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Abstract—Precision irrigation in greenhouses necessitates re-
mote monitoring of soil moisture. Traditional methods often
rely on point measurements, making comprehensive water stress
assessment across all crop plants impractical. As an alternative,
machine vision has emerged as a promising solution. This study
presents a novel approach to soil moisture monitoring using
plant images, implementable with low-cost devices and minimal
computational resources. The method is based on the hypothesis
that leaf discoloration serves as an early indicator of water stress,
detectable through RGB imaging. We detail the development and
installation of a monitoring system within a grow tent, designed
to test irrigation automation based on leaf color across various
crops in a controlled environment.

Index Terms—Machine vision in agriculture, Remote soil
moisture monitoring, RGB imaging, Precision irrigation, Water
stress detection

I. INTRODUCTION

Automated irrigation systems in greenhouses optimize water
use [1], save labor [2], promote plant health, and enable stress
physiology studies [3]. Moreover, data collected by environ-
mental sensors allow to maintain a favorable microclimate
within the greenhouse. Sensor-based precision agriculture min-
imizes human intervention and promotes real-time monitoring,
allowing for immediate response based on prevailing soil
and environmental conditions. Irrigation automation and crop
telemetry benefit both producers and scientific research.

Traditional grower-based irrigation typically employs timers
[4]. A monitoring system for soil moisture can be constructed
with low-cost components such as microcontrollers, soil mois-
ture sensors, and solenoid valves [5]. Conventional low-cost
sensors are typically inserted into the soil and are based on re-
sistive or capacitive measurements [6]. These sensors monitor
the electrical resistance or the dielectric permittivity of the soil,
providing insights into variations in soil moisture. However,
these sensors are susceptible to short-term deterioration. For
example, the chemical reaction between the electrodes of
resistive sensors and the soil, known as electrolysis, degrades
their measurements. Similarly, capacitive sensors, due to their
poor impermeability, undergo changes in the structure of the
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terminals and infiltration compromises their electronic circuits.
Such issues, observed both in this study and in other research
[7], highlight the limitations of these sensors leading to gradual
erroneous measurements.

In recent years, diverse machine vision techniques have
been applied for phenotyping, i.e., determining structural and
physiological traits of plants [8], [9]. A promising approach
is to use phenotypic traits extracted from images to estimate
water stress. Various traits have been explored for this purpose:
root zone water status has been classified based on 37 pheno-
typic traits of Pakchoi plants [10]; water and nitrogen deficit
stress in tomato plants has been detected using multispectral
indices [11]; substrate water status has been forecasted using
9 morphological traits, 6 color traits, and 14 near-infrared
feature traits for netted muskmelon crops [12]. This work
also discusses which color traits are significant for predicting
substrate water content at different growth stages; water stress
in tomato crops has been predicted based on leaf wilting
estimated from plant images combined with environmental
data [13]; and leaf chlorophyll content of pomegranate trees
has been estimated using RGB imaging [14].

The simplest trait that can be extracted from plant images
is leaf color. Interestingly, a correlation between soil moisture
and leaf color has been identified, at least for tomato plants
[15]. If such a relationship can be established for a wider
range of crops, RGB imaging of cultivated plants could serve
as a low-cost, non-invasive humidity sensor. In other words,
machine vision might enable plants to ”communicate” their
water needs through the color of their leaves. A similar idea
was followed when detecting anomalies in the emission of
volatile organic compounds of crops [16].

II. SENSING ARCHITECTURE

The irrigation water uptake time for tomato plants has been
estimated from changes in leaf color [7], demonstrating the
sensitivity of this approach for certain crops. However, the
required measurements were carried out manually using a
colorimeter, which is an expensive piece of equipment. In
this study, the automation of a similar experiment is proposed
using lower-cost components and data storage in the cloud.
The system is depicted in Fig. 2(a). To better analyze the color
and opacity of the crop leaf in response to hydric stress and to



(a) Phenotyping system (b) State diagram of controller

Fig. 1. The developed phenotyping system (a) includes a controller module, the Seeed Studio XIAO ESP32S3 Sense, featuring a CMOS camera (1280×1024
pixels) connected to the Internet by Wi-Fi (1); A cloud server storing data and snapshots (2); A remote computer for data inspection, irrigation specification
(user-defined humidity thresholds), image analysis, and processing (Python program) (3); A capacitive moisture sensor connected to the module (4); A flash
lamp positioned under the plant’s leaf connected to the same module (5); A mini water pump (6) inserted in a PVC reservoir (7) and also connected to the
development board (9); and a drip irrigation conduct (8). Two power drivers were used to control the mini water pump and the flash lamp. The controller
cycles through five states (b) to control the irrigation and periodically capture images for the extraction of phenotype traits.

increase the versatility of the suggested phenotyping system, a
flash lamp was positioned at the back of the leaf. This mode of
imaging helps monitor a novel “opacity color” trait. Moreover,
to mitigate the impact of the natural movement of the plant
over time, which could result in the capture of highly variable
images, the leaf under the camera’s focus was fixated.

As depicted in Fig. 1(b), the controller of the phenotyping
system is a finite state machine cycling through five states. In
the first state, the controller monitors soil moisture. Depending
on the results, the water pump may be activated. Subsequently,
the controller sends the moisture data and pump status to the
cloud. In the fourth state, the controller captures and transmits
images of the plant. In the final state, the controller enters sleep
mode, waking up after 40min, and restarts the cycle with new
readings followed by the same sequence of states.

Each transmitted humidity value represents the mean of 256
readings to reduce noise. The obtained mean is mapped to
a scale between 0 and 100, corresponding to 0% and 100%
relative soil humidity. The system uses two critical soil mois-
ture thresholds for irrigation control: a lower value to activate
the water pump and an upper value to deactivate it. These
thresholds are either pre-defined at startup or set remotely
by the user. In the ”pump control” state, when triggered, the
irrigation circuit is activated for 4 s. After the ”send data” state,
the controller captures six images in total: three with the flash
lamp activated and three without. The captured images are
sent to the repository and named according to the current soil
moisture value and the storage timestamp.

III. METHODS AND EXPERIMENTAL DESIGN

The developed phenotyping system was installed in a grow
tent to evaluate the relationship between the RGB color of
plant leaves and the corresponding soil moisture (Fig. 2). The
grow tent provided controlled artificial lighting, alternating
between 12 h of LED lighting (representing “day”) and 12 h
of no LED lighting (representing “night”) controlled by a pro-
grammable timer switch. Fig. 2(d) illustrates that the capacitive
soil moisture sensor is susceptible to infiltration. To prevent
this and extend the sensor’s lifespan, another replacement
sensor was wrapped with a thin layer of impermeable adhe-
sive plastic. This protective layer effectively prevented water
absorption into the sensor’s circuitry. After this modification,
the sensor was adjusted to ensure accurate measurements.

Fig. 3(a) shows the two extreme soil conditions used to
adjust the moisture readings. Two small pots were filled with
500 g of dry gardening soil. One pot was left dry, while the
other was watered until water drained through the bottom
opening. The soil moisture sensor was inserted sequentially
into both pots. Dry soil was defined as 0% relative moisture,
while saturated soil represented 100% relative humidity. Soil
moisture is measured with 9-bit resolution (0 to 511, corre-
sponding to 0V to 3.3V). The two soil conditions lead to
readings of 241 (0%) and 164 (100%), i.e., a one percent
change in relative humidity changes the voltage by 5mV.

In a pilot experiment, Red Ivy, Hemigraphis alternata, a
plant sensitive to irrigation conditions [17], was monitored
over several weeks. Image processing included blurring and
the extraction of RGB indices from two regions: a section



(a) Grow tent (b) Drip irrigation (c) SoC with camera (d) Moisture sensor

Fig. 2. Installation of the phenotyping system in a grow tent (a). The drip irrigation conduct supplied water to the grow pots and was controlled by a small
water pump (b). The camera module was positioned at a distance of 10 cm above the leaf under monitoring (c). Capacitive sensors inserted into the soil
monitored moisture but were vulnerable to infiltration (d).

(a) Sensor Regulation (b) RGB Reference

Fig. 3. Dry (left) and wet (right) soil used to regulate the two extreme values
of the moisture sensor (a). To mitigate the effect of noise present in the
captured leaf images, images were blurred and RGB indices extracted from
two regions (b). The leaf color is obtained from region one and normalized by
the values obtained from region two, which is not expected to change color.

of the leaf (primary region) and a section of the tent floor
(secondary reference region), see Fig. 3(b). The average RGB
values obtained for the reference region were subtracted from
the average RGB indices extracted from the leaf section for
normalization and noise reduction mainly caused by the arti-
ficial LED illumination due to the alternating power supply at
60Hz. Mean values were computed from the three consecutive
images captured at the same instance. The pilot experiment
aimed to demonstrate the full functionality of the developed
low-cost phenotyping system, including verifying the irrigation
automation, acquiring a phenotype image database over several
weeks, and analyzing the images, specifically extracting the
red (R), green (G), and blue (B) color indices.

IV. RESULTS

Fig. 4 demonstrates the automatic control of soil moisture
over time. The graph combines two distinct periods. In the first
period, approximately 6 d, the system was remotely configured
to maintain a moisture level around 80%. In a second moment,
the user-defined irrigation specification was modified, and the
soil moisture was kept close to 40% for approximately 10 d.
The readings from the moisture sensor show that the auto-
mated irrigation system successfully maintained the humidity

Fig. 4. The automated irrigation system succeeded in maintaining the
soil moisture at constant levels as remotely specified by the user. For the
two shown periods the targeted moisture levels amount to 80% and 40%,
respectively. The control parameters are the lower and upper limits to activate
and deactivate the water pump. The user-provided limits equalled 80% and
81% during the first period and 40% and 41% for the second period. The
shown graph is a slight adaptation (to improve readability) of the user view
of the remote moisture monitoring as depicted in Fig. 1.

at the desired levels, demonstrating the correct operation of
the system. Other humidity levels between 0% and 100% were
also achieved through remote configuration of the hysteresis
thresholds. For illustrative purposes, soil moisture transitions
have been omitted from Fig. 4.

The soil moisture level of 40% is lower than optimal, and
the plant experienced drought stress. The developed system
proved capable of acquiring a phenotype image dataset. In
total, 156 snapshots without back flash illumination and 165
images with back flash illumination were captured for color
trait extraction. An example is given in Fig. 3(b). The ex-
traction of the leaf color followed the procedure outlined in
Sec. III. Fig. 5 shows the evolution of the obtained leaf color
during the course of the stress experiment.

The obtained results indicate an increase in the average
RGB values for both capture modes. Interestingly, the back
flash illumination seems to help resolve slight color changes.



(a) No flash (b) Flash

Fig. 5. Leaf color evolution of a Red Ivy plant during water stress. The
soil moisture was kept during a period of 10d at a low value of 40%. In
response, the mean red (R), green (G) and blue (B) indices increased slightly,
both without back flash illumination (a) and with back flash illumination (b).
Even more significant is an increase in variability of the RGB indices. In total
52 and 55 instances are shown for the two illumination modes, respectively.

Fig. 5(b) shows a significant variation in the normalized
R, G, and B indices, with the red component showing the
most considerable variability, followed by the green and the
blue component. Conversely, in Fig. 5(a), which depicts the
experiment without back flash illumination, a smaller variation
in all components is noted. However, the B component exhibits
the greatest variability compared to the other components.
In conclusion, for the Red Ivy plant under investigation,
the variance and not the mean values of the RGB indices,
especially with back flash illumination, seems to be a better
indicator of water stress.

V. CONCLUSION

The developed phenotyping system required minimal main-
tenance during the study, with the primary challenges being
occasional power and network failures.

The irrigation system successfully maintained the soil mois-
ture at user-defined target levels by utilizing lower and upper
threshold values to control the activation and deactivation
of the water pump. Notably, absolute calibration of the soil
moisture sensor was not necessary; instead, the user defined
the extreme soil moisture conditions framing the desired target
state for the growing environment.

In this study, the phenotyping system was used to extract
color traits of an ornamental plant, Red Ivy, during drought
stress. Over an extended period, soil moisture was maintained
at a low level. Surprisingly, the mean RGB indices did not
change significantly during the stress test, contrasting with
several reports in the literature for other plants, such as tomato
crops. However, the variance of the RGB indices, especially
with back flash illumination, might be a good indicator of
water stress. Our findings emphasize that the concept of a
”plant as a humidity sensor” is crop-dependent.

The described prototype phenotyping system can be easily
adapted by other research teams to enable stress physiology
studies related to substrate-plant-water relations.

An interesting addition to the proposed system would be
machine learning-based tracking of the natural movement of
the plants. This would improve precision in the extraction of
color traits compared to the leaf fixation method used in this
study, as a larger extraction region with more pixels could

be employed. Additionally, detecting anomalies in natural
movement could serve as an additional indicator of water
stress.

VI. ONLINE RESOURCES

The source code of the microcontroller configuration and
software artefacts (Python) for color treat extraction are avail-
able in our GitHub repository.
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