
A Partially Shared Thin Reconfigurable Array For
Multicore Processor

Francisco Carlos Silva Junior
Universidade de Brası́lia (UnB)

Brası́lia, Brazil
juninho.ufpi@hotmail.com

Ivan Saraiva Silva
Universidade Federal do Piauı́ (UFPI)

Teresina, Brazil
ivan@ufpi.edu.br

Ricardo Pezzuol Jacobi
Universidade de Brası́lia (UnB)

Brası́lia, Brazil
jacobi@unb.br

Abstract—Reconfigurable architectures have been widely used
as single-core processor accelerators. In the multi-core era,
however, it is necessary to review the way that reconfigurable
arrays are integrated into a multi-core processor. Generally, a set
of reconfigurable functional units are employed similarly as they
are used in single-core processors. Unfortunately, a considerable
increase in the area ensues from this practice. Besides, in
applications with unbalanced workload in their threads this
approach can lead to inefficient usage of the reconfigurable
architecture in cores with a low or even idle workload. To
cope with this issue, this work proposes and evaluates a par-
tially shared thin reconfigurable array, which allows sharing
reconfigurable resources among the processor’s cores. Sharing is
performed dynamically by the configuration scheduler hardware.
The results show that the sharing mechanism provided 76% of
energy savings, improving the performance 41% on average when
compared with a version without the proposed reconfigurable
array. A comparison with a version of the reconfigurable array
without the sharing mechanism was performed and shows that
the sharing mechanism improved up to 11.16% in the system
performance.

Index Terms—Reconfigurable architecture, CGRA, Multi-core
processor, Resource sharing, Binary translator.

I. INTRODUCTION

Over the last years, increases in application complexity
have been demanding more and more performance from
processors. Two different approaches have been followed
for such applications since the advent of integrated circuit
development technologies. On the first approach, General
Purpose Processors (GPPs) are used for the execution of any
application. On the second, dedicated hardware or Application
Specific Integrated Circuits (ASIC) are used for the execution
of specific applications. For the latter, the performance gain is
achieved through the specialization of the hardware structures.
GPPs are flexible enough to run any application, however, they
cannot supply enough performance to handle the increasing
complexity of the latest applications. In contrast, ASIC offers
high performance but poor flexibility, due to their hardware
structure be specific to the application they were designed.

Reconfigurable Architectures (RA) emerged as an archi-
tectural solution to provide higher flexibility than ASIC and
better performance than GPP. RAs are generally composed of
a set of Reconfigurable Functional Units (RFU) or Processing
Elements (PE), linked by an interconnection system.

Coarse-grained reconfigurable architectures (CGRA) have
been successfully used as accelerators in single-core pro-
cessors, providing energy savings and faster execution [1].
However, multi-core processors are dominant in the processor
industry nowadays. This way, it is necessary to review how
the reconfigurable architectures are integrated into the system.

A straightforward approach to integrate CGRA into multi-
core processors consists of coupling each core with its own
CGRA [2][3]. There are two main drawbacks in this approach:
i) The CGRAs found in the literature usually have many
processing elements and to replicate the CGRA to each core
could have a significant cost in the area to the system; ii) In
multi-core processors the application threads will not always
present a balanced workload. In this case, it will lead to an
inefficient usage of the reconfigurable resources in cores where
the CGRA is underused or even completely idle.

To cope with these issues we propose and evaluate a
partially shared thin reconfigurable architecture for multi-core
processors. The thinness concept consists of coupling to each
core a CGRA composed of three PEs and a single Load/Store
unit. This set of resources is called reconfigurable column.
There is one reconfigurable column for each processor core,
but the column resources are not restricted to the core they
are coupled and can be shared by other cores. Thus, by shar-
ing the columns’ resources among cores, the reconfigurable
architecture is more efficiently integrated into the multi-core
processor, saving area and power.

In order to evaluate the performance, we used a benchmark
with four applications, comparing the results obtained with
and without our reconfigurable architecture. They show a
maximum speedup of 44.91% while saving up to 83% of
energy.

The paper is organized in 5 sections. Section II presents
related works and points out this study’s contribution. Sec-
tion III describes the system proposed in this study. Section
IV presents the performance and energy results. The paper
concludes with section V, presenting conclusions and future
works.

II. RELATED WORK

Many reconfigurable architectures have been proposed in
the literature. Most of them are attached to a single-core
processor, such as Chimaera [6], Morphosys [7], PipeRench



[8] and many other architectures that can be found in survey
papers [9] [10]. In this work, we focus on the proposals that
address the usage of reconfigurable architectures in multi-core
processors.

Concerning how the resources of the reconfigurable archi-
tecture are distributed into a multi-core processor, there are
two types of CGRA organization: homogeneous and hetero-
geneous. In the first organization, the reconfigurable resources
are the same to all cores [11][2]. In the latter organization, the
number of reconfigurable resources may be different for each
core[3].

CReAMS [2] is a homogeneous CGRA for multi-core
processor. It proposes a multi-core system where each core is a
DAP (Dynamic Adaptative Processor). The DAP is a transpar-
ent reconfigurable architecture for single-thread applications
proposed in [13]. To provide transparent reconfiguration, each
DAP has a binary translator attached to the fetch stage of the
pipeline processor and translates, at run-time, the instructions
executed in the processor to run in the CGRA. The reconfig-
urable architecture is implemented using combinational logic
and can execute up to three dependent operations in a single
cycle.

HARTMP [3], as in [2], also uses DAPs to compose a
multi-core system. However, unlike CREaMS, HARTMP has
heterogeneous organization with distinct numbers of resource
that compose the reconfigurable architecture in each core. This
architecture aims to offer efficient execution of applications
with distinct thread load balance.

In order to make the usage of reconfigurable architecture
more power and area efficient in multi-core systems, Watkins
[14] proposed a shared SPL (Specialized Programmable
Logic). The reconfigurable architecture operates at a fine-
grained level. The authors claim that the shared SPL is more
efficient since the sharing mechanism proposed increases its
utilization.

ReMAP (Reconfigurable Multicore Acceleration and Par-
allelization) [15] is an extension of the work proposed by
Watkins [14]. In the ReMAP, fine-grained communication and
barrier synchronization were added to accelerate applications
within a heterogeneous multi-core. As in the previous work,
ReMAP shares your SPL among the processor’s cores to
reduce power and area costs.

Other examples of architectures that allow resource sharing
in a multi-core system are [16],[17],[18],[12]. In [16] and [17]
a mechanism to share a custom instruction set among the
cores is presented. Shafique et. al. [12] propose a novel policy,
minority-game-based, for allocation reconfigurable fabric re-
source. Finally, in Garcia and Compton [18], a reconfigurable
processor, working as a co-processor, is shared in a multi-core
system.

This work proposes a partially shared thin reconfigurable
array for a multi-core processor. The main contributions in
the work proposed here over the reviewed works are:

• Unlike CReAMS and HARTMP, which provide private
CGRA to each core, in this work we offer a recon-
figurable column to each core but idle resources can

be shared at run time providing a better utilization
of the reconfigurable resources. The employed recon-
figurable array is significantly smaller than CReAMS
and HARTMP, amortizing the area cost. For instance,
CReAMS uses a reconfigurable architecture which has
144 ALUs, 96 load/store units and 48 multipliers orga-
nized in 24 columns to each core. By the other hand, the
reconfigurable array proposed in this work uses only 12
ALUs and 4 load/store units.

• Unlike ReMAP and its prior work [14] , the proposed
architecture employs resource sharing in a coarse-grained
reconfigurable architecture. Although fine-grained recon-
figurable architectures are more flexible, CGRAs require
fewer configuration bits and have, thus, faster reconfigu-
ration time.

• Differently of [16], [17] and [12], in the work propose
here, the whole reconfiguration process is transparent.
Thus, neither compiler support nor code modification is
necessary to use the reconfigurable architecture.

III. PROPOSED SYSTEM

The proposed architecture has three main components: a
set of processing cores, a reconfigurable array, and a config-
uration scheduler. The reconfigurable array is tightly coupled
to the processing cores. A schematic view of the proposed
architecture can be seen in Figure 1. The components will be
explained in detail in the next sections.

Figure 1. A high-level view of the proposed architecture.

A. Processing Cores

The processing core architecture can be seen in Figure 2.
Four processing cores compose the architecture. Each core
is a 5-stage pipelined MIPS and is attached to a binary
translator (BT). The pipeline processor is shown in Figure 2
tagged with number one. The binary translator (BT) hardware
was proposed in [13] and we adapt it to our architecture.
A configuration cache and a configuration controller was
added to each processing core. The configuration cache stores
configurations generated at run-time by the binary translator.
The configuration cache can hold up to 128 configurations
and uses a LFRU (Least Frequent Recently Used) replace-
ment policy. The configuration controller decides, based on
Program Counter (PC) register value, what execute either in
the reconfigurable array or in the processor.



Each processing core has private L1 caches. Both L1-
Icache and L1-Dcache are 4-way set-associative and have
16KB each. A directory-based mechanism was implemented to
provide cache coherency. The MSI (Modified, Shared, Invalid)
protocol was used. Details of this protocol can be seen in [19].
Additionally, the sequential consistency model proposed by
Lamport [20] was implemented to assure a consistent view of
the memory, which is shared among the processing cores.

Figure 2. Processing core architecture.

B. The Reconfigurable Array

The reconfigurable array has four reconfigurable columns
(block 2 in Figure 3), four register-file (32-entry each), a
configurations scheduler (block 1 in Figure 3) and is tightly
coupled to the processing cores. Each reconfigurable column
has three processing elements (PE) and one load/store unit.
The reconfigurable array is a coarse-grained reconfigurable
architecture, hence, the PE does word-level operations.

The register-file (block 4 in Figure 3), one to each process-
ing core, at the beginning of the configuration execution, stores
the input context, which is a copy of the register-file from its
processing core. The whole computation in the reconfigurable
columns is register-file based. In other words, each operation
reads its operands and writes the result into your register-
file. At the end of the configuration execution, the register
file is copied back to the processor’s register-file and the
control returns to the processor to continue its execution. Each
register-file has 10 read-ports and 5 write-ports, therefore, it
can perform up to 10 reads and 5 writes in parallel.

The configurations control the computation performed in
the reconfigurable columns. Several configuration words com-
poses a configuration and each configuration word defines
the operations realized in all PEs and Load/Store Unit in a
single cycle. This way, the resources of the reconfigurable
columns are explored spatially and temporally. The spatial
exploration occurs when instructions are executed in parallel
in the same cycle and temporal exploration occurs when
instructions are executed in different cycles, usually because
of data dependency.

Each reconfigurable column is mainly used by its processing
core, but it can lend its idle PEs to other processing cores.
Therefore, processing cores with a higher workload can use
resources from other reconfigurable columns that are being
underused. The ability to lend resources imposes some diffi-
culties. At first, if a PE from column Ci is lent to execute
operations from a processing core PCj , the result generated

at the PE must be stored in the register-file from the column
mainly used by the processing core PCj . This is done at run-
time by the configuration scheduler that adds configuration bits
that inform where to save the results to each PE. This approach
allows a partial resource sharing in the reconfigurable array.
The block 3 in Figure 3 shows the scheduler routing the source
registers by adding bits to control multiplexers. In Figure 3,
only the routing to read the sources register is shown, but there
are also multiplexers to redirect the PE’s output and save the
computation in the properly register-file.

Figure 3. Reconfigurable array architecture.

C. Binary Translator

The binary translator (BT) is a hardware block that dy-
namically detects a sequence of instructions to be executed
in the reconfigurable array. In the implementation proposed in
[13], BT is implemented as a 4-stage pipelined circuit. In our
implementation, the BT was extended to a 5-stage pipelined
circuit to add a rename stage between the resource allocation
and update table stages. This additional stage was designed
to handle false dependence. The implementation proposed in
[13] also handles false dependence but only in bus-based
architectures. The BT pipeline and how it is attached to the
processor pipeline is shown in block 2 in Figure 2.

The BT algorithm uses some tables to store information
about the current configuration. The main tables are: write
bitmap table, resource table and read table. In the write bitmap
table, dependency information of each column is saved. The
resource table is used to check if there is resource available
in the columns. And the read table is used to store the source
registers of each column. At the end of a configuration, all
these tables are used to build the configuration, which is saved
in configuration cache.

The 5-stage pipeline BT works as follow. In the first stage,
the instruction is decoded, getting the source and target register
and operation. In the second stage, the write bitmap table
is used to verify data dependency. This stage calculates and
returns the column number where this instruction can be added
considering data dependency. In the third stage, using the
information from the last stage, the resource table is used



to search for functional units available in the columns. In
the fourth stage, the register renaming is done. Finally, the
last stage saved the computed results for the last instruction
updating the tables.

The configuration is saved, indexed by the PC of the first
instruction belonging to that configuration, in the configuration
cache when it reaches its end. There are three reasons for
a configuration be ended by the BT: i) a not supported
instruction was found in the BT; ii) there is no resource
available in the reconfigurable array or iii) found a branch
instruction (in the case where there is no speculative execution
support). As mentioned before, the reconfigurable columns are
explored temporally, therefore, the amount of resources in the
reconfigurable array is limited to the number of configuration
words that composes a configuration. Once the configuration
is saved, the next time the processor reaches that PC value
again, this snippet of code will be executed more efficiently
in the reconfigurable array. The version implemented in this
work supports one speculation level, so the BT allows up to
1 branch per configuration.

D. Configuration Scheduler

The configuration scheduler allocates the operations from
configurations to be executed in the reconfigurable array,
providing a dynamic partial sharing of the reconfigurable
resources.

Each processing core controller sends its configuration
words to the configuration scheduler which maps this set of
configuration words in the reconfigurable array following a
policy. The policy follows the basic priority rule, which states
that each processing core uses its reconfigurable column. For
instance, for the processing core i is guaranteed, at least, the
resource of the reconfigurable column i. Besides the basic
priority rule, there is a priority thread rule which assures a
specific thread a higher priority in the allocation process. This
allows a more efficient resource utilization because it gives
more computational resources to more important processes in
the operating system.

It is important to mention that the configurations are gener-
ated as if there were 5 PEs in each reconfigurable column. In
the resource table (used in the BT’s first stage) the column is
seen as having 5 PEs. As the reconfigurable column actually
does not have 5 PEs, if a configuration word has more than
3 PE operations, additional PEs must be lent from other
columns. Regardless of the thread priority rule (or if two or
more threads have the same priority), the scheduler always
checks if the column of other cores has idle resources. If so
and if there are cores with more than 3 operations in your
configuration word, idle resources will be taken and lend for
the threads that need them. In case there is no idle PE in other
reconfigurable columns, the additional operations are executed
in the next cycle in its reconfigurable column.

The configuration scheduler is organized in a 2-stage
pipelined circuit. In the first stage, configuration decode (CD),
the configuration words from each processing core are al-
located following the basic priority rule and saved in a 4-

entry table with 3 bits, named allocation table (AT). Each
entry contains information about PEs from each reconfigurable
column and each bit represents if the PE is allocated or not.
The additional operations from each configuration word are
mapped in a second 4-entry table with 2 bits, named request
table (RT), and maps the operations requests for PEs from
each processing core. In the second stage, resource allocation
(RA), using the AT and RT, the configuration scheduler maps
the configurations in the reconfigurable array. To each PE
allocated in the AT, the configuration bits are forwarded to its
reconfigurable column because this table maps the allocation
done using basic priority rule. The RT is checked if there
is some bit set to 1 (this means that the configuration word
requires additional PEs), if so, a search for an idle resource
in other reconfigurable columns is done. In case an idle PE
is found, the configuration bits from the requested PE is
forwarded to the idle PE found. Additionally, bits are added to
the configuration to inform where to save the result from that
computation. In this case, the register-file from the column
which requested the PE.

IV. RESULTS

A. Methodology

A benchmark with four applications was selected to evaluate
the proposed system. The applications are: bitcount (from
Mibench suite [21]), lu decomposition (from openMP suite
[22]), matrix multiplication and a laplacian filter. These ap-
plications were selected due to their different characteristics.
Bitcount is a control-flow application and has small basic
blocks (5.87 instructions per basic block on average), which
makes their acceleration harder due to the space to explore ILP
(Instruction Level Parallelism) is too small. On the other hand,
matrix multiplication is a compute-intensive application and
has larger basic blocks (13.24 instructions per basic block on
average). In the Lu and laplacian filter have both characteristics
compute-intensive and control-flow. The bitcount apllication
counts the number of 18,750 integers. Matrix multiplication
takes two 20x20 matrix as input and generates a 20x20 matrix
as result. Lu decomposion takes a 20x20 matrix as input and
generate a 20x20 matrix as output. Finally, the laplacian takes
an image in gray scale with SQCIF resolution (128x96). All
the applications were written in C language and compiled
to MIPS using the gnu gcc cross-compiler. To obtain the
performance results, a simulator using the SystemC language
was developed.

The performance and energy gains were evaluated com-
paring a version with and without the proposed reconfig-
urable architecture. Two additional versions of the proposed
reconfigurable architecture were developed to measure the
improvements the sharing mechanism can provide. In the
first version, we disable the resource sharing, thereby, the
reconfigurable columns are private to each core. In the second
version, we also disable the resource sharing but add 2 PEs
to each reconfigurable columns, thereby, each reconfigurable
column has 5 PEs in this version. This version was named as
5 PEs version.



The energy analysis was done using McPAT framework 1.3
[5]. The column array was implemented with the Cadence
GSCLIB045 (Cadence 45nm Generic Std Cell) library. With
this implementation was possible to obtain a frequency of
700MHz. For energy results, we assume that this technology
and frequency was used to implement the whole architecture.
Counters were added to the systemC simulator to provide
execution statistics required by McPAT.

The reconfigurable array energy estimation was done us-
ing also the McPAT output. We described, in the McPAT
framework, a superscalar processor with three integers ALU’s
(Arithmetic Logic Unit) in its execution stage. We assume that
the reconfigurable array power consumption is similar to the
superscalar execution stage. It is important to mention that
this is a pessimist approach due to the execution unit of a
superscalar processor having much more hardware than our
reconfigurable array, therefore, we compute more energy than
really is used. The same energy estimation was performed to
calculate the energy consumption in the 5 PE version.

B. Performance Results

The reconfigurable array provides performance improve-
ment in the whole benchmark, as can be seen in Figure 4.
The speedup provided is 41% on average. The resource sharing
mechanism also improved the performance against the version
without sharing. The improvement was 8.5% on average.
Bitcount was the application with the smallest improvement
due to the sharing mechanism. In this control-flow application,
the basic blocks are small and with many dependent instruc-
tions, which limits the amount of parallelism. For this reason,
bitcount was improved only by 4.65% in its performance using
the proposed resource sharing mechanism. On the other hand,
the laplacian filter, which has larger basic blocks than bitcount
and higher ILP, performance improvement was 11.16%.

The proposed architecture also was compared to the 5 PEs
version that represents the highest gain the reconfigurable
architecture can provide. The speedup provided by our archi-
tecture was 4.73% smaller than the 5 PEs version on average.
Bitcount was the closest to the 5 PEs version speedup. The
reason is the same explained before: low ILP and small basic
blocks. Therefore, increasing the resource amount doesn’t
imply in performance gains, once that 3 PEs is enough in
most configurations.

Additional performance results can be seen in Table I.
There is a trend that can be observed: applications with
higher coverage by the reconfigurable architecture and bigger
configuration sizes have better speedups.

The performance results show the proposed resource sharing
mechanism could improve up to 11.16% in the laplacian filter
performance when compared to a version without the sharing
mechanism. However, the performance improvement in the
bitcount application was not significantly, only 4.73%.

C. Energy Results

The energy improvements can be seen in Figure 5. The
comparison showed that the proposed architecture uses only

Figure 4. Analysys of the speed up provided by resource sharing.

Table I
PERFOMANCE RESULTS.

Application Cycles
Average

conf. size
(in instr.)

Speed
up Coverage

Miss
speculation

rate

Matrix Mult. 67,334 27 44.91% 82.2% 4.7%
Laplacian F. 178,563 41 39.29% 62.5% 0.7%

Lu 17,676 22 43.30% 85.4% 5.02%
Bitcount 789,809 16 36.75% 72.09% 10.60%

24% of the power consumption of its counterpart on average.
The best energy saving was in Lu and Matrix applications
that also are those which present the highest coverage. On the
other hand, the laplacian filter application showed the smallest
energy saving. This occurs because it executes more code in
the processor than the other applications. Therefore, it can be
observed that a larger coverage implies better energy efficiency
because the reconfigurable array consumes less power than the
processor to run the same snippet of code.

Figure 5. Energy results normalized by the processor power consumption.

An energy comparison between the 5 PEs version and the
proposed architecture also was performed. This comparison
aims to show a power-performance tradeoff of our architecture
against a reconfigurable array that has more resources, but their
resources are private to each core. The energy comparison
can be seen in Figure 6. In the bitcount application, the 5
PEs version was 1.25% faster than the proposed architecture,
however, it consumes 33% more power. As explained before,



this happens because the additional units are almost never used
due to the low ILP and only add static power consumption
in the system. On the other side, matrix multiplication is
5.21% faster and consumes only 13% more than the proposed
architecture. The 5 PEs version reached the best speedup, but
the increase in power was higher than the obtained speed up.
This occurs due to the proposed sharing mechanism, which
offers better resource utilization, saving energy and increasing
performance. In Table II is shown a tradeoff performance-
power of the 5 PEs version against the proposed architecture.

Figure 6. Energy results normalized by the proposed architecture power
consumption.

Table II
COMPARISION BETWEEN THE 5 PES VERSION AND THE PROPOSED

ARCHITECTURE

Application speed up Energy
Matrix Mult. +5.21% +13%

Bitcount +1.25% +33%
Laplacian F. +5.82% +29%

Lu +6.62% +19%

V. CONCLUSIONS AND FUTURE WORK

This work proposes a reconfigurable array that is partially
shared among the processor cores. The sharing mechanism
is performed dynamically and aims to provide better resource
utilization of the reconfigurable array. The performance results
showed that the sharing mechanism improves the performance
with respect to a version without sharing. Additionally, energy
results showed that the reconfigurable array provides signifi-
cant energy savings when compared to a version without our
reconfigurable array.

As future work, we intend to add more applications to our
benchmark and to test more configurations of the system,
varying the amount of PE that can be shared, the amount
of PEs available to each column and so on. Thus, we can
decide which configuration brings a better power-performance
tradeoff. Additionally, a study in area reduction cost by re-
source sharing, because this is another advantage of the better
utilization provided by the resource sharing mechanism and
the thin reconfigurable array here proposed.

REFERENCES

[1] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in Proceedings of the
37th Annual International Symposium on Computer Architecture, ser.
ISCA ’10. New York, NY, USA: ACM, 2010, pp. 37–47.

[2] J. D. Souza, L. Carro, M. B. Rutzig, and A. C. S. Beck, “Towards a
dynamic and reconfigurable multicore heterogeneous system,” in 2014
Brazilian Symposium on Computing Systems Engineering, Nov 2014,
pp. 73–78.

[3] J. D. Souza, L. Carro, M. B. Rutzig, and A. C. S. Beck, “A reconfigurable
heterogeneous multicore with a homogeneous isa,” in 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2016,
pp. 1598–1603.

[4] Accellera, “Systemc language,” https://www.accellera.org/downloads/
standards/systemc, 2016, accessed: 29/07/2019.

[5] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in 2009
42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Dec 2009, pp. 469–480.

[6] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The chimaera
reconfigurable functional unit,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 12, no. 2, pp. 206–217, Feb 2004.

[7] H. Singh, Ming-Hau Lee, Guangming Lu, F. J. Kurdahi, N. Bagherzadeh,
and E. M. Chaves Filho, “Morphosys: an integrated reconfigurable
system for data-parallel and computation-intensive applications,” IEEE
Transactions on Computers, vol. 49, no. 5, pp. 465–481, May 2000.

[8] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and
R. R. Taylor, “Piperench: a reconfigurable architecture and compiler,”
Computer, vol. 33, no. 4, pp. 70–77, April 2000.

[9] M. Wijtvliet, L. Waeijen, and H. Corporaal, “Coarse grained reconfig-
urable architectures in the past 25 years: Overview and classification,”
in 2016 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS), July 2016, pp. 235–
244.

[10] R. Hartenstein, “A decade of reconfigurable computing: A visionary
retrospective,” in Proceedings of the Conference on Design, Automation
and Test in Europe, ser. DATE ’01. Piscataway, NJ, USA: IEEE Press,
2001, pp. 642–649.

[11] D. B. Gottlieb, J. J. Cook, J. D. Walstrom, S. Ferrera, Chi-Wei Wang,
and N. P. Carter, “Clustered programmable-reconfigurable processors,”
in 2002 IEEE International Conference on Field-Programmable Tech-
nology, 2002. (FPT). Proceedings., Dec 2002, pp. 134–141.

[12] M. Shafique, L. Bauer, W. Ahmed, and J. Henkel, “Minority-game-based
resource allocation for run-time reconfigurable multi-core processors,”
in 2011 Design, Automation Test in Europe, March 2011, pp. 1–6.

[13] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, “Transparent
reconfigurable acceleration for heterogeneous embedded applications,”
in 2008 Design, Automation and Test in Europe, March 2008, pp. 1208–
1213.

[14] M. A. Watkins, M. J. Cianchetti, and D. H. Albonesi, “Shared recon-
figurable architectures for cmps,” in 2008 International Conference on
Field Programmable Logic and Applications, Sep. 2008, pp. 299–304.

[15] M. A. Watkins and D. H. Albonesi, “Remap: A reconfigurable het-
erogeneous multicore architecture,” in 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, Dec 2010, pp. 497–508.

[16] L. Chen and T. Mitra, “Shared reconfigurable fabric for multi-core
customization,” in 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), June 2011, pp. 830–835.

[17] L. Chen, T. Marconi, and T. Mitra, “Online scheduling for multi-core
shared reconfigurable fabric,” in 2012 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2012, pp. 582–585.

[18] P. Garcia and K. Compton, “Kernel sharing on reconfigurable mul-
tiprocessor systems,” in 2008 International Conference on Field-
Programmable Technology, Dec 2008, pp. 225–232.

[19] D. A. Patterson and J. L. Henessy, Computer Architecture: A Quantita-
tive Approach, 5th ed. Oxford, USA: Morgan Kaufmann, 2016.

[20] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Transactions on Computers, vol.
C-28, no. 9, pp. 690–691, Sep. 1979.

[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec 2001, pp. 3–14.

[22] A. J. Dorta, C. Rodriguez, and F. de Sande, “The openmp source code
repository,” in 13th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, Feb 2005, pp. 244–250.

https://www.accellera.org/downloads/standards/systemc
https://www.accellera.org/downloads/standards/systemc

