
An Environment for Indoor Testing and Diagnosis of Drones
using Co-simulation

Renato R. de Abreu, Thyago Oliveira, Leydson Silva, Tiago P. Nascimento and Alisson V. Brito
Universidade Federal da Paraiba (UFPB)

Joao Pessoa, Brazil
Email: renatodeabreu@gmail.com, tiagopn@ci.ufpb.br, alisson@ci.ufpb.br,

thyago.oliveira@eng.ci.ufpb.br, leydson.sk@gmail.com

Abstract—The objective of this work is to present a
testing tool, which analyzes and evaluates drones dur-
ing the flight in indoor environments. For this purpose,
the framework Ptolemy II was extended for communi-
cation with real drones using the High-Level Architec-
ture (HLA) for data exchanging and synchronization.
The presented testing environment is extendable for
other testing routines and is ready for integration with
other simulation and analysis tools. In this paper, two
failure detection experiments were performed, with
a total of 20 flights for each one, which 80% were
used to train a decision tree algorithm, and the other
20% flights to test the algorithm in which one of the
propellers had an anomaly. The failure rate or detection
rate was 70% for the first experiment and 90% for the
second one.

Key-words: Unmanned Aerial Vehicle, Testing,
Hardware-in-the-loop Simulation, High-Level Archi-
tecture

I. Introduction

The Unmanned Aerial Vehicles (UAVs), popularly
known as drones, had acquired more importance in recent
years. Due to its high aerodynamic capacity, drones are
used in vigilance and rescue missions [1]. They can be
remotely piloted or execute pre-programmed tasks, and
since they are not manned, its size and weight are reduced
compared with conventional aircraft. Nowadays, it is not
uncommon to observe drones flying over our heads.

Every drone is susceptible to failure and accidents
caused by drones are being occasioned due to malfunc-
tions, which is not easy to foresee [2], [3]. This unpre-
dictability brings risks to humans and may cause severe
material and environmental damages.

One alternative is to monitor and verify the drone be-
havior in an indoor and controlled scenario. The monitor-
ing might increase safety before tests in open spaces. This
article proposes an environment for the elaboration and
execution of tests using real drones to diagnose faults and
abnormal behaviors. The system allows the configuration
of various types of tests and analyzes drone behavior using
a drag-and-drop approach. The concatenation of actors de-
fines the path to be performed by the drone. Specific actors
were implemented and integrated into the environment to
perform diagnostics by analyzing telemetry data collected
from the Drone during the flights.

For this, the Ptolemy II simulation environment was
integrated into the Drone using the standard for interop-
eration of simulators, IEEE 1516 (HLA) [4]. This allows
not only the integration of Ptolemy with the drone, but
also opens the opportunity to integrate other simulators,
like network simulator [5], ROS [6], embedded systems [7],
SystemC [8], or even a group of diverse simulator [9].

In this work, the behavior of a physical drone in a
controlled environment is analyzed. For this, two scenarios
were configured: in the first one, the drone performs a
free flight, only taking off, stopping, and landing. In the
second one, a weight of 0.1 gram was added to one of the
propellers. Thus, a diagnosis approach was implemented
to detect the unbalancing problem.

Several groups of researchers around the world are
seeking for new strategies to test or to evaluate drones,
in this context, various works can be cited: [10], [11], [12],
[13], [14], [15] and [16]. However, the integration of the
drone with Ptolemy via HLA is not yet present in the
literature. This results in the two main contributions of
this work: 1) the development of a testing and diagnosis
tool for drones using Ptolemy; and 2) the integration of
drones via HLA to allow the developments of other tools
in the future.

II. Related Work
It is possible to find works, such as [17], which studies

the influence in failures of the drones physical components
and assess a change of performance after an occurrence of
some damage.

The work of [17], as well in this research, analyzes the
drone behavior during the flight. Nevertheless, the authors
focus on analyzing vehicle behavior after the occurrence of
failures in the aileron. Then, it verifies the flight perfor-
mance of the drone damaged by the failure. Data collected
from the sensors can be obtained and used to reconfigure
the vehicle orientation system, while the present work
focuses on the implementation of a test environment to
analyze the drone behavior in a simulated environment
for monitoring and analysis during the flight. The works
of [18] and [19] also seek to monitor and evaluate the
performance of drones flights, in both works are studied
vehicles powered by solar energy seeking to realize long
flights.

Many of the works that monitor the drone perfor-
mance during flights seek to achieve results that help
improve flight safety, such as in [20], which proposes an in-
flight safety assessment, to upgrade safety by a statistical
method or simulated tests in soil using HIL. In that study,
it proposes a simulation method in which it seeks to test
the drone response in front of input stimulus that simu-
lates extreme adverse conditions and from this to evaluate
the vehicle behavior checking the reactions to the stimulus
received. Though our work evaluates drones behavior, we
focus on the construction of a test environment in which
can be used for any indoor test, as new actors can be
developed and integrated to increase the set of possible
tests and diagnosis.

The work of [21] brings a different approach. That
study seeks to build a structure for quadcopters capable
of communicating with a ground station, and through
wireless communication, it is possible to monitor the
vehicle positioning during the flight. That work is similar
to the present study, as both aims at the construction
of infrastructures to monitor the drones state in real-
time, however, that work aims to present the data in a
visual interface, while this work aims to perform analyzes
using Hardware-in-the-loop (HIL) simulation, integrating
the drone in real-time not only with our analysis tool but
also with other tools in the future, using HLA.

III. Architecture of the Environment for UAV
Testing

In simulations following the High-Level Architecture
(HLA) specification [4], each participant is a Federate,
which sends and receives messages, and the set of all
Federates in the same domain creates a Federation. The
RTIG is the gateway that centralizes communication and
is responsible for ensuring the delivery of messages in the
correct order according to global time, called here, HLA
time.

The proposed environment (Figure 1) is divided into
three parts: Drone Federate, Ptolemy Federate, and
RTIG/HLA. The Drone Federate is the embedded soft-
ware in the drone itself and is responsible for sending
commands to move the drone and also collect and publish
data from the drone telemetry to the Federation. The
Ptolemy Federate contains two components, one responsi-
ble for creating the test sequence and another one respon-
sible for analyzing the telemetry data published by Drone
Federate. The RTIG is responsible for communication and
synchronization between the Federate Drone and Ptolemy
Federate.

The Drone Federate uses PyHLA [22], and the Ptolemy
Federate uses JCerti [23]. In Ptolemy, communication with
HLA is performed by the actors: HLAManager, HLAPub-
lisher, and HLASubscriber (Figure 1). For integration of
Ptolemy with HLA, actors from Ptolemy distribution were
used [24]. The actor HLAManager (Figure 1) is a special
actor that does not process messages but ensures that the

model time is consistent with the HLA time. This actor has
no inputs or outputs ports. The role of the HLASubscriber
actor is to bring the published values from the Federation
and sending it to the model using its output ports. The
HLAPublisher actor has the task of publishing updated
values from the model to the Federation. A Federate can
only send and receive updates of a particular object if
it is registered for that. This requires that each Federate
registers the publish and subscribe policies in advance [25].

The implementation of a test begins by setting the
mission to be performed by the drone. The concatenation
of actors (developed and added to the library of Ptolemy
II) creates a mission (Table I). For example, for a drone
perform a square path, the drone must take off, move
forward for 2 seconds at an acceleration of 0.25; move
to left for 2 seconds at an acceleration of 0.25; move
backwards for 2 seconds at an acceleration of 0.25, move
to left for 2 seconds at an acceleration of 0.25 and then
land.

TABLE I
Actors Developed for UAV Testing

Actor Description Parameters
DroneType specifies the type of

the drone
DroneType,
NumberOfRepetions

TakeOff performs takeoff pro-
cedure

Height

Land performs landing pro-
cedure

none

Rover keeps the drone in a
fixed position

Time of rover

Forward Move the drone for-
ward

Speed, TimeInSec-
onds

Backward Move the drone back Speed, TimeInSec-
onds

Left Move the drone left Speed, TimeInSec-
onds

Rigth Move the drone to
right

Speed, TimeInSec-
onds

TurnLeft Turns the drone 90 de-
grees to the left

Speed, TimeInSec-
onds

TurnRight Turns the drone 90 de-
grees to the right

Speed to right,
TimeInSeconds

MoveUp increases the altitude
of the drone

Speed, TimeInSec-
onds

MoveDown decreases the altitude
of the drone

Speed, TimeInSec-
onds

After the drone mission definition, the model is executed
in Ptolemy. So a string containing the drone mission is
published in the Federation to be read by Drone Federate.
The Drone Federate reads the mission, starts the drone,
and performs the defined mission. At the same time, it
starts the collection and publication of drone telemetry
data read from the sensors of the drone. The data pub-
lished by Drone Federate is read in Ptolemy Federate and
sent to the actor Drone Telemetry, which has the function
of persistence, preparing data to generate charts and to be
analyzed by specific actors to perform diagnosis.

In this work, we used the AR.Drone 2.0. The proposed
environment can be adapted to any drone, as long as a

Fig. 1. Architecture of the Environment for UAV Testing

Drone Federate is developed specifically for the drone to
be tested. In previous work, it was developed a system
that can be embedded in any drone to command it and
send telemetry data to a central computer [26]. In pre-
vious work, a Federate similar to that proposed here was
developed, but for the monitoring of ground robots [6], [9].

Figure 1 shows an example of a concatenation of actors
to define a mission to be performed by the drone. In this
mission, the drone must: take off, rover, and land. Each
movement actor has two parameters: speed, which defines
how fast the action is performed, and time-in-seconds,
which defines the duration of the movement in seconds.
When starting the model, the actor Discrete Clock sends a
signal to the first actor, the Drone Type, making the actor
to transfer to the next actor a string containing an action
to be carried out by drone (see Table I). The next actor in
sequence upon receiving the action from the previous actor
concatenates with its action and sends it to the next player
in the sequence. In the end, a string containing a sequence
of actions with all actors is forwarded to HLAPublisher
actor, which publishes it through RTIG.

The Drone Federate (Figure 1) is implemented in a
Raspberry Pi board (running the Raspbian operating
system), and wi-fi adapter. The Raspberry can be re-
placed by a computer or another board model, which
supports Python 2.0 language and the hardware needed
to control the drone (if necessary). The board may be
embedded in the drone, or not. This depends on the type
of drone. For example, the ARDrone can be controlled
externally via wifi and provides an API to control and
data acquisition. The Drone Federate is implemented in
DroneFederate.py (Figure 2 application written in Python
2.0. The DroneFederate.py application is responsible for
receiving the test sequence published by Ptolemy Federate,
control the drone for the execution of the defined mission
and simultaneously collect and publish the telemetry data
in the Federation.

Fig. 2. Algorithm executed in the Drone Federate by the DroneFed-
erate.py

The application uses two threads to perform these func-
tions simultaneously. When running DroneFederate.py
(Figure 2), initially three global variables are declared: 1)
Mission, which receives the mission; 2) EndControl, which
signals the end of the DroneControl; and 3) EndUpdate to
signal the end of HLAUpdate thread. Following MyAm-

bassador object is created (class containing methods for
connection with RTIG/HLA) and then the Drone Federate
is included in the Federation. The program then waits
for the publication (by Ptolemy Federate) of the string
containing the mission of the drone. Upon receiving the
mission, the Mission variable changes its value to the
right, and the program execution continues. Then, two
threads are initialized: Drone Control and HLAUpdate.
Drone Control executes the movement of the drone, and
HLAUpdate collects the telemetry data during the flight
of the drone and publishes them to the Federation (to be
read by Ptolemy Federate).

In Fault Detection module (Figure 1), the HLAObject
Subscribe actor get the telemetry data published by Drone
Federate and forwards them to the Drone Telemetry actor.
The actor Drone Telemetry has the treatment function and
persistence of the received data. The actor is composed of
input and output ports corresponding to the attributes
used by the HLA Drone class (Listing 1).

The actor receives the telemetry data from the input
ports, saves them in CSV files and forwards them through
the respective output ports. The received data is used
to generate graphics, and for failure detection by an
actor, which implements an algorithm based on machine
learning.

Listing 1. Class Drone defined to be used by HLA for message
exchanging.

1 (class drone
2 (attr ibute id r e l i a b l e timestamp)
3 (attr ibute i sFly r e l i a b l e timestamp)
4 (attr ibute t M i l l i r e l i a b l e timestamp)
5 (attr ibute battery r e l i a b l e timestamp)
6 (attr ibute a l t i tude r e l i a b l e timestamp)
7 (attr ibute pitch r e l i a b l e timestamp)
8 (attr ibute r o l l r e l i a b l e timestamp)
9 (attr ibute yaw r e l i a b l e timestamp)

10 (attr ibute speedX r e l i a b l e timestamp)
11 (attr ibute speedY r e l i a b l e timestamp)
12 (attr ibute speedZ r e l i a b l e timestamp)
13 (attr ibute pwmMotor1 r e l i a b l e timestamp)
14 (attr ibute pwmMotor2 r e l i a b l e timestamp)
15 (attr ibute pwmMotor3 r e l i a b l e timestamp)
16 (attr ibute pwmMotor4 r e l i a b l e timestamp)
17 (attr ibute gps r e l i a b l e timestamp)
18 (attr ibute mission r e l i a b l e timestamp)
19)

IV. Experiments
To verify the relevance of the proposed environment, two

full testing procedure, and diagnosis of a drone AR.Drone
2.0 was performed. For the first one, a simple mission was
configured to be carried out by the drone. The mission
consists of taking the drone off, staying in rover state for
2 minutes and land. For the second, the mission consists
of taking the drone off, staying in rover state for 10
seconds, move the drone forward, staying in rover state for
2 seconds, move drone backward, staying in rover state for
2 seconds and land.

During the execution of the missions, the drone teleme-
try data is collected and published in the Federation. Actor

Drone Telemetry has read these data in Ptolemy Federate.
The actor stored the Drone Telemetry data and sent them
to be analyzed by an actor named Fault Detection using
an algorithm based on artificial intelligence, explicitly
implemented for these experiments. In the end, this actor
presents a diagnosis of the drone, based on the analyzed
data. An image with the interface of the simulator in
action can be seen in Figure 3. A complete video can be
watched on http://tiny.cc/bmz99y.

Fig. 3. Experiment in action with visualization of the drone, the
system messages and graphics generated during the simulation.

The main objective of the experiments was to confirm
whether it is possible, using the proposed environment,
diagnose an anomalous behavior of the tested drone during
the flight. For this, for each experiment, twenty flights were
conducted without any abnormality inserted, and other
twenty flights with an inserted an unbalanced propeller
in motor 4. The anomaly was inserted with adhesive tape
with 5 cm by 2 cm, on the edge of the propeller. This tape
weights approximately 0.2 gram and introduces a subtle
unbalance in the propeller. The flights were conducted in
a closed environment without the interference of external
factors such as wind. These data were used to Fault
Detection actor training.

The Fault Detection actor implements a known machine
learning algorithm called Decision Tree using scikit-learn
library [27]. The main objective of the Fault Detection
actor is to imediatly detect anomalies inserted to the
drone, or not. The actor classifies the flight as stable
(without fault) or unstable (with some anomaly). The
algorithm has been trained with saved data from previous
flights.

For each experiment, the data was divided as follows:
80% of the stable flights (no anomaly) and 80% of the
bad flights (with the anomaly) for training, and 20% of
stable flights and 20% of unstable flights for testing. To
choose which algorithm would be used, a program was
implemented to test the accuracy of the following algo-
rithms: Decision Tree, Naive Bayes, and Support Vector
Machine. This program was executed 1000 times. The best
performance was achieved by the Decision Tree approach,
with 85.3% hit rate. A comparison between the algorithms

can be seen in Table II.

TABLE II
Comparison of machine learning techniques for anomaly

detection

Algorithm Number of
tests

Accurate Rate

Decision tree 1000 85.3%
Naive Bayes 1000 60.4%
Suport Vector Ma-
chines

1000 70.7%

After collecting data and training the Fault Detection
actor, six flights were performed. The data collected during
these flights were passed to the actor Fault Detection
for the diagnosis. A single parameter was selected from
telemetry to be analyzed (see Table III). After a sequence
of graphical analysis, the Yaw parameter was chosen. This
parameter gave a clear distinction between a flight with
and without the inserted anomaly (Figure 4). Improve the
hit rate of the diagnosis algorithm is not within the scope
of this work, but offer the possibility to do that.

Fig. 4. Yaw values during flights

TABLE III
Parameters of the drone under analysis.

Parameter Method in
AR.Drone

Description

1 Battery getBattery()[0] Returns the battery
level

2 Pitch NavData[”demo”][2][0] Get the pitch angle θ
in mili-degrees

3 Roll NavData[”demo”][2][1] Get the roll angle φ in
mili-degrees

4 Yaw NavData[”demo”][2][2] Get the yaw angle ψ in
mili-degrees

5 Altitude NavData[”altitude”][3] Returns the Drone Al-
titude

6 Linear
Speed in
X

NavData[”demo”][4][0] Get the estimated
speed in X in m/s

7 Linear
Speed in
Y

NavData[”demo”][4][1] Get the estimated
speed in Y in m/s

8 Estimated
Linear
Speed in Z

NavData[”demo”][4][2] Get the estimated
speed in Z in m/s

V. Results

As expected, the drone executed the sequence of move-
ments defined in the test environment, and the data that
was collected from drone was sent to the actor Drone
Telemetry through HLA. For the first experiment, twenty
flights of 60 seconds each were performed. During each
flight, about 11,000 samples were collected containing all
parameters listed in Table III, which means 183 samples
per second. Half of these flights had no anomaly inserted
and the other half with an anomaly. For the second exper-
iment, twenty flights of 28 seconds each were performed.
During each flight, about 3,500 samples were collected
containing all parameters, which means 58 samples per
second. Half of these flights had no anomaly inserted and
the other half with an anomaly.

For the first experiment (Table IV), with flights without
abnormality an accuracy rate of 60% was achieved, i.e.,
for 10 flights without inserted anomaly, 6 were correctly
identified as stable, and 4 were incorrectly identified as
unstable. For flights with abnormality the accuracy rate
was 80%. For the second experiment, flights without ab-
normality achieved a 90% accuracy rate. For flights with
abnormality was achieved an accuracy rate of 90%. The
results show that on more complex missions, the rate of
correct answers was higher. For a more accurate result,
more flights would be necessary to train the algorithm,
as well as adjustments in the algorithm configuration
parameters (Decision Tree). We remind that the Fault
Detection is not one of the main objectives of this work.
We also observed that the battery cost for flights with the
anomaly is higher than the flights without the anomaly,
as can be observed in Figure 5.

Fig. 5. Battery values during testing flight.

VI. Conclusion

Due to the characteristics of the HLA, the environment
could be integrated with any other drones or other sim-
ulation and analysis tools. The experiments satisfactorily

TABLE IV
Experiment 1 - Accuracy of Fault Detection actor

Type #flights Hit Rate Miss Rate
Stable 10 60% 40%
Unstable 10 80% 20%
Total 20 70% 30%

demonstrated the operation and functionality of the en-
vironment. An accuracy rate of 70% was obtained even
with a small number of training flights and without fine
adjustments in the Decision Tree algorithm, neither any
signal filtering.

As future work, we intend to focus on the use of the
environment to implement tests that perform accurate
diagnoses of drones. For this we intend to increase the
historical database of drones, in order to train the actors
for detection of failures; create new fault-detection actors
based on other algorithms and other techniques; test new
parameters, as well as combining them to increase the
accurate rate; insert control modules for new drones, for
example those controlled by ArduPilot; and increase the
number of actions and include sensors, like ultrasonic and
image capture.

Acknowledgment
This work is supported by The Brazilian National Coun-

cil for Scientific and Technological Development (CNPq)
and the Higher Education Improvement Coordination
(CAPES).

References
[1] B. Michini, J. Redding, N. K. Ure, M. Cutler, and J. P. How,

“Design and flight testing of an autonomous variable-pitch
quadrotor,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on, May 2011, pp. 2978–2979.

[2] A. Patelli and L. Mottola, “Model-based real-time
testing of drone autopilots,” in Proceedings of the 2Nd
Workshop on Micro Aerial Vehicle Networks, Systems,
and Applications for Civilian Use, ser. DroNet ’16. New
York, NY, USA: ACM, 2016, pp. 11–16. [Online]. Available:
http://doi.acm.org/10.1145/2935620.2935630

[3] S. American, “5 epic drone flying failures—and what the faa is
doing to prevent future mishaps,” 2015, http://goo.gl/tIXfHH
- Accessed June 2016.

[4] IEEE, “Std. 1516.2-2000. IEEE Standard for Modeling and Sim-
ulation (M & S) High Level Architecture (HLA) – Framework
and Rules,” 2000.

[5] A. Brito and T. Oliveira, “Simulation and test of communication
in multi-robot systems using co-simulation,” in New Advances
in Information Systems and Technologies. Springer, 2016, pp.
911–917.

[6] J. C. V. Junior, A. V. Brito, L. F. S. Costa, T. P. Nascimento,
and E. U. K. Melcher, “Testing real-time embedded systems
using high level architecture,” Design Automation for Embedded
Systems, vol. 20, no. 4, pp. 289–309, 2016.

[7] J. C. VS, A. V. Brito, and T. P. Nascimento, “Verification
of embedded system designs through hardware-software co-
simulation,” International Journal of Information and Electron-
ics Engineering, vol. 5, no. 1, p. 68, 2015.

[8] T. W. Silva, D. C. Morais, H. G. Andrade, A. M. Lima, E. U.
Melcher, and A. V. Brito, “Environment for integration of dis-
tributed heterogeneous computing systems,” Journal of Internet
Services and Applications, vol. 9, no. 1, p. 4, 2018.

[9] A. V. Brito, H. Bucher, H. Oliveira, L. F. S. Costa, O. Sander,
E. U. Melcher, and J. Becker, “A distributed simulation plat-
form using hla for complex embedded systems design,” in Dis-
tributed Simulation and Real Time Applications (DS-RT), 2015
IEEE/ACM 19th International Symposium on. IEEE, 2015,
pp. 195–202.

[10] R. Loh, Y. Bian, and T. Roe, “Uavs in civil airspace: Safety
requirements,” Aerospace and Electronic Systems Magazine,
IEEE, vol. 24, no. 1, pp. 5–17, Jan 2009.

[11] D. Stojcsics and A. Molnar, “Fixed-wing small-size uav navi-
gation methods with hil simulation for aerobot autopilot,” in
Intelligent Systems and Informatics (SISY), 2011 IEEE 9th
International Symposium on, Sept 2011, pp. 241–245.

[12] L. Yanjun, L. Yang, and Y. Shenglin, “Research on the algo-
rithm of information fusion for height of uav,” in Intelligent
Systems Design and Engineering Applications, 2013 Fourth
International Conference on, Nov 2013, pp. 523–526.

[13] L. Jaw, D. Homan, V. Crum, W. Chou, K. Keller, K. Swearin-
gen, and T. Smith, “Model-based approach to validation and
verification of flight critical software,” in Aerospace Conference,
2008 IEEE, March 2008, pp. 1–8.

[14] Z. Wang, K. Akiyama, K. Nonaka, and K. Sekiguchi, “Ex-
perimental verification of the model predictive control with
disturbance rejection for quadrotors,” in Society of Instrument
and Control Engineers of Japan (SICE), 2015 54th Annual
Conference of the, July 2015, pp. 778–783.

[15] M. Ahsan, H. Rafique, and W. Ahmed, “Verification of equi-
librium point stability for linearization of an aircraft model,” in
Multi Topic Conference (INMIC), 2013 16th International, Dec
2013, pp. 1–6.

[16] C. Yoo, Y. Kang, and B. Park, “Hardware-in-the-loop test for
fault diagnosis system of tilt rotor uav,” in Control, Automation
and Systems, 2008. ICCAS 2008. International Conference on,
Oct 2008, pp. 320–323.

[17] G. Ducard, K. C. Kulling, and H. P. Geering, “Evaluation of
reduction in the performance of a small uav after an aileron
failure for an adaptive guidance system,” in 2007 American
Control Conference, July 2007, pp. 1793–1798.

[18] H. B. Park, J. S. Lee, and K. H. Yu, “Flight evaluation of
solar powered unmanned flying vehicle using ground testbed,”
in Control, Automation and Systems (ICCAS), 2015 15th In-
ternational Conference on, Oct 2015, pp. 871–874.

[19] J.-S. Lee, H.-B. Park, G.-Y. Jung, and K.-H. Yu, “Design
of virtual flight system for evaluation of solar powered uav,”
in Industrial Electronics Society, IECON 2013 - 39th Annual
Conference of the IEEE, Nov 2013, pp. 3463–3467.

[20] D. Deng and H. Yuan, “Uav flight safety ground test and
evaluation,” in IEEE AUTOTESTCON, 2015, Nov 2015, pp.
422–427.

[21] R. M. Vázquez, M. Romero, O. Portillo, J. C. Ávila, and
A. H. Vilchis, “Experimental platform of a physical model for a
quadrotor helicopter,” in Electronics, Robotics and Automotive
Mechanics Conference (CERMA), 2012 IEEE Ninth, Nov 2012,
pp. 311–314.

[22] “Using m&s hla in python,” www.nongnu.org/certi/PyHLA,
2016, access: 2018-03-27.

[23] “Certi - summary,” http://savannah.nongnu.org/projects/certi,
2016, access: 2018-03-27.

[24] “User manual for hla-ptii federates,” https://download-
mirror.savannah.gnu.org/releases/certi, 2015, access: 2018-03-
27.

[25] D. Come, “Improving the hla-certi framework,” EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2015-202, Sep 2015. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015-202.html

[26] V. S. Medeiros, R. E. Vale, Y. C. Gouveia, W. T. Souza, and
A. V. Brito, “An independent control system for testing and
analysis of uavs in indoor environments,” in Robotics Sympo-
sium and IV Brazilian Robotics Symposium (LARS/SBR), 2016
XIII Latin American. IEEE, 2016, pp. 55–60.

[27] (2018) scikit-learn machine learning in python. [Online].
Available: http://scikit-learn.org/stable/

