
SVC-A2C - Actor Critic Algorithm to Improve
Smart Vacuum Cleaner

1st Everton Lima Aleixo
Instituto de Computao

Universidade Federal do Amazonas
Manaus, Brasil

everton.aleixo@icomp.ufam.edu.br

2nd Juan Gabriel Colonna
Instituto de Computao

Universidade Federal do Amazonas
Manaus, Brasil

juancolonna@icomp.ufam.edu.br

3rd Raimundo da Silva Barreto
Instituto de Computao

Universidade Federal do Amazonas
Manaus, Brasil

rbarreto@icomp.ufam.edu.br

Abstract—This work present a new approach to develop a
vacuum cleaner. This use actor-critic algorithm. We execute tests
with three other algoritms to compare. Even that, we develop a
new simulator based on Gym to execute the tests.

Index Terms—reinforcement learning, actor-critic, vaccum
cleaner

I. INTRODUCTION

A vacuum cleaner is an embbeded system already part of
daily life. These embbeded systens are getting smarter. The
vacuum cleaner task can be defined as :

Given a region, a robot vacuum cleaner have to maximize
the clean area avoiding the obstacles. Even that, it should
minimize the time to do that.

The second objective is because as all IoT system, it suffer
from energy capability problem. This problem have already be
studied for a long time [1]–[4] and has a commercial appeal.

Most of researchers in this area, consider a region as a
rectangular matrix, like illustrated in Figure 1 , where you
have some cells that are empty (white), some that has obstacles
(black) and one cell to represent the robot’s start point (grey).
The robot just can move to one of four neighboor cell per
action. They consider as a good algorithm, the one that can
pass by all empty cell using less steps.

Fig. 1. An area to vacuum cleaner represented as a matrix. White cell
represent an space that the robot can pass, black ones are cells that has some
obstacle, so the robot can not pass. And Grey cell represent the vacuum cleaner
position.

This could be reductable to a travelling salesman problem
(TSP). As TSP is a NP-Complete problem it just can solve
LITTLE instances. So we should use some heuristic techinic
to get some proximal better result.

In this assumption has another problem. It is intuitive that
some parts of region tend to be more durty then others. And
there are no certainty that the vacuum cleaner passing there
will clean the space. This leads us to think that a good vaccum
cleaner is not the one who travel for all region in less steps.
We propose that a good one should clean the maximum of the
region it can using less steps as possible.

The principal contributions of this paper are:
• A new approach to smart vaccum cleaner based on actor

critic algorithm;
• a new way to verify the effectiveness of vaccum cleaner.
The rest of this paper is organized as follow: Section II give

a little background about reinforcement learning and the actor
critic algorithm. In Section III some works on smart vaccum
cleaner are presented and discussed how they differ from this
work. In Section IV the approach proposed is presented. The
result are showed in Section V and finally in Section VI
is presented a discussion about the new way to verify the
effectiveness and fature works.

II. BACKGROUND

In this section is presented a brief overview about reiforce-
ment learning, in Section II-A, and the actor critic algorithm,
in Section II-B. A more detailed description could be find in
[5].

A. Reinforcement Learning

Reinforcement learning is a sub-area of machine learning
where an agent interacts with the environment in exchange for
a reward signal. The agent must learn how its actions affect
the environment and try to maximise the reward [5]. With this,
the agent learn what it should do without an explicit teacher.

Reinforcement learning algorithms estimate the value of a
given state or the value of taking an action at a given state.
After training, the agent will can decide the actions that it
should take to maximise the total reward.

There are many methods for training the agent. In basic
way, the agent create a table, known as policy, that has all
possible states in lines and all possible actions in columns. So
the agent in a state s executes an action a, receives a reward
r (the value of the cell Msa). The Figure 2 illustrates this



policy and a reward table. In deterministic environment the
agent take the action that has major value of reward,

Fig. 2. Left: A policy example. Right: Reward of to be in a state.

When the episode ends the values of table is updated within
Equation 1, where V is the value of one cell in the table, R
is the rewarding function and s′ is the state the agent will be
after execute action a.

V (s, a) = R(s) + γ
∑

V (s′) (1)

Executing this procedure many times, the agent will learn
what action give better reward in each state.

In the vacuum cleaner context there are more states that
could be stored in a memory. For this reason it is necessary
to use some approximate function to define the state. One
approach that do this is the actor critic algorithm [6].

B. Actor Critic

The actor critic [6] algorithm is a reinforcement learning
approach that mix value based mthod with policy based
method. In its archtecture exist two agents:
• The Actor that controls how our agent behaves (policy-

based);
• The Critic that measures how good the action taken is

(value-based).
Generally, each agent is implemented as an approximation

function. One function to give an approximation valeu of
policy in a state s and the other to give an approximation
value of a reward r that is gainned when the action a is taken
in state s.

The most commom implementation of these approximation
funtions is feedforward neural networks. To get good fuctions,
these feedforward neural networks needs to be trainned. The
trainning uses the following method:

1) Initially the actor read the environment, process it on its
neural network, and choose the action that it think is the
best;

2) Then, in the new state, the critic read the environment,
process it on its neural network, and inform to the actor
how good the action taken was.

Probabily the first actor actions will not be good, neither
the feedback of the critic. But with many iterations, it tends
to converge to good ones. It is like, a blind boy playing a
video-game and he has a friend aside giving tips to him. So,
when the boy take an action, he do not know if it was a good
one, but his friend says if it gain points on the game or not.

This approach is really useful when it is not possible to map
all states in a state’s table. And this is the case of a vacuum
cleaner robot, because depending on the size of the map, it
will increasing the table size until it no longer fits in memory.
As this work propose an algorithm that work with device with
memory restrictions, make sense that this approach should be
used.

III. RELATED WORKS

The papers in this area are commumly divided in robots
that can plan the path on known environment and on unknow
one. The first ones are more restricted, because needs to be
trained or programmed for each place.

Every related work use some representation of the envi-
ronment. In general, the space is mapped as a matrix M
(like Figure 1), where each cell M ij is a discrete block
representation of the space. Theses cells can be an obstacle
or an empty space. All papers treat an empty space as a dirty
space, so the best path planning is the one that pass by all
empty space evicting the obstacles with less movements.

In this paper we propose that a good path planning is the
one that can pass by the maximum cells that are really dirty
and the robot can clean it, with minimum movements.

Leonard at al. [7] have used beacons sensors to define the
path and [3] do a map of the environment based on SLAM.
Many other papers [8]–[10] have used genetic algorithm to
treat the problem. They implement the path as genes and try
to get good solution for the problems of TSP. In this paper,
the representation used was the image captured by a common
camera RGB and are used to maximize the cleaning the durty
area.

The usage of reinforcement learning to solve this problem
already have been used. In [11] used monte carlo location
and [12] used observable markov decision process. THE
DIFFERENCE OF THIS PAPER IS THAT IT IS USING
A MORE ROBUST REINFORCEMENT LEARNING, AC-
TOR CRITIC, THAT HAVE SHOW GREAT RESULTS IN
GAMES AREA.

Other methods like bayesian network [1] and dynamic
programming [13] have been already used too. In the next
section the new approach is presented with details.

IV. SVC-A2C

To develop the SVC-A2C, we first create a simulator. This
was developed upon Gym [14]. The Gym is a Reinforcement
Learning framework created by OpemAI to facilitate the
improvements on this area. In Section IV-A is presented the
details about the simulator and in Section IV-B is presented
the agent used in this task.

A. Simulator

The simulator create a 2D world that is represented with
a matrix, like a chess board. Each cell is a space of 20x20
centimeters. The vacuum cleanner occupy one cell.

The whole world is a map of 20x20 meters. So, it is a
matrix of 100x100 cells. The visual sensor of the robot can



Fig. 3. Sample of world generated by simulator (left). Vacuum Cleaner sensos’ view (right).

not observe all the space. It only can observe 5 cells in each
direction and just can move one cell per time. The possible
actions of the vacuum cleaner is:
• UP;
• LEFT;
• RIGHT; and
• DOWN.
Even that, the robot can decide to auto turn off. It is

penalized if there are a big area dirt yet. The cells have the
following states:
• Black: It is a blocked space, like a wall ;
• Blue: It is a dirty area, but it is so dirty that the vacuum

cleaner should avoid this area, because can not clean it;
• Green: This is the cells that has dirty that the vacuum

cleaner can clean;
• White: This is clean areas, do not have job to be done

there;
• Yellow: It is cells that the robot already has passed there;
• Red: It represent the position of the vacuum cleaner;
• DOWN.
In Figure 3 is presented a visualization of the world gen-

erated in simulator (on the left side of image) and the robot
sensors’ view (on the right side of image). The main objective
is never go to a black cell, avoid to pass in white, yellow and

blue cells and get the maximun green ones. In the next section
the actor-critic agent is presented in detail.

B. Agent

Fig. 4. Agent macro view.



The agent is following actor-critic algorithm. The Figure 4
is presented a macro view of the algorithm. The agent has
two component that interact with an enviroument. The actor
is the component that learn a policy to decide what action the
agent should take. After the action is taken, the enviroument
generate a new state and a reward. This reward is used by the
other component, the critic, that use this to learn the value of
the state given that action.

Each state is represented by four stacked views (frames) of
the robot. To do this, first we convert the image view of the
sensors’ robot to grey scale. Then take an action and apply
the first step again. We do this four times. If the robot was
startting the episode all the stacked frames is equal.

With this, the agent can infer direction and acceleration of
the robot. This help as in prediction stage, for example to
know that the prediction is telling to robot to go back.

1) Actor: The actor use a neural network to infer the best
action to taken based on the state. The Figure 5 present the
architecture used to actor.

Fig. 5. Neural network architecture used by actor.

The dropout layers use a value of 0.4. The first dense layer
has 512 neuros, and the second one has 32, all them use Relu

as activation. The output layer has 5 neurons using softmax as
activation. This represent the probability distribution of each
possible action. The action taken by the agent is stochastic
based on this distribution.

2) Critic: The critic use a neural network to infer how
valuable is each action on the state given the state and action
probability distribution. The Figure 6 present the architecture
used to critic.

Fig. 6. Neural network architecture used by critic.

The dropout layers use a value of 0.4. The first dense layer
has 512 neuros, and the second one and the dense connected in
input 120 have 32, all them use Relu as activation, except by
input 120, that use sigmoid to reduce the learning rate of the
gradient in backpropagation. The output layer has 5 neurons
without any activation. This represent the value predicted by
the critic to this state with this action probability distribution.

3) Learning approach: Wait the epsode ends can leave
the agent get a good total reward even if it takes some bad
actions along its life. With this, we can fall in a optimal local



Fig. 7. Results in three algorithms.

solution. To avoid this, we use Time Difference Error with
neural network estimation. So we can execute the train in each
iteration.

In each step the following tuple is storaged on an agent
memory:

(curr state, act prob, reward, state after action, end)
A batch of this memory is used after each step to improve

the predictions of the agent in the following way:
The critic predict the value of state after action using the

action probability predicted by actor in state after action and
put it in a variable (next q values).

So the target to critic network follow Bellman Equation
like as described in Equation 2 if the episode do not end or
Equation 3 if it is the last step of the episode.

y = reward+ gamma ∗ next q values (2)

y = reward (3)

Then, the loss acquired by the critic looking to input 120
is applyed on actor to update its action prediction.

We used two identical neural networks to critic and the
agent to improve the train stability, a model and model target.
The second one is used to predict value of next states and has
a learning rate much smaller.

V. RESULTS

Tests was performed with three algorithms: Random Walk,
REINFORCE and our agent. The source code can be down-
loaded to reproduce the results in Github 1 as well as the

1https://github.com/evertonaleixo/smart vacuum cleanner

simulator.
The Figure 7 show the best result in each algorithm applying

one hundred episodes. We can see that our algorithm clean
much more region and get much more reward. So it is really
clean the enviroument and not just travelling by the world.

Our algorithm was trainned by 8 hour in a GTX-960. When
we try to increase the trainning time it start to be biased on
one direction.

We try many networks architecture, for example, convolu-
tional and deep fully connected neural networks. We think that
for simplicity of the input data, theses complex networks tends
be biased fast.

To test this, the learning rate was variable between 0.0001
to 0.00000001. When it is big, the networks start to show the
same result to every state, making the agent just move in one
direction.

Other actors handle this problem in different way, they try
to cover the maximun area. So they always pass in cells that
the robot can not clean.

VI. FUTURE WORKS

We understand that test just in simulator is not enough. For
this we want to apply this in a real enviroument using cameras.
With this more complex input data we believe that we could
use more complex neural networks.

Another improvement in this work is the representation that
the robot use to choose its action. In this work we use a simple
images, but we believe that has better representations. The next
steps is to create a graph representation of the world analyzing
the images.



REFERENCES

[1] Hongjun Zhou and Shigeyuki Sakane. Sensor planning
for mobile robot localization—a hierarchical approach
using a bayesian network and a particle filter. IEEE
Transactions on Robotics, 24(2):481–487, 2008.

[2] Kazi Mahmud Hasan, Khondker Jahid Reza, et al. Path
planning algorithm development for autonomous vacuum
cleaner robots. In 2014 International Conference on
Informatics, Electronics & Vision (ICIEV), pages 1–6.
IEEE, 2014.

[3] Iris Wieser, Alberto Viseras Ruiz, Martin Frassl, Michael
Angermann, Joachim Mueller, and Michael Lichten-
stern. Autonomous robotic slam-based indoor navigation
for high resolution sampling with complete coverage.
In 2014 IEEE/ION Position, Location and Navigation
Symposium-PLANS 2014, pages 945–951. IEEE, 2014.

[4] Andreas Gylling and Emil Elmarsson. Improving robotic
vacuum cleaners: Minimising the time needed for com-
plete dust removal, 2018.

[5] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[6] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr
Mnih, Remi Munos, Koray Kavukcuoglu, and Nando
de Freitas. Sample efficient actor-critic with experience
replay. arXiv preprint arXiv:1611.01224, 2016.

[7] John J Leonard and Hugh F Durrant-Whyte. Mobile
robot localization by tracking geometric beacons. IEEE
Transactions on robotics and Automation, 7(3):376–382,
1991.

[8] Mengfan Li, Chuanjiang Wang, Zhiqiang Chen, Xiao
Lu, Meihua Wu, and Pengliang Hou. Path planning
of mobile robot based on genetic algorithm and gene
rearrangement. In 2017 Chinese Automation Congress
(CAC), pages 6999–7004. IEEE, 2017.

[9] Zhongmin Wang and Zhu Bo. Coverage path planning for
mobile robot based on genetic algorithm. In 2014 IEEE
Workshop on Electronics, Computer and Applications,
pages 732–735. IEEE, 2014.

[10] Mohamed Amine Yakoubi and Mohamed Tayeb Laskri.
The path planning of cleaner robot for coverage region
using genetic algorithms. Journal of innovation in digital
ecosystems, 3(1):37–43, 2016.

[11] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and
Frank Dellaert. Robust monte carlo localization for
mobile robots. Artificial intelligence, 128(1-2):99–141,
2001.

[12] Sven Koenig, Reid Simmons, et al. Xavier: A robot
navigation architecture based on partially observable
markov decision process models. Artificial Intelligence
Based Mobile Robotics: Case Studies of Successful Robot
Systems, pages 91–122, 1998.

[13] Peng Zhou, Zhong-min Wang, Zhen-nan Li, and Yang
Li. Complete coverage path planning of mobile robot
based on dynamic programming algorithm. In 2nd
International Conference on Electronic & Mechanical

Engineering and Information Technology. Atlantis Press,
2012.

[14] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym, 2016.


