As a
result of this limitation and the challenge of adapting models,
the financial sector has begun to explore innovative solutions.

One of these promising approaches is Reinforcement Learn-
ing (RL), which has received increasing attention for its
potential to revolutionize the optimization of financial portfo-
lios. RL makes models more dynamic and adaptive, allowing
them to learn from their own experiences and adjust their
strategies in response to changing market conditions [2]. This
allows algorithms to make better decisions in line with market
movement, even in the face of unprecedented events [3].

In this scenario, exploring the simultaneous execution of
training algorithms is an interesting alternative. Instead of
running the training process of a single algorithm, concurrent
computing makes it possible to run the training process of
several algorithms [4]. By adopting concurrent computing, the
computing power of several cores can be harnessed simulta-
neously, increasing training efficiency.

However, executing many reinforcement algorithms concur-
rently over the same data does not guarantee the best overall
performance. Hardware and software aspects may prevent lin-
ear improvements when increasing the number of concurrent
algorithms. Hardware-related issues include CPU bottlenecks
when the algorithms are CPU intensive or competition for
shared resources, such as caches, buses, or interconnects.
This may lead to contention and reduce the potential for
linear improvements. Furthermore, on the software side, load
imbalance, communication overhead, and resource allocation
may limit linear improvements.

Given the above scenario, this paper explores ways of run-
ning reinforcement learning algorithms concurrently to reduce
training time when considering stock market data. By con-
sidering five well-known learning algorithms in the literature
(PPO, A2C, DDPG, SAC, and TD3), we investigate different
scenarios of combinations of these algorithms running on data
from eight stocks on a modern multi-core architecture with 40
cores. Through a large set of experiments, we show that:

• Each learning algorithm behaves differently regarding
CPU and memory usage. These characteristics affect
the performance of each algorithm when running them
simultaneously.

• A conservative scenario, with only two reinforcement
learning algorithms running simultaneously, offers better
overall performance than a more aggressive scenario.

• The best combination of simultaneous execution of learn-
ing algorithms found through an exhaustive search can
improve training time by 33% while reducing energy
consumption by 15% compared to the standard way of
executing reinforcement learning algorithms.

The remainder of this paper is organized as follows. In
Section II, we describe the related work. In Section III, the
methodology used is listed. Then, we discuss the performance
and energy results in Section IV. Finally, we draw the conclu-
sions and future works in Section V and the acknowledgment
in Section VI.



II. RELATED WORK

This section is divided into subsections according to the
proximity between the works. At the end of this section, we
discuss the contributions of this work.

A. Machine learning applied to the stock market

Several strategies using machine learning have been applied.
Least-square support vector machine (LS-SVM) was used to
predict daily stock prices, and the Particle Swarm Optimization
(PSO) algorithm was used to optimize (LS-SVM) [5]. Re-
gression and Long short-term memory (LSTM) networks were
used to predict the stock prices, opening, closing, maximum,
minimum prices, and trading volume utilized [6]. Machine
learning classifiers were applied to perform prediction in the
stock market, using stock data, social networks, and news,
where the random forest obtained the best result [7]. A random
forest and an artificial neural network were used to predict
the next day’s closing stock price [8]. The application of
reinforcement learning has been growing in the context of the
stock market. The survey in [9] shows the recent advances
of reinforcement learning in the financial market where two
reinforcement learning approaches, Gated Deep Q-learning
(GDQN) and Gated Deterministic Policy Gradient (GDPG),
were applied to stock trading. A trading ensemble strategy was
created using three algorithms: Proximal Policy Optimization
(PPO), Advantage Actor-Critic (A2C), and Deep Determin-
istic Policy Gradient (DDPG). This strategy utilized the best
features of each algorithm, achieving better performance than
the individual algorithms and two baselines [10].

B. Concurrent computing applied to reinforcement learning

A method using concurrent federated reinforcement learning
was proposed for the problem of resource allocation in edge
computing. The addition of concurrency in the decision-
making approach brought benefits on the global scale of
resource allocation. The results showed improved speed and
resource utilization [11]. Cloud computing requires automated
provisioning and de-provisioning based on demand. Algo-
rithms are used to define instances according to the requests
received. Defining the number of requests that are processed in
parallel is a challenging task. The application of reinforcement
learning to find the best configuration was investigated, and
the results show an increase in performance when using
this algorithm [12]. A study on using reinforcement learning
techniques applied to dynamic task scheduling was conducted,
and a comparison of these techniques was made [13].

C. Our contributions

Unlike the works discussed in the previous subsections,
this work employs concurrent computing to optimize the
training phase of reinforcement learning algorithms applied
to the stock market. Therefore, the main contributions of
the state-of-the-art are as follows: a performance analysis of
reinforcement learning algorithms applied to the stock market
and a performance and energy evaluation of distinct scenarios
where concurrent computing could be used to improve the
training of these algorithms.

III. METHODOLOGY

We have selected five reinforcement learning algorithms:
• Proximal Policy Optimization (PPO) performs multiple

updates in the policy without significant changes, which
helps to stabilize the learning process [14].

• Advantage Actor-Critic (A2C) has two networks, the
actor to learn policy and the critic to estimate state-value
function.

• Deep Deterministic Policy Gradient (DDPG) can han-
dle continuous action spaces using a deterministic policy.
Also, the experience replay and target networks help
to stabilize the learning process and improve sample
efficiency [15].

• Soft Actor-Critic (SAC) maximizes the expected cu-
mulative reward while also explicitly maximizing the
entropy of the policy, leading to better exploration in
high-dimensional continuous action spaces [16].

• Twin Delayed Deep Deterministic Policy Gradient
(TD3) uses two critic networks to reduce overestimation
bias and the delayed updating of the actor-network to
improve stability. TD3 addresses the problem of overes-
timation in the Q-value estimates by using the minimum
of the target critic networks.

The chosen algorithms have different characteristics re-
garding the optimization process, such as their approach to
policy optimization, handling of value functions, exploration
strategies, and use of replay buffers. Thus, by applying each of
them, it is possible to identify which characteristics are better
for optimizing the weights of a stock portfolio. The algorithms
also have distinct CPU and memory usage behaviors: the
on-policy algorithms (PPO, A2C) have lower memory usage
and moderate CPU usage. On the other hand, the off-policy
algorithms (DDPG, SAC, and TD3) are CPU intensive and use
more memory than on-policy algorithms to store the replay
buffer.

A. Execution Environment and Input Data
The experiments were performed on a multicore architecture

with 2x Intel Xeon E5-2650 v3 Haswell, with 20 physical
cores (40 with HyperThreading), and 128GB of RAM. We
used the Linux Ubuntu Operating System with kernel v.5.6.0.
Each application was interpreted with Python 3.7.1 and exe-
cuted with the DVFS governor set to performance as it is the
standard choice in HPC servers. To get the execution time,
we used the Times package, and the energy consumption was
extracted using the CodeCarbon package.

To train the five algorithms, we took as input the adjusted
closing price data of eight stocks obtained from the financial
library1 from 2010 to 2017. We divided the data into two
sets, 80% for train and 20% for test [2]. The following stocks
were used: Apple, General Electric, JPMorgan, Microsoft,
Vodafone, Nike, NVIDIA, and 3M Company.

B. Set of experiments
We have organized the set of experiments in five different

scenarios:
• Scenario I: All learning algorithms are executed in

sequential order, one after another. In this scenario,
every algorithm can use all available hardware resources
without sharing them.

1https://github.com/yahoo-finance/yahoo-finance
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(a) Execution behavior of the training time in Scenario I.
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(b) Execution behavior of the training time in Scenario V.
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(c) Best combination of algorithms found by an exhaustive search.

Fig. 1. Timeline comparison of three different scenarios.

• Scenario II: Two learning algorithms are deployed to
execute concurrently at once. With that, one can observe
the two more suitable algorithms for sharing hardware
resources.

• Scenario III: The same as Scenario II, but considering
three learning algorithms.

• Scenario IV: The same as Scenario II, but considering
four learning algorithms.

• Scenario V: All learning algorithms are concurrently
executed at once.

To manage the execution of Scenarios II, III, IV, and V, we
rely on the Processing package. It is a package for the Python
Language that supports the spawning of multiple processes
through the threading model from the standard library. Thus,
when multiple learning algorithms are deployed for execution,
they will share the available hardware resources.

IV. EXPERIMENTAL EVALUATION

This Section discusses the performance and energy results
of running each scenario described in Section III-D. For that,
we start by evaluating the behavior of each learning algorithm
in Section IV-A. Then, we discuss in Section IV-B the results.

A. Performance of each Reinforcement Learning Algorithm
Let us start by discussing the results for Scenario I, where

all the algorithms are executed one after another. Hence,
Figure 1(a) depicts the execution time for each algorithm,
given in seconds. As observed, PPO is the algorithm with
the shortest execution time, while SAC took more time to
execute among the five algorithms. Different reasons explain
the behavior of each learning algorithm, as discussed next.

Algorithm Complexity: Each algorithm has its own under-
lying optimization strategies, network architectures, and up-
date procedures. For example, TD3 involves twin Q-networks
for better stability, target policy smoothing, and delayed up-
dates, which make it computationally more expensive when
compared to the other learning algorithms. Sample Efficiency:
Algorithms that are more sample-efficient might require fewer
interactions with the environment to achieve good perfor-
mance. PPO is known for being relatively sample-efficient.
Update Frequency: Algorithms may differ in how often they
update their policy or value functions. A2C updates the policy

TABLE I
PERFORMANCE RESULTS FOR EACH COMBINATION OF ALGORITHMS

Combination of Algorithms Sequential Concurrent Speedup
PPO, A2C 900s 420s 2.14
PPO, DDPG 9060s 8160s 1.15
PPO, SAC 13920s 10980s 1.27
PPO, TD3 10980s 9120s 1.20
A2C, DDPG 9120s 8100s 1.12
A2C, SAC 13980s 9780s 1.43
A2C, TD3 11040s 8820s 1.25
DDPG, SAC 22140s 14040s 1.58
DDPG, TD3 19200s 12720s 1.51
SAC, TD3 24060s 13860 1.73
PPO, A2C, DDPG 9540s 8160s 1.16
PPO, A2C, SAC 14400s 9900s 1.45
PPO, A2C, TD3 11460s 9780s 1.17
PPO, DDPG, SAC 22560s 15600s 1.44
PPO, DDPG, TD3 19620s 14580s 1.34
A2C, DDPG, SAC 22620s 16200s 1.39
A2C, DDPG, TD3 19680s 12900s 1.52
A2C, SAC, TD3 24540s 14400s 1.70
DDPG, SAC, TD3 32700s 63360s 0.51
PPO, A2C, DDPG, SAC 23040s 15060s 1.52
PPO, A2C, SAC, TD3 24960s 15120s 1.65
PPO, A2C, DDPG, TD3 20100s 13380s 1.50
PPO, DDPG, SAC, TD3 33120s 67920s 0.48
A2C, DDPG, SAC, TD3 33180s 65700s 0.50

and value functions synchronously, which can lead to more fre-
quent updates than asynchronous methods. TD3, on the other
hand, performs multiple updates for each interaction with the
environment due to delayed Q-network updates, contributing
to the higher execution time. Exploration vs. Exploitation:
Exploration strategies impact the number of environmental
interactions required to learn an effective policy. TD3 and
DDPG are algorithms that require more exploration using
target policy smoothing, leading to slower initial convergence
compared to PPO and A2C, which have a more deterministic
exploration strategy. Exploration Noise: The algorithms that
use exploration noise, like DDPG and SAC, usually need
additional environmental interactions to learn an effective
policy, contributing to the execution time. Target Networks
and Delayed Updates: Learning algorithms like DDPG and
TD3 employ target networks and delayed updates, leading to
a slower convergence than other methods.

For the evaluation performed in the following sections, we
consider the results of this scenario as the baseline since
this is the standard way reinforcement learning algorithms are
executed in multicore architectures. The total time to train and
generate the prediction model is the sum of each algorithm,
resulting in 33600s (about 9.3 hours).

B. Optimizing the Execution of Reinforcement Learning Algo-
rithms through Concurrent Execution

This Section discusses the benefits of employing concur-
rent execution of learning algorithms to reduce the total
training time. For that, Table I depict the execution time
of all combinations of learning algorithms. The sequential
column represents the time to execute the algorithms one
after another, while the concurrent column is the time to
execute the algorithms concurrently. Also, the speedup column
highlights the performance improvements of the concurrent
over the sequential execution. Hence, the higher this value, the
better. We discuss each scenario separately next, along with the
best solution found through an exhaustive search that tries all
possible combinations of reinforcement learning algorithms.
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Fig. 2. Energy consumption of each Scenario shown in Figure 1.

1) Scenario II: The results for this scenario are shown in
Table I. The first observation is that simultaneous execution
brings performance benefits in all combinations of learning al-
gorithms. In the best result, simultaneous execution of the PPO
and A2C algorithms optimizes performance in 2,14. These
two algorithms consume fewer resources than the others, so
sharing resources greatly improves performance. However,
there are situations in which simultaneous performance is
similar to sequential execution. We observed this situation for
the combination of A2C and SAC, with a speed increase of
only 1.12. This behavior occurs because the two algorithms
are more memory-intensive.

2) Scenario III: When three algorithms are executed con-
currently, the competition for shared resources increases, lead-
ing to more penalties for the total execution time of the
concurrent execution than Scenario II, as shown in Table
I. In this scenario, exploiting the execution of A2C, SAC,
and TD3 algorithms concurrently can deliver the best per-
formance improvements over the sequential execution (1.70
of speedup). These three algorithms present complementary
CPU and memory usage characteristics, improving execution
time. For example, A2C is an asynchronous algorithm that
each agent operates independently and synchronously, making
it suitable for concurrent execution. On the other hand, when
three memory-intensive algorithms are deployed to execute
concurrently (DDPG, SAC, and TD3).

3) Scenario IV: Table I shows the execution time when
four algorithms are run simultaneously. As can be seen,
the training time has been optimized in some cases. In the
most significant situation, the speedup is 1.65. On the other
hand, when the algorithms have similar CPU and memory
requirements, it is not possible to improve performance by
exploiting simultaneous computing (PPO, DDPG, SAC, TD3).

4) Scenario V: Different from all previous scenarios, the
execution time of all training runs increases by a factor of 1.71
compared to sequential execution, as shown in Figure 1. This
behavior occurs because each algorithm creates 40 threads,
totaling 200 threads, and excess threads only add overhead in
thread management and competition for shared resources. For
this reason, this scenario had the worst result.

5) Best Solution: Figure 1 shows the execution behavior of
Scenario I (the standard way learning algorithms are executed),
Scenario V (the worst results), and the best combination
found through the exhaustive search. Figure 2 has the energy
consumption of these three behaviors. As observed, the total
execution time is reduced by 33% when the best possible
combination of the five algorithms is applied. By being able
to optimize the use of shared resources, also reduced the
total energy consumption by 15% compared to the baseline
(Scenario I) and 63% compared to Scenario V.

V. CONCLUSIONS

We have investigated distinct scenarios of concurrent com-
puting to optimize the performance and energy consumption
of financial machine learning model training. These algorithms
play an important role nowadays as they predict the weight
of stocks within a stock portfolio. Through extensive exper-
iments, we have shown that selecting the ideal combination
of algorithms to execute concurrently leads to significant per-
formance and energy improvements over the common practice
adopted by software developers and end-users: 33% reductions
in the execution time and 15% energy savings. In future work,
we intend to exploit heterogeneous architectures to execute
even more algorithms simultaneously and improve the training
step of such models.
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