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Abstract—In both society and industry, electric cables are
used for various purposes. Companies often use different colors
and materials to distinguish their properties. Quality control
in cable manufacturing involves checking that colors meet
specifications and that stripe widths (if present) are within
the required range. Manual quality inspection methods are
typically inefficient, time-consuming and error-proned, leading
to uncaught defects. This paper introduces an automatic real-
time visual inspection system that monitors the cable quality
during its manufacturing process. The system employs image
processing routines and four industrial Flir Blackfly S USB3
cameras to capture and analyze the entire cable perimeter in
real-time. It evaluates the colors and thickness of the stripes to
ensure they meet the predefined standards. The proposed solution
aims to improve inspection accuracy and reduce the number
of unnoticed defective cables that passes through the quality
control. Experimental results show high precision and recall
rates in segmentation, color verification and stripe evaluation
tasks. The cable segmentation routine achieved a precision of
99.96%, while the stripe segmentation routine achieved 90.25%.
The color verification routines for cables and stripes achieved
precisions of 86.30% and 90.00%, respectively. The system stripe
evaluation task achieved a precision rate of 79.74%. All image
processing routines run in under 30 ms on a mid-tier performance
workstation, demonstrating the system’s practical applicability
and effectiveness in modern cable manufacturing lines.

Index Terms—Industrial cable inspection, real-time inspection,
electric cable verification, quality control, image processing,
industrial cameras, cable manufacturing, segmentation, color
verification, automated inspection systems, industrial quality
control, artificial intelligence

I. INTRODUCTION

Automatic vision inspection systems have been widely
used in industry [1]–[4]. Some industrial contexts, such as
companies that manufacture electric cables, can be challenging
for vision inspection systems due to the variety of colors and
materials used to differentiate their specifications. In addition
to the challenges posed by color standards, the electrical
cable extrusion process is typically very fast. Small issues can
affect large portions of the cable during production, requiring
manual inspection and causing financial loss. A recurring
problem is the color fading caused by pigment dilution during
the manufacturing. To address this issue, the quality control
departments typically define a tolerance range for the color,
between a more intense pigment (maximum) and a more
faded pigment (minimum). The ideal pigment falls somewhere
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Fig. 1. Overview of the proposed system architecture, highlighting the
main components. The pipeline includes a cable extruder attached to a
Programmable Logic Controller (PLC). The extruded cable passes throgh an
enclosure designed to feature four industrial cameras. Captured images are
sent to a workstation that runs routines in order to verify cable compliance
in real-time during production.

between the maximum and minimum of the specified range.
The electric cable cover can also contain two stripes which
are colored with a different pigmentation that follows the
same standards. Similarly to the color, the stripe thickness
has an acceptable operating range relative to the cable’s total
perimeter. A common problem, related to stripes, is when their
count is different from the expected.

This work introduces a system for real-time inspection of
automotive electric cables during their manufacturing process,
as shown in Figure 1. The system inspects the full perimeter
of the cable, checks its colors to verify compliance with
predefined industrial standards. If stripes are present, it also
checks their count and thickness. To do so, the solution em-
ploys four Flir Blackfly S USB3 cameras with 0.30X SilverTL
Telecentric lenses to capture all sides of the cable, which are
then combined into a panoramic view for evaluation. A custom
enclosure was designed to reduce external interference and
dust, improving the system’s reliability.

The remainder of the paper is structured as follows: Section
II provides a review of literature. Section III describes the de-



velopment and operation of the system. Section IV showcases
achieved results. Finally, Section V summarizes and discusses
the findings and proposes directions for future research.

II. RELATED WORKS

Image processing and machine learning techniques are
revolutionizing automatic inspection and quality control across
various industries. For electrical component inspection, studies
have explored automated optical systems for verifying wire
sequences in cables using color recognition and image align-
ment [4]–[6]. Deep learning, particularly CNNs, has enhanced
defect detection in cable manufacturing and other areas [7]–
[9]. Beyond defect detection, machine learning facilitates
anomaly detection in high-voltage equipment and other critical
systems, leveraging techniques like support vector machines
and Gaussian Mixture Models [10], [11]. Other domains
benefit from multichannel analysis and alternative color spaces
for improved detection in tasks like weed identification and
facial emotion recognition [12], [13].

This work stands out by introducing a real-time automotive
electric cable manufacturing inspection system that verifies
produced cable quality with regard to multiple aspects. It
analyzes cable and stripe colors, counts the number of stripes,
and checks their thickness to ensure compliance with required
standards. Additionally, the combination of efficient image
processing routines along with industrial cameras and a custom
enclosure ensured accurate and reliable inspections.

III. METHODOLOGY

This section outlines the steps involved in developing the
proposed solution. It includes solution’s operation scenario,
hardware used for inspection, cable inspection routines for
quality assessment, and the experimental setup used for so-
lution evaluation.

A. Operation Scenario

The solution inspects cables with diameters between 1.2
mm and 4.2 mm, which may or not feature two stripes with
thicknesses between 7% and 17% of the cable’s perimeter.
As shown in Figure 1, the cable passes through an extrusion
process at up to 800 m/min, requiring real-time inspection.
Since the process involves melting PVC particles, any color
nonconformity can affect at least 20 meters of cable due to
the high extrusion speed. Lastly, the system checks if the
cable color falls within the calibration tolerance. If stripes are
present, it also verifies their color, count and thickness meet
the required standards.

B. Hardware for Inspection

Applied hardware setup consists of four Flir Blackfly S
USB3 industrial cameras with 0.30X SilverTL Telecentric
Lenses connected to a workstation via USB. These cameras
provide high image quality with 12-bit color depth for accu-
rate color verification. They were housed within a custom-
designed square enclosure (Figure 1) that minimizes external
noise, dust, and interference. This enclosure features a central,

ceramic-lined aperture ring for cable passage, a lid for safety
and dust prevention, and an LED ring for illumination. To
stabilize the cable and reduce vibrations, a ceramic ring
is applied to the aperture. Furthermore, the chosen camera
model features configurable parameters like exposure time and
frame rate, minimizing blurring in acquired images caused by
high speed and vibration. The computation is handled by a
workstation equipped with an Intel Core i7-10700 processor
and 32GB of RAM, sufficient for running image processing
routines and machine learning algorithms without a GPU.

C. Cable Inspection Process

As shown in Figure 1, images captured by the enclosure
cameras are sent to the workstation via serial communication
and undergo a five-step inspection process. First, the cable is
segmented from the background for each image. Then, the
images are combined into a panorama representing the full
cable perimeter. The system checks for stripes, extracting and
measuring them as a percentage of the panorama’s width if
present. Finally, the cable (and stripe, if applicable) color
is compared to the reference. After these steps, the system
determines if the cable meets the standards, requiring approval
in all verifications to be considered compliant.

1) Cable Segmentation: The routine starts by resizing the
captured image to a 500×694 format and cropping it to 5%
of its original size. The cropped frame is then converted
to YCrCb color format and a mask is generated using the
Y channel. Contrast in this channel is adjusted using his-
togram equalization, followed by a hit-and-miss morphological
operation. Additional morphological and thresholding opera-
tions eliminate small noise. Finally, a flood fill operation is
conducted on both sides of the cable to ensure all noise is
removed, preserving only the cable mask. Once the mask is
properly defined, it is analyzed to determine if any rotation is
required to ensure the cable is completely vertical. Lastly, the
generated mask is applied to the camera frame, isolating the
cable and removing the background.

2) Panorama construction: Standard image stitching tech-
niques often fail on featureless surfaces like thin cables. There-
fore, a geometric model was used to generate a panoramic
view of a striped cable. Multiple cameras were positioned
at fixed distances around the cable with slightly overlapping
fields of view, capturing different portions. These portions
were combined to form a complete 360-degree panoramic
image. The final system utilized four cameras to capture the
visible extent of the cable in the resulting panorama.

3) Stripe Segmentation: To identify and segment stripes
from the panorama, some features are manually defined. These
features consist of statistical metrics of individual channels
from HSV, YCrCb, RGB, Lab, and grayscale color spaces.
The metrics used are mean, standard deviation, and difference
between maximum and minimum values of each channel.
These informations describe the colors in the panorama. A
Random Forest (RF) [14] model was trained using these
features to determine which HSV channel best separates cable
color from stripe color. With these three channels, we find that



it is possible to segment any color combination. After selecting
the optimal channel, segmentation is performed, followed by
a small noise removal step. Finally, the stripe segmentation
routine returns a binary mask, where white pixels represent
stripes and black pixels represent the main body of the cable.

4) Stripe Verification: Once the stripe segmentation mask
is accurately estimated, their count and individual thickness
relative to the cable’s perimeter can be evaluated. This verifi-
cation applies only to striped cables. If no stripes or only one
stripe is detected, the system reports non-conformity due to an
insufficient number of stripes. If two stripes are identified, the
system confirms compliance based on the number of stripes
and proceeds to verify their thickness. If three stripes are
detected, an analysis is conducted to determine if the second
stripe is split at the borders of the panorama. This involves
shifting the panorama until the space between the stripes is
centered. If, after shifting, the panorama contains only two
stripes, the system confirms compliance and checks their thick-
ness. If more than two stripes are still present, non-compliance
is reported. Lastly, if four or more stripes are detected, non-
compliance is also reported. The thickness verification checks
whether each stripe falls within the tolerance range of 7% to
17% of the total panorama width.

5) Color Verification: The color verification process col-
lects points from the generated panorama and compares them
to reference (calibration) colors, checking if they fall within
the specified difference thresholds in the HSV color space.
Points outside the compliant range are marked as incorrect.
The number of color points collected can be set as a system
parameter. If stripes are present, the same process applies to
them. The system also allows users to define the expected
percentage of correct points needed to determine color com-
pliance, with a default value of 60%. If the percentage of
correct points is lower than expected for either the cable or
the stripe, the color verification indicates non-conformity.

D. Experimental Setup

Three experiments were designed to evaluate the perfor-
mance of the proposed system using data from a real man-
ufacturing process. The dataset consists of 804 collections,
each containing four images (one from each camera), totaling
3216 images. A more detailed annotation was performed on a
subset of 164 collections, specifying color conformity, stripe
thickness (measured in millimeters using a precision tool), and
color calibrations. This detailed annotation was limited to the
subset due to the time-consuming nature of the process. The
experiments were designed as follows:

• Cable/Stripe Segmentation: Evaluated across the en-
tire dataset by comparing generated masks with manual
annotations. Precision, recall, and execution time were
measured.

• Color Verification: Evaluated on 164 collections. Preci-
sion and recall were used to compare automated results
with manual annotations.

• Stripe Estimation/Verification: Evaluated on 164 collec-
tions. Stripe thickness was estimated (in pixels, percent-

age, and millimeters) and compared to the annotations.
Absolute error (mm) was calculated, and stripe confor-
mity was assessed using precision.

IV. RESULTS

This section presents an evaluation of the proposed system
along with results from conducted experiments.

A. Cable and Stripe Segmentation Assessment

Performance metrics for cable and stripe segmentation
routines, as shown in Table I, indicate that cable segmenta-
tion achieves high precision (99.96%) and recall (99.32%),
demonstrating its effectiveness in accurately identifying cable
pixels and segmenting them from the background. Stripe
segmentation also achieved high precision (90.25%) and recall
(94.07%) values, indicating a strong performance in detecting
most stripe pixels. Regarding execution times, the cable rou-
tine completes in 0.71 ms while the stripe routine in 10.14
ms, both being efficient and suitable for real-time applications.
Although the cable routine has a lower execution time, it is run
for each camera image, whereas the stripe routine is executed
once per processing loop.

TABLE I
PERFORMANCE METRICS CONCERNING BACKGROUND AND STRIPE

SEGMENTATION ROUTINES.

Segmentation Routine Precision Recall Execution Time
Cable 99.96% 99.32% 0.71 ms
Stripe 90.25% 94.07% 10.14 ms

B. Color Verification Evaluation

The cable color verification routine achieved a precision of
86.30% and a recall of 91.30% (Table II), demonstrating high
accuracy in correctly identifying compliant cable colors with
a balanced trade-off between false positives and true positives.
Similarly, the stripe color verification routine exhibited a high
precision of 90.00%, indicating better accuracy in identifying
compliant stripe colors, though with a slightly lower recall of
80.00%, suggesting a higher rate of false negatives. Overall,
both cable and stripe color routines show balanced perfor-
mance. Figure 2 illustrates examples of non-conformity in
stripe and cable colors properly identified by the system.

TABLE II
PERFORMANCE METRICS FOR COLOR VERIFICATION ROUTINES.

Precision Recall
Cable color 86.30% 91.30%
Stripe color 90.00% 80.00%

C. Stripe Estimation and Verification

Performance metrics for the stripe estimation and verifi-
cation routines, as exposed in Table III, indicate that the
system achieved an absolute error of 0.33 mm in estimating
stripe thickness, which may be attributed to thinner cables.
Despite this, the system maintains a high precision rate of



Fig. 2. Examples of nonconformities successfully identified by the system:
a) and b) cables with stripes contaminated by different colors, while c) and
d) cables without stripes stained during production.

79.74%, demonstrating that it can still accurately determine
stripe conformity. This step has an execution time os 1.65 ms,
proving system’s capability for real-time processing.

TABLE III
PERFORMANCE METRICS CONCERNING STRIPE ESTIMATION ROUTINE.

Error Precision Execution Time
Stripe 0.33 mm 79.74% 1.65 ms

V. CONCLUSIONS

This work presented a system designed to inspect automo-
tive eletric cables in real-time during their manufacturing pro-
cess, addressing industrial quality control challenges. It utilizes
image processing techniques, machine learning models, and
high-resolution industrial cameras to provide a comprehensive
analysis of cable and stripe colors, along with stripe thickness
verification, ensuring the cables meet predefined quality stan-
dards. The solution overcomes the limitations of traditional
manual inspections by providing continuous, accurate, and
consistent evaluation of the entire production, eliminating the
need to inspect only a fraction of the batch post-production.
The system’s performance was validated through an exper-
imental setup, showing high precision rate in segmentation,
stripe evaluation and color verification tasks. The complete
processing loop, integrating all routines, runs in under 30 ms.
Future research will focus on exploring alternative techniques
to further improve precision while maintaining efficiency.
Large-scale field trials will be conducted to validate system
performance in broader operational environments with samples
from various cables and materials.
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