
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

An Emulation Model For Embedded Networks used 
in Avionics 

 

Ramón Gómez Moya  
Bid Payload and Telecom Satellite 

System 
Thales Alenia Space 

Toulouse, France 
ramon.gomez@umh.es 

Antonio Cezar de Castro Lima 
Electrical Engineering Department 

Federal University of Bahia 
Salvador, Brazil 
acdcl@ufba.br 

Pablo Corral 
Communications Engineering 

Department 
Universidad Miguel Hernandez 

Elche, Spain 
pcorral@umh.es 

Israel Eduardo de Barros Filho  
Postgraduate Program in Electrical and 

Computer Engineering, Federal 
University of Rio Grande do Norte, 

Natal, Brazil  
israelfilho_1@hotmail.com

Saulo M. Froes 
Mechatronics Post Graduation Program 

Federal University of Bahia 
Salvador, Brazil 

saulo.froes@ibge.gov.br 

Guillermo De Scals 
Applied Physics Department 

Universidad Miguel Hernandez 
Elche, Spain 

gdescals@umh.es 

 

Abstract— The objective of this document is to show how to 
create an emulation of an AFDX network with commercial 
switches. AFDX, is a standardized deterministic network which 
can be found inside big size aircrafts such as the Airbus A380 and 
the A350. This network is formed by End Systems and AFDX 
switches. The End systems are devices that send or receive data 
into or from the network. On the other hand, the AFDX switches 
are the devices which are responsible of the commutation of all the 
traffic. Throughout this paper we are going to map AFDX network 
features, using Cisco switches as AFDX switches and Linux 
computers as End Systems. 
Keywords—AFDX, ARINC664, VLAN, CSMA/CD, QoS. 

I. INTRODUCTION 
The ARINC standard (Aeronautical Radio, Inc) 664 

specification consists of the definition of how data networks 
within airplanes should work and how they are defined [1]. 
This consists of 7 parts: first (global concepts and overview), 
second (link layer specification and physical Ethernet), third 
(protocols and internet-based services), fourth (address 
structure and numbers based on internet), fifth (characteristics 
of network domain and functional elements), sixth (network 
management specification), seventh (deterministic networks) 
and octave (services of higher layers). In this paper we will 
work in depth with part 7 of this standard, the deterministic 
AFDX (Avionics Full-Duplex Ethernet Switching) networks 
[2].  

One of the predecessors of ARINC 664 part 7 was the 
ARINC 429 formulated in the late 1970s which can still be 
found in some active and retired aircraft series [3]. This was 
one of the first standards ever made in avionics. This standard 
had as basic unit; the word, and two different coexisted in 
these networks: data words and message control words. As we 
can guess from the control words, Link control packets existed 
and they were responsible of informing, confirming… 
messages “data received OK”, “data received not OK”, 
“synchronization lost”. that means that bidirectional 
information exchange was required. However, ARINC 429 
defined a unidirectional and simplex bus so a station could be 
attached to multiple buses and operate as either sender or 
recipient. Because of this, a severe challenge was assumed 
when interlinking so even when having few stations, the 
configuration could present important complications and also 
this affected the weight of the aircraft [4]. 

The objective of this paper is to emulate, through 
commercial switches, the operation of this type of network in 
such a way that we obtain results of network parameters 
similar to those obtained in AFDX networks. That way, we 
will have a much simpler network to build, because we do not 
need to change AFDX, which is not very common, but we will 
also have a low-cost network. This not only implies reduction 
of costs for companies, it also implies more facility for 
research laboratories when developing technology and even 
possibility of accessing these devices to new students in 
universities, future professionals in the sector. 

This paper is organized as follows: Section II describes an 
overview of previous studies. Section III shows an emulation 
of AFDX networks. Section IV summarizes how is the traffic 
generation and in Section V analyses the results. Finally, 
Section VI exposes the conclusions. 

II. PREVIOUS STUDIES 
AFDX networks are called deterministic because they are 

static networks, at all times we know what the origin and 
destination of the packages are. For example: wing sensors of 
the A380 airplane sending data to a central control system. In 
this case always the sender will be the sensor and the receiver 
the central system. For this reason, the whole network is 
configured in a static way, so, in every moment we know 
where the data goes. The AFDX networks have two types of 
elements: End Systems (ES) and AFDX Switches that would 
correspond in a LAN with the computers and with the 
switches respectively as we can see in Fig. 1. Obviously being 
data networks embedded in aircraft, it is necessary to ensure 
low delays, high availability in the devices, static 
configurations of the MAC tables, no configuration protocols 
such as ARP, STP or any type of proprietary protocols. 

Another important notion in AFDX networks is the 
meaning of Virtual Link (VL) which is basically the 
connection between an ES and one or several ES through a 
shared physical medium (the same cable can be used by one 
or several ES, obviously, sharing the bandwidth). This 
presents a wide improvement over the standard used in the 
past, ARINC 429, which required using a physical cable for 
each connection [5]. 



On the other hand, in the same way that VLs are defined, 
the generation of traffic in them is not at all random. Each VL 
defines a Band Allocation Gap (BAG) that takes values 
between 1 and 128 ms, always being a power of 2. This 
parameter is the one that indicates the minimum time between 
two frames for which we can transmit. 

As we can well imagine, transmitting data as quickly as 
possible (minimizing the delays of switching, propagation, ...) 
is crucial in AFDX networks. For this reason, the ES and 
AFDX Switches have strong technological restrictions in 
order to meet these requirements, which also means that their 
price is quite high. 

 
Fig. 1. AFDX Virtual Link Example. 

It is true that the definition of VL in LAN type networks 
does not exist. However, we have the notion of VLAN 
(Virtual Local Area Network) that is quite close. This means 
that the advantage of VLs is that although they share a 
physical environment for practical purposes, it is as if each 
origin were really connected to their destinations 
independently. 

We can achieve this same effect using the VLAN concept 
in a LAN. Specifically, the IEEE 802.1Q protocol that adds 4 
bytes to the ethernet frame and that basically allows us to: tag 
which VLAN the pack belongs to (12 bits that allow us to 
define from VLAN 1 to VLAN 4095) and priority (3 bits, 
takes values from 0 to 7) also known as IEEE 802.1p Class 
of Service (CoS). In this way, defining the link as a trunk 
(allows all VLANs or VLANs that we indicate, since it 
supports access lists also in case, we need to use them) can 
have the same effect as we have with VLs [6]. 

In the AFDX networks the same ES may be the same VL, 
however this is not so usual in a LAN, because normally a 
computer is within a single VLAN, unless it has several 
network cards. However, thanks to the Linux tools it is 
possible to create virtual interfaces on the network card in 
such a way that each one belongs to a different VLAN. For 
this reason, the static configuration of the MAC tables can 
lead us to doubt this, because when we define an entry in the 
table it is necessary to indicate: VLAN, MAC address and 
physical port through which that VLAN and that MAC is 
accessed. How can we then define that the same MAC is in 2 
different VLANs? The problem seems apparently significant. 
MAC tables allow us to repeat the entry as long as the VLAN 
changes. Therefore, if we had an ES in several VLANs this is 
what we would see: 

TABLE I: MAC static configuration example 

VLAN MAC Address Type Ports 

VLAN 1 MAC_ES Static Fa 0/X 

VLAN 2 MAC_ES Static Fa 0/X 

If we want to do a multicast to the network what we are 
really doing is a broadcast within the same VLAN. This 
means that by going to the destination MAC address FF: FF: 
FF: FF (broadcast) we will be multicasting the network. To 
demonstrate this theory, we proceeded to use the software 
"Packet Tracer" from Cisco Systems as we can see in Fig.2. 

 
Fig. 2. Broadcast in VLAN2. 

III. EMULATION OF AFDX NETWORKS 
Although we have already checked for proper operation 

with 'Packet Tracer' software, sending 'multicast' brings a 
more realistic example of AFDX networks where there was 
at least one link that was shared by more than one VLAN and 
definitely check this section. 

For this we first use the GNS3 software as we can see in 
Fig. 3 because 'Packet Tracer' is a valid software when 
simulating the configuration of the switches, routers, ... 
however it does not allow us to configure the ES so we could 
not introduce the same equipment in different VLANs. In 
principle it was believed that instead it could be with GNS3 
but as in Packet Tracer no configuration is possible. However, 
two fundamental advantages presented GNS3 with respect to 
Packet Tracer. The first, GNS3 allows us to introduce the 
images of the Cisco routers in the software (routers 3600, 
3700, ...) while in Packet Tracer the models and features are 
fixed, thus limiting the configuration and preventing the 
implementation of certain features that we needed. The 
second, GNS3 gives us the option of capturing the traffic in 
the different interfaces of the computers through Wireshark, 
which makes it perfect to know what kind of traffic is going 
through a certain point and what origin and destination it has, 
as well as the VLAN to the one that belongs, encapsulation, ... 

As an additional point, it should be noted that the use of 
OMNET ++ was also raised. But, despite the power of the 
software that allows us to configure a switch, a link (ethernet, 
fast ethernet, fiber optic, ...), a router, ... with the 
characteristics that we want (type of service policy, queues, 
speed of switching, delays, ...) does not meet the requirements 
of what we are looking for. The reason is that the realization 
of an AFDX network was extremely complex since it is 



necessary to implement the entire implementation of switches, 
ES, physical medium, which could perfectly result in an 
entire project just for that. It is for this reason that basically 
the idea of OMNET ++ was discarded. 

 
Fig. 3. AFDX network simulation on GNS3. 

 
Once tested with GNS3 we used real Cisco Catalyst 3750 

switches to see if everything happened as it was in the 
software. The only change that occurred was to simplify the 
design of the network a bit so that assembly and configuration 
would not be that long. 

As expected in Fig. 4, the implementation with real 
switches and the one simulated in GNS3 finished 
corroborating that the configuration of the network was 
possible and that it worked correctly. 

 
Fig. 4. Simulation on real equipment. 

IV. TRAFFIC GENERATION 
Once we have seen that the configurations and the general 

idea of the functioning of the AFDX networks is feasible 
from commercial switches, we are going to emulate an ES 
model in our Linux computers. For this, as we have explained, 
we have the parameters BAG and Smax that are initially 
generated and controlled by the ES. Therefore, first of all we 
need to know how to create the Ethernet frames and then the 
traffic policy that we are going to install. That is, the 
configuration of the BAG and the Smax. 

 This second option allows, after choosing the source and 
the time range in which the observations were done, gets an 
average of transits that meet these requirements, allowing 
obtains a measure of source's data more reliable. 

In this work we are not working above the link layer, that 
is, we never get to work in the network layer, or what is the 
same at the IP level. This means that we do not send packets 
to a destination IP but to a MAC. A priori, this is not possible 
in a network because the packets require carrying all the 
encapsulated layers and we cannot send information without 
going through the network layer first. However, what we are 
going to do is open a RAW socket that, in summary, allows 

us to send ethernet frames without having previously defined 
data in the application, presentation, session, network layer ... 
for this we will make a C program to use this tool. 

Our C program is only developed for Linux machines and 
asks for five parameters for the input: interface that we will 
use to send traffic, BAG, Smax, VLAN number and VLAN 
priority. 

Once the data has been entered, we will create the Ethernet 
802.1q header from them and open a socket. We will 
introduce as data of the ethernet frame (between 46 and 1500 
bytes, it will depend as soon as we have defined the Smax) 
all the bytes with the hexadecimal value 0x01, this value is 
simply used as a fill of the plot since what interests us is to 
send the frames , what goes inside is not indifferent. However, 
for reasons that we will see later we will include in the final 
15 bytes the time with precision up to microseconds. That is, 
we will have the data field all to 0x01 except the last 15 bytes. 
Once our frame has been created it will be sent by the socket 
with destination MAC address FF: FF: FF: FF: FF (broadcast) 
as already explained and the BAG time will be expected until 
sending another frame that the only thing that will vary will 
be sent in its last 15 bytes. 

We will be sending Smax-sized ethernet frames and each 
BAG. Theoretically this is expected, however the reality is a 
little different, because the program needs a process time and 
therefore in time between frames can never be the value of 
the BAG but a little higher. This does not present any problem 
because according to the standard the minimum time has to 
be that of BAG but it does not specify maximum times so our 
program is perfectly valid. 

On the other hand, this is only executable in an interface, 
that is to simulate the operation of a computer with several 
VLANs we will need to do the same as we did with GNS3. 
In the same way you could think of running the same program 
at the same time in different Linux command prompts, 
however, the ES follow a concrete traffic policy storing the 
information at the exit and we do not have the specification 
of what is The policy of sending our network card and 
therefore we cannot ensure that the operation is the same as 
in an ES AFDX. 

V. RESULTS 
So far we have managed to send the Ethernet frames 

through the RAW Socket but we have certain problems when 
it comes to measuring the transmission times. The objective 
of creating the ethernet frames was to be able to measure in 
some way the transmission time in our emulation in the 
networks, remember that we are only working up to link level 
and that our traffic is also unidirectional so the package is sent 
but not no type of ACK or response pattern is received. 

Therefore, to measure the transmission time in our network 
we need some kind of software that allows us to measure the 
time of transmission of traffic. This is not trivial in any case 
because, for example, when we send a ping, we know the time 
it takes to get to the destination and return but not the time 
only one way or return. The most logical and quick to think 
about to solve this problem is to know the time at which it 
arrives at the destination and subtract the departure time from 
the origin. It is an option, however, in no case feasible 



because the clocks are never synchronized at the level of 
seconds much less in microseconds that is in the order that 
we want to measure. We find here the first obstacle to obtain 
measurements. 

As we can remember from the explanation about the 
program in C we had introduced the time in the last 15 bytes 
of the plot precisely to try to solve this problem. 

What we will do is send a ping directly between the two 
computers we want to measure and know what is the 
transmission time of that ping (round trip). With this we will 
know the time difference between the clocks that must be 
constant in theory will be (assuming that the ping takes the 
same time to go and return) [7]: 
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Where, 

Cons: difference between watches, 

Hdest: departure time of the destination, 

Ping: ping transmission time, 

Tprocess: time it takes the destination to receive the ping 
request and respond with the ping reply, 

Hsour: departure time of the origin. 

And therefore our outbound transmission time will finally 
be:  

��� � ����� � ���� � ����� (2) 

Where Ttx, is the transmission time. 

Once we know the constant between the clocks we carry 
out the different transmissions with our program in C and 
capture the packages in reception with Wireshark exporting 
them as .xml files [8]. 

On the other hand, we have generated a program in Python 
that reads each packet saved in the .xml file, taking the time 
sent from each packet (departure time) and the arrival time to 
destination and then applying the formula described in eq. 2. 
In this way we already have the transmission time of all the 
Ethernet packets sent. 

So, we have divided the results in different topics: 

A. Real example of AFDX network 
To carry out the measurements and results we have created 

our own example shown in Figure 5 that represents a real 
example of the AFDX network (very similar to the one we 
have shown in the GNS3 simulation). In this example all the 
data is created by E1, E2, E3, E4 or E5 towards the 
corresponding ESs within its same VLAN. So E1 will 
transmit to E6.10 and E8, E2 to E7, E3 to E6.30, ... 

The objective of constructing 4 ES's called E6.10, E6.30, 
E6.40 and E6.50 was due to the impossibility, as we have 
done in the previous GNS3 example, to build a single E6 and 
that it fulfilled the requirements of the standard of the ES in 
the AFDX networks when multiplexing the data at the output. 
In this way we ensure that they are met although in a real 
example it is impractical. 

 
Fig. 5. AFDX example. 

This simulation was performed to verify that the software 
developed and the network configurations on the switches 
worked correctly. On the other hand, an attempt was also 
made to measure the point-to-point transmission time and 
draw some conclusions regarding the transmission times. 
However, it did not make much sense to do it, since we did 
not have any real AFDX model that implemented our same 
network, nor any other, and therefore no reference to whether 
the times obtained were good or not. 

Tested the proper functioning of the configuration and 
software we decided to focus on two more points only. The 
first point was to measure the latency of a single VLAN in a 
switch trying to visualize the delay introduced by a switch on 
a VLAN depending on the priority and step to see the 
operation of the SPQ in the queue. The second point was to 
develop a more complex software that would allow us to 
really emulate an ES allowing us to configure all the 
necessary VLANs in a single Linux computer and not just 
one per computer. 

B. Networks results 
At this point we will work with a very simple network 

example shown in Fig. 6. For this we measure first the 
technological latency of the switch (delay that introduces the 
technology in the network) and second the delay in VLAN 10 
and 20 [9]. 

 
Fig.6. Monitoring network. 

 

To measure the technological latency, we sent from E1 to E3 
a frame of 1200 bytes every 128 ms and then every 1 ms while 
the network was empty. Once this is done, we have monitored 
the traffic at the input and output ports of the switch so that 
we can see the time difference, shown in Tables II and III. 

 



TABLE II: Technology latency every 128 ms 

Input time (ms) Output time 
(ms) 

Technology 
Latency (μs) 

0 0.006 6 

128.145 128.15 5 

256.057 256.063 6 

640.067 640.68 1 

896.157 896.159 2 

1408.339 1408.441 2 
 

TABLE III: Technology latency every 1 ms 

Input time (ms) Output time 
(ms) 

Technology 
Latency (μs) 

0 0.008 8 

0.958 0.96 2 

1.958 1.96 2 

8.953 8.955 2 

9.953 9.954 1 

13.2 13.202 2 

These values were extracted randomly after having 
captured between 312 and 25000 frames respectively in each 
capture. However, more data were shown to attest that the 
data shown in the tables were representative. 

As you can see, the technological latency is over 2 μs, 
although sometimes we find values that are a little larger or 
smaller. According to the ARINC 664 standard this value 
should not exceed 100 μs and we can conclude that in this 
case the requirement is accomplished. 

C. Emulating the end system 
We have already explained that the ES is responsible and 

that it needs part of the first program that allowed us a first 
approximation to an emulation. However, as we have said, it 
did not allow us to introduce more than one interface and 
therefore it did not end up being an ES. It also introduced a 
much more expensive task of configuring the network. 

It is for this reason that an improved software was decided to 
implement following the indications of the ARINC 664. 

First, an ES must have a FIFO stack of 8 Kbytes, according 
to the specification in the standard. This means that before 
sending the frames they have to go through the FIFO type 
queue. Although the concept is easy to understand, the 
program model is a little more complex and which we will 
explain briefly below [10]. 

When we start the program, it will ask us how many 
VLANs we want to introduce. From there, it will create as 
many parallel processes as the number that we have entered. 
Then we will enter the values of each VLAN manually 
(interface, BAG, MTU, VLAN number and priority). Once 
this is done, each process will create its frames independently. 
These will be read by the parent process that will put them in 

a reception buffer and from there to the FIFO if there is 
enough space available, if not, a message announcing "Frame 
dropped" will be displayed and the program will continue 
running normally. Finally, the first value stored in the FIFO 
will be stored in an output buffer that will send the data to the 
output of the interface and it will be announced that those 
bytes have been left free in the stack. 

The child processes created when we specify how many 
VLANs we want in our ES are executed in an infinite loop 
with a waiting time between creation and sending of frames 
to the reception buffer of the parent process equal to the value 
entered as BAG. In the same way, the parent process executes 
an infinite loop without any kind of wait if there is data in the 
FIFO or in the reception buffer, but it will wait until there is 
data available to read.  

To verify the correct operation of the program we have 
used the example shown in Table IV, obtaining the next 
output of the program in Figure 7. 

TABLE IV: Configuration example 

Interface BAG MTU VLAN Priority 

eth0.10 4 1212 100 1 

eth0.20 1 543 1200 1 

eth0.30 16 134 500 1 

eth0.40 64 876 304 1 

 
Fig. 7. Output of the program in Linux Command Prompt. 

As you can see in Figure 7, the 4 interfaces are sending the 
expected. We can also observe an average of rejected frames 
due to the fact that the FIFO was filled with approximately 
0.77%. 

VI. CONCLUSIONS  
In this paper we have demonstrated that an AFDX network 

can be configured based on the typical characteristics of 
VLANs in Cisco commercial switches. However, it will be a 
future objective to conclude whether really after making the 
relevant network configurations, the delays, queues, ... are fast 
enough to obtain results similar to those of an actual AFDX 
network.  

An interesting point could be to study in depth OMNET 
++ to build simulations of AFDX switches from the existing 
core4inet framework developed for real-time networks and 
compare this simulation with the times obtained in a network 
emulated with commercial switches. 

On the other hand, it is also a conclusion that it is possible 
to emulate an ES with Linux computers respecting traffic 
policies in accordance with the ARINC 664 standard. In this 
case it could also be interesting for a future to add to the 
program a specific type of distribution for the injection of 



traffic such as: Poisson, normal, ... so that this is not constant 
and there are variations in it as well as in the size of the frame 
(always without exceeding the Smax) to make it even more 
real 
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