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Abstract—Smartphones have become essential to daily life, pro-
viding much more than communication services. Continuously,
the device is getting ”smarter” and more complex with additional
features and sensors. Configuring those features may not be so
easy for new users, and making the Settings app easy to use is
challenging. With this in mind, a search tool was indexed on its
initial screen. However, it is still not efficient enough. While most
Android search tools will try to match exactly the queried words,
a more intuitive tool capable of finding content related to the
meaning of those words would be desirably better. In this paper,
we propose a solution based on word2vec model to encode the
context of each screen in order to get more robust and intuitive
search approach on the Android Settings application. Although
the search problem has not been entirely solved yet, experiments
showed satisfactory results, which include resolving more than
82% of cases that cannot be handled by the search tool embedded
to the Android Settings.

Index Terms—search approach, smartphone application, user
interest hierarchy, natural language processing

I. INTRODUCTION

It is notable the tremendous increase on the number of
smartphone adopters all over the world in the last decade.
Initially, the term smartphone was only a marketing strategy
to refer a brand new class of mobile phones that provided
integrated services, ranging from several kinds of communi-
cation (voice call, messaging, emailing), computing, personal
information management applications, and wireless connec-
tions [1]. However, in the last few years the meaning of smart
has been pushed further with advances on artificial intelligence
and creation of new features for mobile applications. At the
same time devices get more complex, they must be easy to use
for greater user experience (UX), which also implies making
them more inclusive [2].

The operating system (OS) of a smartphone provides
a computer-like platform that allows installing applications
(commonly named as apps) of any type, like calculator,
calendar, web browser, etc. However, it is in the embedded
app Settings that the user can control and configure the
functionality and behavior of the device or any other apps
installed on the device. For example, one could configure
the permissions of an app to access mobile data or sensors,
change the contents and presentation of the user interface
(UI), set connectivity or the device’s behavior according to
sensor inputs, etc. To make it easier to an inexperienced user
to configure the device, a search tool has been indexed to the
Settings application [3]. Then, instead of exploring the Settings

menu to find the desired feature to be configured, one can type
keywords that describe the feature directly into the search tool.

Nonetheless, we have noted that this search tool has some
limitations due to its simplicity. It is observable that the
search tool on the Android Settings works simply as a look-
up table. Thus, having a database stored in a local file or in a
virtual table, the search tool only checks the existence of the
searched terms on this database. Because of this, no contextual
information is considered, making it work well only if the right
keywords are used.

Aiming to overcome this problem, we propose the use of
continuous bag-of-words (CBOW) to provide contextual infor-
mation during the search. CBOW is one of the word2vec fla-
vors [4], that is capable of encoding the contextual information
defined by a set of words. So, assuming the Settings structure
is organized by features of the device’s functionalities, and that
each branch of this menu tree has its own context, then we can
encode the context of every accessible screens by taking their
textual information and applying CBOW. Thus, the search tool
will not be a simple string search but a screen context search.

The advantage of searching the context instead of the string
is its robustness. Since the context is encoded as a vector
v ∈ Rn, it becomes independent to the existence of the queried
words in the database. This is because words with similar
meaning are encoded close to each other on the CBOW space.

Currently, the two most popular smartphone OSs are An-
droid and iOS [5]. In this paper, however, we have focused
on the Android, which represents today more than 76% of the
worldwide mobile OS market share [5]. Experimental results
showed that our method can find around 90% of the Android
Settings screens, including 82% of those not found by the
current embedded search tool.

II. RELATED WORKS

The search tool in the Android Settings app closely resem-
bles other search tools in other domains like web search and
Desktop search. For instance, web search aims to provide a
systematic approach for users to access indexed information
from internet, while desktop search allows indexing informa-
tion from several files of different formats [6]. Similarly, it
seems Settings search index information of screens inside the
Settings app. Although the application domain may change,
search tools are essential to improve user experience in the
user-computer-interaction. For this reason, researchers have



been applying great effort on making the search results more
personalized, more efficient, and more meaningful to users, as
will be discussed below.

Some works propose a heuristic to apply a genetic algorithm
to select search engines that are more likely to contain useful
information given a search query in a meta-search engine
problem, where the search tool has to combine results from
various search engines, therefore selecting the most relevant
search engines can improve its efficiency [7]. On the other
hand, others apply neural networks combined with weighted
round robin to find the most relevant search engines [8]. It was
shown that the round robin approach can improve the cases
where a document frequently occurs in the selecting procedure
while the neural network can improve the evaluation of the
similarity between a current queries and past queries.

Besides these search approaches, one could also use tech-
niques related to information retrieval and text classification
[9], [10]. An important contribution for this and for many other
application of natural language processing was the word2vec,
which was proposed by [4]. It is a neural network language
model that can be modeled as a continuous bag-of-words
(CBOW) or as a continuous skip-gram. CBOW is faster to
train than the continuous skip-gram, and works slightly better
on frequent words. On the other hand, continuous skip-gram
has advantage over CBOW on small amount of training data,
and represents rare words or phrases better.

In [11] information retrieval techniques are combined with
word2vec to improve the search results for API code examples.
In this research, the main problem of existing techniques was
found to be lexical mismatch, so machine learning was used
to relate API documentation to API code in order to achieve
better code retrieval. In this way, it enabled the usage of more
abstract or not so intuitive queries. For example, one may
query ”insert an element into an array at a given position”
expecting the answer to be the example of a code usage for
”List.add”. Beside lexical mismatch, search engines do not
have good performance when presented to broad or ambiguous
queries especially in the absence of context. In order to
overcome this problem, [12] propose an approach based on
word2vec model to enrich snippet searches by expanding a
word with the top-n most semantic similar words. Snippets
are short texts and, in most cases, words do not appear more
than once in the same snippet. The textual content of each
snippet is derived in a set of terms that are later enriched by
a vocabulary learned by the word2vec model.

III. ANDROID SEARCH TOOL

According to the Android Developer Guide [3], Android
has a Search framework as one of its core user features. It
allows users to find any data that is available to them, once this
content is located on a database on the device or on Internet.
This framework is used on the Settings search tool, but it is
also available to Android developers so they can use it on
their application [3]. The search algorithm however, can be
implemented in a specific Android activity, which given the
search queries and the database, returns the search results.

Although the search algorithm used on Settings is not
available in a document or as source code, the graphic interface
itself shows how it works. For illustration, some examples
were obtained directly from an Android device (Figure 1),
where it is possible to observe that the words queried for
search are explicitly highlighted in blue letters on the results,
confirming that the search algorithm basically looks for strings
that contain the queried words. However, some singularities
can also be noted. First, the queried words are considered
independently during the search, which returns, in certain
level, all the results that contain any of those words, even if it
is a result without any relation to what has been searched, as
shown in Figure 1a. Second, in some cases, a single additional
word can prevent the search tool to find something, as in
Figure 1b. Third, it seems that in some cases synonym words
are considered during the search, as in Figure 1c, but in others
it simply does not work, as in Figure 1d.

Besides the above observations, probably there might be
some other particularities that could not be pointed out.
However, the important thing is that the current search tool
in the Android Settings uses a deterministic search approach.
The advantage of such is its fast response due to simplicity,
but the disadvantage is that it might make the search tool not
intuitive and less inclusive. For example, blind users may want
to use voice search to configure their devices. But, if they do
not know exactly the right keywords to be used in the search
tool, they might not get the desired results.

IV. THE PROPOSED METHOD

To overcome the limitations present in the search tool of the
Android Settings, we propose a method based on word2vec [4]
that leverages the probabilistic distribution of words to encode
the context of the screen they are inserted in. The following
sections explains some background concepts and how they are
useful to our method.

A. Continuous Bag of Words (CBOW)

One of the most simple language model is the bag-of-words
(BOW), which was firstly mentioned as a hypothesis back
in 1954 by [13]. This hypothesis stated that two different
words in similar context have similar meanings. Since then, a
paradigm for acquiring representations that could capture se-
mantic and syntactic similarities between words has emerged.
This method is very straightforward, consisting in creating a
histogram of word occurrences to represent the context defined
by a set of finite words. Therefore, two words that are inserted
in similar contexts may have approximately the same words
occurrences, and will probably have the same meaning.

In this model each word is represented by a hot-encoded
vector, which makes it costly for large vocabularies. Aiming
at a simpler model to minimize computational complexity, [4]
proposed CBOW, that has exactly the same principle as BOW.
However, instead of representing words using sparse vectors,
it uses continuous and dense word vectors. It might cause
some loss of information, but the gain in data efficiency is
higher, which makes it an advantageous trade-off. In CBOW,



(a) Literal search. (b) Keywords limitation. (c) Successful synonyms. (d) Unsuccessful synonyms.

Fig. 1: Examples of some results from the search tool in Settings.

Fig. 2: CBOW model predicts wt based on the context.

the context is given by a set of C words before and C words
after the word we want to predict, as illustrated in Figure 2.

To make dense word vectors possible, [4] adopted the
language model based on neural network. In this model, the
network parameters themselves are used to define the word
vectors, which were called word2vec. For this reason, the
dense word vectors must be trained on a text dataset, big
enough to generalize all relationships between words and
contexts. Once it is done, two different words but with similar
meaning may have dense word vectors close to each other.

This property is important to our method, since we need a
way to make a screen search by its context. The next section
describes how to encode the context of a screen by its textual
content.

B. User Interface Dump Embedding

As it is described in [14], a screen in an Android application
is formed by building blocks called Views that are responsible

for drawing and event handling. The Views are used to create
interactive UI components like buttons, check boxes and text
views. The screen is organized as a hierarchy of blocks where
ViewGroups represents invisible containers that hold together
Views and other ViewGroups. Among all classes of Views,
the one that interest us the most is the TextView, which
contains strings that are shown on the UI. The hierarchy of a
screen can be easily extracted from the UI dump, and can be
represented as a tree. Figure 3 shows a simplification of the
blocks hierarchy in the ”Connections” screen, showing only
the TextView blocks or the ViewGroups that contain at least
one TextView.

Knowing this, we can introduce the UI dump embedding,
which we denominate dump2vec. This embedding must encode
the whole context of each screen as a feature vector. To do so,
CBOW in form of word2vec is adopted to encode each word
present on the screen. Then, each node of the UI hierarchy
associated to a TextView is encoded by taking the average
feature vector vnode as follows:

vnode =

∑N
j=1 vj

N
(1)

where vj is the word2vec of the jth word in the current
TextView node, and N is its number of words.

Finally, a weighted average of all encoded nodes is done,
such that nodes nearer to the hierarchy root get higher impor-
tance. Thus, the screen context is encoded by computing the
following equation:

vdump =

∑D
i=1 α

di · vi∑D
i=1 α

di

(2)



Fig. 3: Example of a simplified dump hierarchy and the View
blocks.

where 0 < α < 1 is the weight that defines the importance of
each node, di is the depth of the node vi in the UI hierarchy
and D is the total number of textual nodes.

The intuition of the dump2vec computation is simple. The
title of the screen has already been chosen to represent the
whole context, so it gets more importance on the weighted
average. However, it is still important to consider the context
defined by each component of the screen. Usually, a clickable
component on UI has a TextView with a small text informing
its click event and a TextView in lower hierarchical level with
some description, which is specific to each component [14].

C. Keywords Embedding

Since we are now representing each screen as a dump2vec,
we also need to convert the keywords used in search to a
feature vector. Different from UI dump, which is structured as
a hierarchy, keywords have nothing to indicate the importance
of each word. Therefore, the computation of its embedding is
done by simply taking the common average over the word2vec
of all words, as in Equation 1.

Once we have computed dump2vec of all screens and we
have the keywords embedding, we must have a way to find
the screens that most approach to the context defined by the
keywords. For this, we employ the K-nearest neighbors, which
is explained in the next section.

D. K-Nearest Neighbors

K-Nearest Neighbors (KNN) [9] is a supervised machine
learning algorithm applied mostly in classification problems,
although it can also be used in regression problems. KNN
requires prior annotated data (i.e. the training data) where each

observation or data point in the dataset has a set of predictors
(features represented by independent variables) and a label
(the dependent variable) indicating the class to which the
observations belong. The algorithm intuition is based on the
assumption that similar observation exists within a proximity,
i.e., they are close to each other. Therefore to determine the
similarity between two observations, KNN often relies on
distance measures like Euclidean or Manhattan, however in
this paper the cosine similarity is used instead (refer to Section
IV-E). KNN can be described as a query algorithm where the
K factor indicates that the algorithm is expected to answer to
a given query q̂ by returning the K most similar observations
in its dataset.

Consider Q being a set of labeled observations, i.e., the
training data, each observation q ∈ Q is a n−dimensional
vector containing n variables where n−1 of them are reserved
for the features and 1 discrete value represents the label. The
following steps provide a general view of how KNN works:

1) receive an unclassified observation q̂ with n−1 features;
2) calculate the distance between q̂ and every observation

q ∈ Q;
3) organize Q in a ranking R such that observations q are

ranked by their distance to q̂ starting form the smallest
distance to biggest;

4) take the top K observations in the ranking R.

E. Cosine Similarity

As mentioned in the last section, cosine similarity was used
as the distance measure on KNN. Cosine similarity [9] is a
metric that was initially used to estimate the similarity between
two documents independently of their sizes. However, this
method can be extended to any other problem in which the data
can be mapped into a vector space. For the sake of simplicity
and convenience, we will explain the method for our problem.

So, formally, after the search keywords are embedded into a
feature vector vkeywords (see section IV-C) and the dump to be
compared with is mapped into dump2vec space as vdump (see
section IV-B), the cosine of the angle between these vectors
is measured. We compute this cosine as follows:

cos(θ) =
vkeywords · vdump

‖vkeywords‖ · ‖vdump‖
(3)

Since we take into account the cosine of the angle between
two vectors, this measurement ranges from −1 to 1, being −1
totally dissimilar and 1 totally similar.

V. EXPERIMENTAL FRAMEWORK

A. Implementation

The implementation was done in Python with the gensim1

library due to its facility on dealing with natural language
processing methods. Regarding the word2vec model, it was
used the word2vec-Android2, a model trained on a corpora

1gensim is a Python library for natural language processing. Available in:
https://radimrehurek.com/gensim/

2Pre-trained word2vec-Android available in: https://github.com/fan
glinchen/Word2Vec Android



extracted from the Stack Exchange Data Dump3 that contained
all posts up to 2016 with Android tag in the Stackoverflow
site4.

B. Evaluation Methodology

For evaluation, a dataset was collected from the Settings
app (version 9) of a Samsung Galaxy S10+ (SM-G975U), with
Android P. Adopting a depth-first-like approach, a systematic
exploration was done to collect as much UI dump as possible.
As result, 122 screens have been visited and saved to the
dataset. These screens are the ones to be found, given a query
of words.

Regarding the search queries, part of them was generated
by getting random textual components of every screen on the
dataset, and other part was manually generated by getting
queries that could not be handled correctly by the Settings
search tool. As a result, 468 queries have been generated.
For evaluation, each query randomly collected was associated
to the screen from where they were obtained. On the other
hand, for each manually generated query the correct screen
was defined as the screen that we found to be the best match
for it.

Finally, the evaluation metric adopted in this work was the
Top-K accuracy. This metric is useful when the estimator
returns several estimations, for example KNN. So, if one of
the K top estimations correspond to the expected result, it is
considered as a true positive case. Otherwise, it is considered
as a false positive. Once all N queries have been tested and
the amount of true positives TP have been counted, the Top-K
accuracy can be computed by the following equation:

Top-K =
TP

N
(4)

Besides this metric, a qualitative analysis is also considered
during evaluation. The following section shows experimental
results and a discussion over the possible reasons of false
positives is provided.

VI. RESULTS

The proposed method was tested for K ranging from 1 to
10 in KNN over the 468 search queries. However, during the
test we have noted that among the randomly generated queries,
there were cases where the selected words were names, e.g.,
name of app, wi-fi network, security certificates, that were
not included in the vocabulary used for word2vec training.
Furthermore, users probably would not search specific names
on the search tool, they would instead search for the screen that
contains those names, e.g., wi-fi, which contains the names of
available networks. Therefore, another test was done filtering
those cases, reducing to 388 queries. Figure 4 shows the
accuracies obtained for both tests on the two first columns
(blue and orange) in the chart, and it is possible to observe

3An anonymized dump of all user-contributed content on the Stack Ex-
change network available in: https://archive.org/details/stackexchange

4Stackoverflow is a question and answer site for programmers. Available
in: https://stackoverflow.com/

Fig. 4: Obtained results.

Queried words Expected Screen Best Estimation
I. App names

Google Play services Settings Mobile data usage
Duo Preview Add account Screen saver

Briefing Mobile data usage Region
Messages Wi-Fi data usage Status

Email Wi-Fi data usage Set secure screen lock
Call Filter Wi-Fi data usage Creating Mobile Hotspot
My Files Full screen apps Encrypt SD card
Call Filter Full screen apps Creating Mobile Hotspot
Messages Full screen apps Status
Calculator Full screen apps Roaming clock

II. Generic terms and screens
App details in store App info Application data usage

Mobile data App info Data usage
Service provider SW ver. Software information SIM card status

Device admin apps Device admin apps Wi-Fi control history
III. Could be considered

Face recognition Biometrics and security Face recognition
Do not disturb Notifications Do not disturb

Factory data reset Status Factory data reset
All languages Add a language Language

Turn on as scheduled Turn on as scheduled Night mode
IV. Context issue

Send diagnostic data Biometrics and security Data usage
Send SOS messages Advanced features Vibration intensity
Samsung suggested Add a language Legal information

Easy mute Motions and gestures Sound mode
Media Allow exceptions Font style

Smart Switch Accounts and backup Advanced features
V. Misleading dump2vec

Show layout bounds Developer options App icon badges
Bug report shortcut Developer options Legal information

Force allow apps on external Developer options Allow app while Data saver on
Mobile data always active Developer options Data usage
Always show crash dialog Developer options App icon badges

TABLE I: Examples of false positives.

that in more realistic situation, the proposed method achieves
Top-10 accuracy of 90.29%. The gray columns in the chart of
Figure 4 presents the accuracies over those queries manually
generated, showing that 82.35% of them can be handled
successfully with the screen context search.

Regarding the found false positive cases, we can make some
observations about probable causes and possible evaluation
failures. One of the main source of false positives is querying
names of installed applications. Because application names can
appear in many different screens that usually contain a list
of applications, the estimation end up being not so precise,
as shown in the first section of Table I. For example, one
could find the term Email on screens such as Apps, Wi-Fi
data usage, Full screen apps, Memory usage, among others.
Therefore, saying that a single screen is the correct one for an
application name may not be a good approach for evaluation.

Another issue that may be considered in our results is about
generic terms and screens, i.e. terms that have no specific
context for appearing in many screens, or different screens
that follow the same template, e.g., App Info screen of an
installed application. On these cases, if the queried words are



generic, the estimation will not return a satisfactory result, as
shown in the second section of Table I.

The third section of Table I shows some examples of cases
that were evaluated as false positive but conceptually could be
considered as true positive. When evaluating the correctness
of the estimation, we considered only if one of the estimated
screens was the same as the one from which the queried words
were taken. However that screen is not necessarily the only
best recommendation for that queried words. For example,
when looking for Face recognition, the expected result was the
Biometrics and security screen, but a result that leads directly
to the Face recognition screen also seems to be correct, since
it is the destiny of the clickable component Face recognition
on the Biometrics and security screen.

Besides, there are those related to components that do not
seem to fit well in the screen context. In our method, we
assume each screen has a context that can be interpreted as a
distribution of word vectors over the feature space. However,
there are some cases that a specific TextView node contains
terms that are not very well fitted on the screen context
distribution on the feature space, representing an outlier. In this
sense, when this particular component is searched, certainly
its context will not match with the dump2vec of its actual
corresponding screen. Some examples are presented on the
fourth section of Table I.

Lastly, dump2vec presented a disadvantage on situations
where the searched screen is too broad in terms of context, and
there are other screens with more restrict context that match
with the queried words. An example that shows this situation
is when we search for Show layout bounds, which leads to
the App icon badges screen instead of Developer options that
was the expected result. By screen title, it is difficult to see
the case, but checking inside the App icon badges screen, one
can note that almost every TextView contains the word ”Show”,
while in the Developer options screen there are few nodes that
characterize similar context to the queried words. Moreover,
since all words in the query receive the same importance, if
there is a screen with high frequency of a particular word, this
will affect the estimation. Therefore, in such cases, the way
how dump2vec encodes the screen context end up misleading
the screen search. More examples are shown in the last section
of Table I

VII. CONCLUSION

In this work, we proposed a method for searching screens
on Android Settings by their context instead of the literal
keywords. To get the context-based search, the CBOW model
of word2vec was used to encode the context of every screen
by computing the proposed dump2vec. This approach allowed
us to get more than 90% of Top-10 accuracy, and solve around
82% of cases that could not be handled by the current search
tool of the Android Settings.

It is important to note that the Android Search framework
is used on the Settings search tool, but it is also available
to Android developers so they can use it on their application
[3]. The search algorithm however, can be implemented in a

specific Android activity, which receives the search queries and
returns the search results. Knowing this, one could apply the
search method proposed in this paper to make the search tool
more intelligent, and consequently more inclusive. Beyond
app development, this approach could also be employed for
further applications, such as testing automation for searching
a specific feature to be tested.

For future work, we will be concentrating efforts to get
better trained word2vec model with more recent corpora. Also,
a study of how the context of an app is organized may be
considered to improve the search approach. And, not less
important, to reformulate a more efficient evaluation method.
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