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Abstract—The Internet of Things has revolutionized device
interconnectivity, with Low Power Wide Area Networks (LP-
WAN) enabling long-range communication with minimal energy
consumption. Within this context, LoRaWAN is widely recog-
nized as an efficient and robust technology for LPWAN networks.
However, strategic gateway deployment remains a challenging for
optimizing network performance. In this way, this paper issue
proposes LoORaWISEP+, an enhanced version of the LoRaWISEP
system, consisting of a comprehensive tool designed to improve
the deployment process of LoRaWAN gateways. This solution
incorporates additional clustering algorithms, such as K-Medoids
(KMD) and Fuzzy C-Means (FCM), and a redesigned user-
friendly interface, facilitating optimal placement of gateways and
improving overall network coverage and reliability. In order
to validate the new features of the proposed tool, a thorough
evaluation was conducted using real-world deployment scenarios.
Results demonstrate that different clustering algorithms exhibit
strengths in specific characteristics, such as FCM being more
suitable for lower energy consumption and K-Means (KM)
being more suitable for higher transmission rates. This makes
LoRAWISEP+ an enabling tool for optimizing network planning
according to the most beneficial characteristic for the user.

Index Terms—Clustering, IoT, LoRaWAN, Placement, Tool

I. INTRODUCTION

The Internet of Things (IoT) is a transformative technology
that enhances device interconnectivity, facilitating data ex-
change across sectors like smart cities, healthcare, and indus-
trial automation [1]. Among the communication technologies
supporting 10T, Low-Power Wide-Area Networks (LPWANSs)
stand out for their long-range communication and low energy
consumption, making them ideal for battery-powered devices
in remote areas. LoRaWAN, a leading LPWAN specifica-
tion, operates in the unlicensed spectrum, offering secure,
bidirectional communication with low data rates over large
distances [2]]. Its architecture, comprising End Devices (EDs),
Gateways (GWs), Network Server (NS), and Application
Server (AS), ensures reliable, energy-efficient communication
for IoT applications [3].

A key aspect of LoORaWAN network planning is optimizing
the number and placement of GWs, which directly affects
coverage, performance, and cost. This requires advanced tools
to handle complex environments and device distributions [4].
The initial LoORaWISEP tool addressed this by using clustering

and genetic algorithms for optimal GW placement but faced
limitations in real-world applicability and user interaction [J5]].

This paper introduces LoRaWISEP+ [1_1 an enhanced ver-
sion of LoRaWISEP, incorporating new input parameters and
clustering algorithms like Fuzzy C-Means and K-Medoids [|6].
These improvements enable more efficient gateway placement,
offering better coverage and energy efficiency than traditional
grid-based methods.

The remainder of this paper is organized as follows. Sec-
tion discusses related works in the field of LoRaWAN
network planning and optimization. Section [[II] provides a
detailed system overview of LoRaWISEP+, highlighting the
new features and improvements over the previous version.
Section [IV] outlines the evaluation methodology, describing the
enhanced simulation capabilities and the performance metrics
used to assess the effectiveness of the clustering algorithms.
In Section [V] results from the simulations are presented
and discussed, analyzing the performance impacts of each
clustering algorithm on the network. Finally, some conclusions
and further considerations are presented in Section

II. RELATED WORK

Several tools and methodologies have been developed to
address the challenges associated with LoRaWAN network
planning, each one offering unique features and approaches.
These solutions range from simulation tools that evaluate
network performance [7], [8] or gateway placement [4], [5],
[9] to algorithms that optimize network configurations based
on various metrics [10]. However, many of these tools lack
comprehensive optimization capabilities and user-friendly in-
terfaces, essential for practical application. Given these gaps in
functionality and usability, Table[l|provides a concise summary
of the key characteristics and limitations of the discussed
related works.

In [11], LoRaPlan addresses message collisions in Lo-
RaWAN networks by evaluating gateway placement and col-
lision probabilities. However, it relies on manual gateway
placement and lacks optimization algorithms. LoRaWISEP+
improves this by automating placement and integrating ad-
vanced optimization techniques, providing a more scalable
solution.

Thttps://github.com/LITTORAL-LAB/LoRaWISEP-desktop.git



TABLE I
SUMMARY OF RELATED WORKS ON LORAWAN NETWORK PLANNING

Ref.  Solution Features
T LoRaWANSim: MATLAB-based simulator for
PHY/MAC layers, network behavior, and performance
metrics.
18]l LoRaCity: Simulates network configurations in urban

areas; evaluates performance.

9] DPLACE: Optimizes gateway positioning using K-means
and FCM algorithms.

[10] LoRaDRL: Deep reinforcement learning for parameter
optimization in LoRaWAN.

[I1]  LoRaPlan: Analyzes gateway placement and collision
probabilities.

[12]  Smart city metering: Algorithm for optimal gateway
deployment based on geographic data.

[13]  Network deployment: Framework for analyzing network
models, lifespan, and interference.

The study in [13] recommends LoRaWAN deployment
strategies focusing on network lifetime, latency, and interfer-
ence. While comprehensive, it lacks advanced optimization
tools like genetic or clustering algorithms, which could en-
hance planning efficiency. LoRaWISEP+ addresses this gap
with its integrated optimization techniques.

Similarly, [[12] focuses on energy-efficient metering net-
work planning for smart cities using LoRaWAN, but lacks a
user-friendly simulation interface and advanced optimization.
LoRaWISEP+ offers these features, integrating optimization
methods into an intuitive environment.

In [9], DPLACE uses K-means and FCM for dynamic
gateway positioning, but lacks interaction capabilities and
evolutionary algorithms. LoRaWISEP+ overcomes this with
its interactive SaaS platform, combining clustering and evolu-
tionary algorithms.

Although previous studies provide useful insights, they often
lack comprehensive optimization and user-friendly interfaces.
LoRaWISEP+ stands out by combining advanced optimization
with a user-focused design for effective LoORaWAN network
planning.

III. LORAWISEP+: SYSTEM OVERVIEW

LoRaWISEP+ introduces several key features aimed at
providing a more comprehensive and adaptable solution for
LoRaWAN network planning. The system is designed to
operate as a standalone desktop application, which aims to en-
sure a robust and platform-independent user experience. This
section provides an overview of the architecture, user interface
enhancements, and new simulation capabilities introduced in
LoRaWISEP+.

A. Software Architecture

LoRaWISEP+ transitions from a cloud-based model to a
desktop application, offering greater control over data and
removing the need for continuous internet connectivity. Built
with Electron-Vite || the system integrates with native desktop
features, ensuring optimized performance and accessibility.

Zhttps://electron-vite.org

The architecture is modular, with distinct layers for the user
interface, simulation processing, and data management, facil-
itating easy updates and maintenance.

LoRaWISEP+ optimizes gateway distribution in LoRaWAN
networks using simulations and machine learning techniques.
Input parameters include the number of devices (EDs), packet
length, shadowing model, spreading factor, and transmission
power, which influence traffic, energy consumption, and cov-
erage, enabling network performance optimization [14].

The system uses Network Simulator 3 (NS-3 to simulate
network performance, generating metrics such as packet deliv-
ery ratio, signal-to-noise ratio, delay, and energy consumption.
These metrics are analyzed by machine learning algorithms to
optimize gateway placement, enhancing network coverage and
efficiency.

Finally, simulation results and optimized configurations are
stored in a cloud-based database, allowing large-scale data
analysis and continuous system improvement.
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Fig. 1. User Interface Enhancements.

B. User Interface Enhancements

The user interface of LoRaWISEP+ has been redesigned to
provide an intuitive and responsive experience, illustrated in
Figure [1| Key improvements include:

e Real-World Map Integration: Users can now select real-
world locations directly on an interactive map, simplify-
ing the process of setting up simulation scenarios.

o Advanced Configuration Options: Enhanced configuration
panels allow users to easily adjust simulation parameters
such as device density, transmission power, and environ-
mental factors.

e Dynamic Simulation Feedback: The interface provides
real-time feedback during simulations, displaying key
metrics and graphical representations of network cover-
age and performance.

C. Simulation Capabilities

LoRaWISEP+ has enhanced its simulation framework by in-
corporating additional inputs such as packet size, transmission
intervals, and simulation duration, allowing for more accurate
modeling of complex network scenarios.

3https://www.nsnam.org



Previously, K-Means (KM) and Genetic algorithms were
used for gateway placement. KM, which clusters gateways
at centroids, improved coverage but struggled in dynamic
environments [4]. Although powerful, the Genetic algorithm
required substantial computational resources, making it less
practical for current use [3].

The new version integrates more robust algorithms like
FCM and KMD. FCM is ideal for environments with fluc-
tuating conditions, as it adapts to dynamic networks using
probabilistic clusters, enhancing flexibility and responsiveness
[15]. KMD, suitable for dense urban areas, minimizes dis-
tances between gateways and devices, improving signal quality
and reducing latency [16].

These advancements make LoRaWISEP+ a valuable tool for
optimizing LoRaWAN networks, equipping users with precise
control over network architecture to suit specific operational
contexts.

IV. EVALUATION METHODOLOGY

The latest version of LoRaWISEP+ integrates clustering
algorithms to optimize gateway placement in urban LoRaWAN
networks. This section details the methodology used to evalu-
ate these algorithms and their impact on network performance.

Building on the previous framework, which simulated urban
deployments considering parameters such as IoT device den-
sity, area dimensions, and urban obstacles, the new version
incorporates FCM and KMD clustering algorithms. These
algorithms enhance gateway placement by accounting for
urban obstacles like buildings, represented in a grid layout
with adjustable parameters for size and spacing.

Using the Elbow method, 16 gateways were selected for the
simulation, as detailed in Table [[, ensuring optimal coverage
and capacity. Results were averaged over 33 trials with differ-
ent random seeds for robustness. This methodology prevents
redundancy and overlap in gateway distribution, improving
traffic management.

TABLE 11

SIMULATION PARAMETERS
Parameters Values
IoT devices 1000
Length of the area 1000 m
Width of the area 1000 m
Packet size 20 bytes
Simulation time 1200s
Periodic transmission interval ~ 600s
Obstacle profile Urban
Heuristic for GWs selection Elbow

Additionally, a GRID layout [9]] with uniformly distributed
gateways serves as a baseline for comparison. This allows a
clear evaluation of how clustering algorithms outperform basic
uniform distribution in optimizing gateway placement.

Simulating different urban layouts and obstacles [9]] eval-
uates the algorithms adaptability, ensuring LoRaWISEP+ re-
mains a cutting-edge tool for optimizing LoRaWAN deploy-
ments in diverse environments.

V. RESULTS AND DISCUSSION

This section discusses the performance of the Lo-
RaWISEP+, focusing on the impact of different clustering
algorithms on key network metrics: SNR, Delay, Energy
Consumption, PDR, and RSSI.

Figure @) shows that KM and KMD achieve higher SNR
values compared to FCM and the Grid method, suggesting
better signal clarity under these algorithms. However, the KM
method, while showing lower SNR, results in a lower delay,
see Figure 2[b), among the strategies, potentially offering
faster data transmission in less complex network scenarios.
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Fig. 2. Comparison of SNR and Delay across different clustering algorithms.

Energy efficiency is critical in IoT networks to extend the
lifetime of battery-dependent devices. In this regard, as shown
in Figure 2Jc), KM demonstrates the lowest energy consump-
tion, which is beneficial for long-term deployments without
frequent maintenance. Conversely, KMD, while slightly less
efficient than KM, still outperforms FCM and the traditional
Grid approaches in SNR.

With regard to PDR and RSSI, all algorithms maintain a
relatively high PDR, Figure [3{(a), indicating robust network
reliability. However, KMD demonstrates a slightly lower PDR
compared to the other algorithms, which may be due to its less
effective gateway placement in high-density areas. In terms of
RSSI, KM, KMD and FCM provide stronger signals compared
to Grid, see Figure [3[(b), corroborating the SNR findings that
these algorithms are more effective in managing interference
and ensuring signal strength.

The results indicate that FCM and KMD generally offer
superior performance in terms of SNR and RSSI. However, the
traditional Grid method, while providing lower delay, offers
a valuable balance between time of convergence and other
performance metrics. Consequently, the choice of algorithm
should be guided by the specific requirements of the de-
ployment scenario, considering factors such as the need for
optimal signal clarity and energy efficiency. This approach
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Fig. 3. PDR and RSSI performance for various clustering algorithms.

allows network planners to tailor the network configuration
effectively to the specific demands of the environment and
operational objectives.

Furthermore, the slightly higher energy consumption and
delay observed in FCM could be attributed to its adaptability in
dynamic environments, where network conditions frequently
fluctuate. This feature renders it a suitable choice for urban
areas characterized by highly variable environmental factors.
Table [III] provides an overview of the algorithms discussed and
their strengths as observed in the LoRaWISEP+ evaluation.

TABLE III
SUMMARY OF ALGORITHM STRENGTHS IN LORAWISEP+ EVALUATION.
Strength KM KMD FCM Grid
Higher transmission rate v v
Lower energy consumption v v v
Stronger transmission signal v v v
Better adaptability in dynamic v v

environments

Overall, the integration of clustering algorithms in Lo-
RaWISEP+ significantly enhances network performance
across various metrics, providing flexible options to optimize
LoRaWAN deployments based on specific environmental and
operational needs.

VI. CONCLUSION

This study has evaluated the updated LoRaWISEP+ sys-
tem, which incorporates clustering algorithms to optimize
LoRaWAN network performance. The integration of KM
and KMD has shown to enhance signal clarity and network
connectivity, proving highly effective in environments with
substantial interference. Although the Grid method exhibited
higher delay times compared to KM, its application could still
be particularly beneficial in scenarios demanding swift data
transmission. On the other hand, FCM demonstrated versatility
in dynamic environments, adapting effectively to fluctuating
network conditions due to its probabilistic clustering approach.

Despite these advancements, LoRaWISEP+ has limitations.
Energy consumption trade-offs and varying performance in
different urban layouts suggest no one-size-fits-all solution.
These findings highlight the importance of selecting a clus-
tering algorithm that aligns with specific operational require-
ments and environmental conditions.

LoRaWISEP+ aids in achieving better planning, providing a
sophisticated toolkit for customizing LoRaWAN deployments.

As future directions, researches should explore the scalability
of these algorithms in larger, more diverse networks and inves-
tigate the integration of predictive machine learning models to
optimize network configurations in real-time.
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