
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

An Emulation Model For Embedded Networks used
in Avionics

Ramón Gómez Moya
Bid Payload and Telecom Satellite

System
Thales Alenia Space

Toulouse, France
ramon.gomez@umh.es

Antonio Cezar de Castro Lima
Electrical Engineering Department

Federal University of Bahia
Salvador, Brazil
acdcl@ufba.br

Pablo Corral
Communications Engineering

Department
Universidad Miguel Hernandez

Elche, Spain
pcorral@umh.es

Israel Eduardo de Barros Filho
Postgraduate Program in Electrical and

Computer Engineering, Federal
University of Rio Grande do Norte,

Natal, Brazil
israelfilho_1@hotmail.com

Saulo M. Froes
Mechatronics Post Graduation Program

Federal University of Bahia
Salvador, Brazil

saulo.froes@ibge.gov.br

Guillermo De Scals
Applied Physics Department

Universidad Miguel Hernandez
Elche, Spain

gdescals@umh.es

Abstract— The objective of this document is to show how to
create an emulation of an AFDX network with commercial
switches. AFDX, is a standardized deterministic network which
can be found inside big size aircrafts such as the Airbus A380 and
the A350. This network is formed by End Systems and AFDX
switches. The End systems are devices that send or receive data
into or from the network. On the other hand, the AFDX switches
are the devices which are responsible of the commutation of all the
traffic. Throughout this paper we are going to map AFDX network
features, using Cisco switches as AFDX switches and Linux
computers as End Systems.
Keywords—AFDX, ARINC664, VLAN, CSMA/CD, QoS.

I. INTRODUCTION
The ARINC standard (Aeronautical Radio, Inc) 664

specification consists of the definition of how data networks
within airplanes should work and how they are defined [1].
This consists of 7 parts: first (global concepts and overview),
second (link layer specification and physical Ethernet), third
(protocols and internet-based services), fourth (address
structure and numbers based on internet), fifth (characteristics
of network domain and functional elements), sixth (network
management specification), seventh (deterministic networks)
and octave (services of higher layers). In this paper we will
work in depth with part 7 of this standard, the deterministic
AFDX (Avionics Full-Duplex Ethernet Switching) networks
[2].

One of the predecessors of ARINC 664 part 7 was the
ARINC 429 formulated in the late 1970s which can still be
found in some active and retired aircraft series [3]. This was
one of the first standards ever made in avionics. This standard
had as basic unit; the word, and two different coexisted in
these networks: data words and message control words. As we
can guess from the control words, Link control packets existed
and they were responsible of informing, confirming…
messages “data received OK”, “data received not OK”,
“synchronization lost”. that means that bidirectional
information exchange was required. However, ARINC 429
defined a unidirectional and simplex bus so a station could be
attached to multiple buses and operate as either sender or
recipient. Because of this, a severe challenge was assumed
when interlinking so even when having few stations, the
configuration could present important complications and also
this affected the weight of the aircraft [4].

The objective of this paper is to emulate, through
commercial switches, the operation of this type of network in
such a way that we obtain results of network parameters
similar to those obtained in AFDX networks. That way, we
will have a much simpler network to build, because we do not
need to change AFDX, which is not very common, but we will
also have a low-cost network. This not only implies reduction
of costs for companies, it also implies more facility for
research laboratories when developing technology and even
possibility of accessing these devices to new students in
universities, future professionals in the sector.

This paper is organized as follows: Section II describes an
overview of previous studies. Section III shows an emulation
of AFDX networks. Section IV summarizes how is the traffic
generation and in Section V analyses the results. Finally,
Section VI exposes the conclusions.

II. PREVIOUS STUDIES
AFDX networks are called deterministic because they are

static networks, at all times we know what the origin and
destination of the packages are. For example: wing sensors of
the A380 airplane sending data to a central control system. In
this case always the sender will be the sensor and the receiver
the central system. For this reason, the whole network is
configured in a static way, so, in every moment we know
where the data goes. The AFDX networks have two types of
elements: End Systems (ES) and AFDX Switches that would
correspond in a LAN with the computers and with the
switches respectively as we can see in Fig. 1. Obviously being
data networks embedded in aircraft, it is necessary to ensure
low delays, high availability in the devices, static
configurations of the MAC tables, no configuration protocols
such as ARP, STP or any type of proprietary protocols.

Another important notion in AFDX networks is the
meaning of Virtual Link (VL) which is basically the
connection between an ES and one or several ES through a
shared physical medium (the same cable can be used by one
or several ES, obviously, sharing the bandwidth). This
presents a wide improvement over the standard used in the
past, ARINC 429, which required using a physical cable for
each connection [5].

On the other hand, in the same way that VLs are defined,
the generation of traffic in them is not at all random. Each VL
defines a Band Allocation Gap (BAG) that takes values
between 1 and 128 ms, always being a power of 2. This
parameter is the one that indicates the minimum time between
two frames for which we can transmit.

As we can well imagine, transmitting data as quickly as
possible (minimizing the delays of switching, propagation, ...)
is crucial in AFDX networks. For this reason, the ES and
AFDX Switches have strong technological restrictions in
order to meet these requirements, which also means that their
price is quite high.

Fig. 1. AFDX Virtual Link Example.

It is true that the definition of VL in LAN type networks
does not exist. However, we have the notion of VLAN
(Virtual Local Area Network) that is quite close. This means
that the advantage of VLs is that although they share a
physical environment for practical purposes, it is as if each
origin were really connected to their destinations
independently.

We can achieve this same effect using the VLAN concept
in a LAN. Specifically, the IEEE 802.1Q protocol that adds 4
bytes to the ethernet frame and that basically allows us to: tag
which VLAN the pack belongs to (12 bits that allow us to
define from VLAN 1 to VLAN 4095) and priority (3 bits,
takes values from 0 to 7) also known as IEEE 802.1p Class
of Service (CoS). In this way, defining the link as a trunk
(allows all VLANs or VLANs that we indicate, since it
supports access lists also in case, we need to use them) can
have the same effect as we have with VLs [6].

In the AFDX networks the same ES may be the same VL,
however this is not so usual in a LAN, because normally a
computer is within a single VLAN, unless it has several
network cards. However, thanks to the Linux tools it is
possible to create virtual interfaces on the network card in
such a way that each one belongs to a different VLAN. For
this reason, the static configuration of the MAC tables can
lead us to doubt this, because when we define an entry in the
table it is necessary to indicate: VLAN, MAC address and
physical port through which that VLAN and that MAC is
accessed. How can we then define that the same MAC is in 2
different VLANs? The problem seems apparently significant.
MAC tables allow us to repeat the entry as long as the VLAN
changes. Therefore, if we had an ES in several VLANs this is
what we would see:

TABLE I: MAC static configuration example

VLAN MAC Address Type Ports

VLAN 1 MAC_ES Static Fa 0/X

VLAN 2 MAC_ES Static Fa 0/X

If we want to do a multicast to the network what we are
really doing is a broadcast within the same VLAN. This
means that by going to the destination MAC address FF: FF:
FF: FF (broadcast) we will be multicasting the network. To
demonstrate this theory, we proceeded to use the software
"Packet Tracer" from Cisco Systems as we can see in Fig.2.

Fig. 2. Broadcast in VLAN2.

III. EMULATION OF AFDX NETWORKS
Although we have already checked for proper operation

with 'Packet Tracer' software, sending 'multicast' brings a
more realistic example of AFDX networks where there was
at least one link that was shared by more than one VLAN and
definitely check this section.

For this we first use the GNS3 software as we can see in
Fig. 3 because 'Packet Tracer' is a valid software when
simulating the configuration of the switches, routers, ...
however it does not allow us to configure the ES so we could
not introduce the same equipment in different VLANs. In
principle it was believed that instead it could be with GNS3
but as in Packet Tracer no configuration is possible. However,
two fundamental advantages presented GNS3 with respect to
Packet Tracer. The first, GNS3 allows us to introduce the
images of the Cisco routers in the software (routers 3600,
3700, ...) while in Packet Tracer the models and features are
fixed, thus limiting the configuration and preventing the
implementation of certain features that we needed. The
second, GNS3 gives us the option of capturing the traffic in
the different interfaces of the computers through Wireshark,
which makes it perfect to know what kind of traffic is going
through a certain point and what origin and destination it has,
as well as the VLAN to the one that belongs, encapsulation, ...

As an additional point, it should be noted that the use of
OMNET ++ was also raised. But, despite the power of the
software that allows us to configure a switch, a link (ethernet,
fast ethernet, fiber optic, ...), a router, ... with the
characteristics that we want (type of service policy, queues,
speed of switching, delays, ...) does not meet the requirements
of what we are looking for. The reason is that the realization
of an AFDX network was extremely complex since it is

necessary to implement the entire implementation of switches,
ES, physical medium, which could perfectly result in an
entire project just for that. It is for this reason that basically
the idea of OMNET ++ was discarded.

Fig. 3. AFDX network simulation on GNS3.

Once tested with GNS3 we used real Cisco Catalyst 3750

switches to see if everything happened as it was in the
software. The only change that occurred was to simplify the
design of the network a bit so that assembly and configuration
would not be that long.

As expected in Fig. 4, the implementation with real
switches and the one simulated in GNS3 finished
corroborating that the configuration of the network was
possible and that it worked correctly.

Fig. 4. Simulation on real equipment.

IV. TRAFFIC GENERATION
Once we have seen that the configurations and the general

idea of the functioning of the AFDX networks is feasible
from commercial switches, we are going to emulate an ES
model in our Linux computers. For this, as we have explained,
we have the parameters BAG and Smax that are initially
generated and controlled by the ES. Therefore, first of all we
need to know how to create the Ethernet frames and then the
traffic policy that we are going to install. That is, the
configuration of the BAG and the Smax.

 This second option allows, after choosing the source and
the time range in which the observations were done, gets an
average of transits that meet these requirements, allowing
obtains a measure of source's data more reliable.

In this work we are not working above the link layer, that
is, we never get to work in the network layer, or what is the
same at the IP level. This means that we do not send packets
to a destination IP but to a MAC. A priori, this is not possible
in a network because the packets require carrying all the
encapsulated layers and we cannot send information without
going through the network layer first. However, what we are
going to do is open a RAW socket that, in summary, allows

us to send ethernet frames without having previously defined
data in the application, presentation, session, network layer ...
for this we will make a C program to use this tool.

Our C program is only developed for Linux machines and
asks for five parameters for the input: interface that we will
use to send traffic, BAG, Smax, VLAN number and VLAN
priority.

Once the data has been entered, we will create the Ethernet
802.1q header from them and open a socket. We will
introduce as data of the ethernet frame (between 46 and 1500
bytes, it will depend as soon as we have defined the Smax)
all the bytes with the hexadecimal value 0x01, this value is
simply used as a fill of the plot since what interests us is to
send the frames , what goes inside is not indifferent. However,
for reasons that we will see later we will include in the final
15 bytes the time with precision up to microseconds. That is,
we will have the data field all to 0x01 except the last 15 bytes.
Once our frame has been created it will be sent by the socket
with destination MAC address FF: FF: FF: FF: FF (broadcast)
as already explained and the BAG time will be expected until
sending another frame that the only thing that will vary will
be sent in its last 15 bytes.

We will be sending Smax-sized ethernet frames and each
BAG. Theoretically this is expected, however the reality is a
little different, because the program needs a process time and
therefore in time between frames can never be the value of
the BAG but a little higher. This does not present any problem
because according to the standard the minimum time has to
be that of BAG but it does not specify maximum times so our
program is perfectly valid.

On the other hand, this is only executable in an interface,
that is to simulate the operation of a computer with several
VLANs we will need to do the same as we did with GNS3.
In the same way you could think of running the same program
at the same time in different Linux command prompts,
however, the ES follow a concrete traffic policy storing the
information at the exit and we do not have the specification
of what is The policy of sending our network card and
therefore we cannot ensure that the operation is the same as
in an ES AFDX.

V. RESULTS
So far we have managed to send the Ethernet frames

through the RAW Socket but we have certain problems when
it comes to measuring the transmission times. The objective
of creating the ethernet frames was to be able to measure in
some way the transmission time in our emulation in the
networks, remember that we are only working up to link level
and that our traffic is also unidirectional so the package is sent
but not no type of ACK or response pattern is received.

Therefore, to measure the transmission time in our network
we need some kind of software that allows us to measure the
time of transmission of traffic. This is not trivial in any case
because, for example, when we send a ping, we know the time
it takes to get to the destination and return but not the time
only one way or return. The most logical and quick to think
about to solve this problem is to know the time at which it
arrives at the destination and subtract the departure time from
the origin. It is an option, however, in no case feasible

because the clocks are never synchronized at the level of
seconds much less in microseconds that is in the order that
we want to measure. We find here the first obstacle to obtain
measurements.

As we can remember from the explanation about the
program in C we had introduced the time in the last 15 bytes
of the plot precisely to try to solve this problem.

What we will do is send a ping directly between the two
computers we want to measure and know what is the
transmission time of that ping (round trip). With this we will
know the time difference between the clocks that must be
constant in theory will be (assuming that the ping takes the
same time to go and return) [7]:

���� � ����� �
���� � ��������

2
� Hsour (1)

Where,

Cons: difference between watches,

Hdest: departure time of the destination,

Ping: ping transmission time,

Tprocess: time it takes the destination to receive the ping
request and respond with the ping reply,

Hsour: departure time of the origin.

And therefore our outbound transmission time will finally
be:

��� � ����� � ���� � ����� (2)

Where Ttx, is the transmission time.

Once we know the constant between the clocks we carry
out the different transmissions with our program in C and
capture the packages in reception with Wireshark exporting
them as .xml files [8].

On the other hand, we have generated a program in Python
that reads each packet saved in the .xml file, taking the time
sent from each packet (departure time) and the arrival time to
destination and then applying the formula described in eq. 2.
In this way we already have the transmission time of all the
Ethernet packets sent.

So, we have divided the results in different topics:

A. Real example of AFDX network
To carry out the measurements and results we have created

our own example shown in Figure 5 that represents a real
example of the AFDX network (very similar to the one we
have shown in the GNS3 simulation). In this example all the
data is created by E1, E2, E3, E4 or E5 towards the
corresponding ESs within its same VLAN. So E1 will
transmit to E6.10 and E8, E2 to E7, E3 to E6.30, ...

The objective of constructing 4 ES's called E6.10, E6.30,
E6.40 and E6.50 was due to the impossibility, as we have
done in the previous GNS3 example, to build a single E6 and
that it fulfilled the requirements of the standard of the ES in
the AFDX networks when multiplexing the data at the output.
In this way we ensure that they are met although in a real
example it is impractical.

Fig. 5. AFDX example.

This simulation was performed to verify that the software
developed and the network configurations on the switches
worked correctly. On the other hand, an attempt was also
made to measure the point-to-point transmission time and
draw some conclusions regarding the transmission times.
However, it did not make much sense to do it, since we did
not have any real AFDX model that implemented our same
network, nor any other, and therefore no reference to whether
the times obtained were good or not.

Tested the proper functioning of the configuration and
software we decided to focus on two more points only. The
first point was to measure the latency of a single VLAN in a
switch trying to visualize the delay introduced by a switch on
a VLAN depending on the priority and step to see the
operation of the SPQ in the queue. The second point was to
develop a more complex software that would allow us to
really emulate an ES allowing us to configure all the
necessary VLANs in a single Linux computer and not just
one per computer.

B. Networks results
At this point we will work with a very simple network

example shown in Fig. 6. For this we measure first the
technological latency of the switch (delay that introduces the
technology in the network) and second the delay in VLAN 10
and 20 [9].

Fig.6. Monitoring network.

To measure the technological latency, we sent from E1 to E3
a frame of 1200 bytes every 128 ms and then every 1 ms while
the network was empty. Once this is done, we have monitored
the traffic at the input and output ports of the switch so that
we can see the time difference, shown in Tables II and III.

TABLE II: Technology latency every 128 ms

Input time (ms) Output time
(ms)

Technology
Latency (μs)

0 0.006 6

128.145 128.15 5

256.057 256.063 6

640.067 640.68 1

896.157 896.159 2

1408.339 1408.441 2

TABLE III: Technology latency every 1 ms

Input time (ms) Output time
(ms)

Technology
Latency (μs)

0 0.008 8

0.958 0.96 2

1.958 1.96 2

8.953 8.955 2

9.953 9.954 1

13.2 13.202 2

These values were extracted randomly after having
captured between 312 and 25000 frames respectively in each
capture. However, more data were shown to attest that the
data shown in the tables were representative.

As you can see, the technological latency is over 2 μs,
although sometimes we find values that are a little larger or
smaller. According to the ARINC 664 standard this value
should not exceed 100 μs and we can conclude that in this
case the requirement is accomplished.

C. Emulating the end system
We have already explained that the ES is responsible and

that it needs part of the first program that allowed us a first
approximation to an emulation. However, as we have said, it
did not allow us to introduce more than one interface and
therefore it did not end up being an ES. It also introduced a
much more expensive task of configuring the network.

It is for this reason that an improved software was decided to
implement following the indications of the ARINC 664.

First, an ES must have a FIFO stack of 8 Kbytes, according
to the specification in the standard. This means that before
sending the frames they have to go through the FIFO type
queue. Although the concept is easy to understand, the
program model is a little more complex and which we will
explain briefly below [10].

When we start the program, it will ask us how many
VLANs we want to introduce. From there, it will create as
many parallel processes as the number that we have entered.
Then we will enter the values of each VLAN manually
(interface, BAG, MTU, VLAN number and priority). Once
this is done, each process will create its frames independently.
These will be read by the parent process that will put them in

a reception buffer and from there to the FIFO if there is
enough space available, if not, a message announcing "Frame
dropped" will be displayed and the program will continue
running normally. Finally, the first value stored in the FIFO
will be stored in an output buffer that will send the data to the
output of the interface and it will be announced that those
bytes have been left free in the stack.

The child processes created when we specify how many
VLANs we want in our ES are executed in an infinite loop
with a waiting time between creation and sending of frames
to the reception buffer of the parent process equal to the value
entered as BAG. In the same way, the parent process executes
an infinite loop without any kind of wait if there is data in the
FIFO or in the reception buffer, but it will wait until there is
data available to read.

To verify the correct operation of the program we have
used the example shown in Table IV, obtaining the next
output of the program in Figure 7.

TABLE IV: Configuration example

Interface BAG MTU VLAN Priority

eth0.10 4 1212 100 1

eth0.20 1 543 1200 1

eth0.30 16 134 500 1

eth0.40 64 876 304 1

Fig. 7. Output of the program in Linux Command Prompt.

As you can see in Figure 7, the 4 interfaces are sending the
expected. We can also observe an average of rejected frames
due to the fact that the FIFO was filled with approximately
0.77%.

VI. CONCLUSIONS
In this paper we have demonstrated that an AFDX network

can be configured based on the typical characteristics of
VLANs in Cisco commercial switches. However, it will be a
future objective to conclude whether really after making the
relevant network configurations, the delays, queues, ... are fast
enough to obtain results similar to those of an actual AFDX
network.

An interesting point could be to study in depth OMNET
++ to build simulations of AFDX switches from the existing
core4inet framework developed for real-time networks and
compare this simulation with the times obtained in a network
emulated with commercial switches.

On the other hand, it is also a conclusion that it is possible
to emulate an ES with Linux computers respecting traffic
policies in accordance with the ARINC 664 standard. In this
case it could also be interesting for a future to add to the
program a specific type of distribution for the injection of

traffic such as: Poisson, normal, ... so that this is not constant
and there are variations in it as well as in the size of the frame
(always without exceeding the Smax) to make it even more
real

REFERENCES
[1] “Draft 3 of project paper 664 aircraft data network part 7 Avionics Full
Duplex switched ethernet (AFDX) network”, AERONAUTICAL RADIO,
INC. July 1, 2004.

[2] “AFDX® / ARINC 664 Tutorial”, TechSAT GmbH, Poing (Germany),
29th August 2008.

[3] Christian M. “The Evolution of Avionics Networks From ARINC 429 to
AFDX”, Faculty of Informatics, Technical University of Munich, Seminar
Aerospace Networks (SS2012), Network Architectures and Services, August
2012.

[4] Henri Bauer, Jean-Luc Scharbarg, Christian Fraboul, “Worst-case end-
to-end delay analysis of an avionics AFDX network”, Airbus France
Université de Toulouse - IRIT/ENSEEIHT/INPT. March 2010, Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010).

[5] J. Javier Gutiérrez, J. Carlos Palencia and Michael González Harbour
“Response time analysis in AFDX networks with sub-virtual links and
prioritized switches”, Santander (Spain) February 2012 , XV Jornadas de
Tiempo Real, JTR 2012.

[6] William D. Wargo and Joachim Schuler, “Testing aircraft AFDX
systems” Test & Measurement World, special issue, Cambridge (USA), May
2012.

[7] “Protocols for Aerospace Control Systems A Comparison of AFDX,
ARINC 429, CAN, and TTP”, TTTech Computertechnik AG, 2005.

[8] Linux socket part 17 Advanced tcp/ip - the raw socket program examples:
http://www.tenouk.com/Module43a.html (available in october 2019).

[9] Sending raw Ethernet packets from a specific interface in C on Linux:
https://gist.github.com/austinmarton/1922600 (available in october 2019).

[10] Dongning Qu ; Bo Yang ; Tao Gao ; LuLu Yuan ; Xi Chen “ARINC664
bus function test and its fault injection based on Ethernet card” 2017 12th
IEEE Conference on Industrial Electronics and Applications (ICIEA).

.

