
Tiny Thing Blocks: Integrating Everyday Objects
into IoT Context

Lucas Amorim, Marcio Alencar and Raimundo Barreto
Institute of Computing

Federal University of Amazonas
Manaus, Brazil

{lsda, macalencar, rbarreto}@icomp.ufam.edu.br

Resumo—The evolution of smart things technologies caused
the growth in the popularity of concepts such as smart homes and
industry 4.0. The Internet of Things (IoT) is the paradigm that
encompasses and give a base for these topics. The development
of devices that are used in this paradigm requires knowledge of
subjects such as programming, embedded cyber-physical systems,
web protocols, networking and others. This paper proposes a
method to make it easier for people who do not have this
knowledge to create smart IoT devices. To achieve this goal,
we decide to create a visual language based on blocks that
automatically generate code to Internet of Things devices. This
language gives support to design the behavior of devices, which
is represented by a model of a finite state machine. This model is
generated using a graph generator called Graphviz. We created
a compiler for this language using the compiler generator Coco/r.
The compiler translates the block code into the C language which
is one of the programming language recognised by the Arduino
IDE. We advocate that this process is more intuitive than the
normal development process after conducting tests with users.
We did an experiment with CS students and the result is that
the proposed method is promising.

Index Terms—IoT, VLP, Internet of Things, Visual program-
ming language

I. INTRODUCTION

Internet of Things (IoT) is an emerging paradigm focused
on problem solving through collaboration between Internet
standards and compute-capable objects. Because of this, it is
possible to create a smart device-connected environment that
both work and make decisions without human intervention.
The adoption of smart devices is very useful in several kinds of
applications. In industry, for instance, they can reduce the labor
cost and improve the machine’s supervision to prevent failures
or defects in its operation. Another example of good use to the
connected devices is the patient monitoring at hospitals or even
at home. This paradigm turned the human into a connected
thing, optimizing the generation and use of data to improve
the humans quality of life [2], [8], [10].

However, there is a large number of protocols and commu-
nication standards used in the IoT development. In addition,
there are a variety of devices used to build these environ-
ments, where each uses different hardware and software to
communicate with the Internet. At this point, there are two
parts to be observed: the communication hardware and the
devices. The communication between devices is indispensable
to IoT environments. However, the protocols used to support

this communication are suitable for specific contexts. NFC,
Wi-Fi, Zigbee, Bluetooth are examples of these protocols, but
they do not always talk to each other. Thus, part of the problem
is to create a way to make this variety of protocols do not
interfere with the data getting and sharing of these device [2].

Another viewpoint to discuss is the development of hard-
ware and software used to create IoT devices since they have
a module responsible for communication, and another for col-
lecting data or perform mechanical activities. The development
of these devices requires knowledge about embedded systems,
web protocols, wireless transmission, electronic circuits, and
other subjects. These points could be a setback at creating
IoT devices, since people in general usually do not have much
knowledge about these subjects [2], [3].

IoT research has the main focus on industry technology and
health care systems. However, some research has focused on
creating an easy and cheap way to include things in the IoT
context. An example is the module Tiny Thing [1], which
proposed a specific hardware responsible for brokering the
connection of electronic devices and the Web. However, this is
just part of the solution since the user still needs to understand
how to program the module. To solve this setback, we propose
a visual programming language based on blocks that helps the
user to understand the behavior of the device and to generate
the code to it.

II. RELATED WORK

The IoT code development has usually been done with
several tools and using different approaches.

An example is the Node-RED, which is a flow-based tool
that belongs to the JS Foundation. The flow-based program-
ming is a method to describe the application’s behavior as a
network of nodes. Therefore, each node has its data to handle
and represent. The flow of these data between nodes depends
on the network. The visual representation of data is interesting
since it turns the tool more accessible to beginners [9].

Another tool is Visuino, which uses blocks and drag-and-
drop paradigm to create a visual programming language to
develop software to Arduino boards. This tool represents the
hardware actions using blocks, thus it only requires the user
to understand what the hardware should do and translate these
actions to code [11].



Visualino is another example of a drag-and-drop based
visual language to generate software for Arduino boards.
Visualino is different from Visuino in the sense that it focus on
the direct development of code. Visualino provides blocks to
represent the structures of the language used by Arduino [5].

Node-Red is the more recognized and used by developers
and teachers on the Internet of Things subject. According to
Google trends, it maintained the relevance of the researches
since 2018. The following tool is the Visuino, although its
relevance of the researchers has been inconstant.

We used Blockly [7] which is a Javascript library used
in many online code generation tools such as App Inventor,
CODE, Microsoft MakeCode, and others. Using Blockly we
created an online tool that generates the model through a visual
language based on blocks, and translates this visual language
to a C-based language.

Combined to Blockly we used the Graphviz tool, which is
an open source graph visualization software that uses the DOT
language to create a finite state machine [3], which represents
the models behavior. Comparing to the other tools quoted
previously, Tiny Thing Blocks focus on receiving a behavior
model and generate code from that. This tool works using the
same paradigm of Visuino and Visualino, the drag-and-drop
model. Nevertheless, the blocks used at this tool represents
structures and state transitions.

Another key to develop this tool is the Tiny Thing module,
which is a device responsible for doing the communication
between an object and the internet. To do this activity the
module has two parts in its composition, the first is to describe,
control and to monitor the object state. The second is to turn
the object accessible through the internet and then control it.
The module was built using an ATTiny85 microcontroller and
a Wi-Fi board ESP8266 ESP-01 [1].

III. METHODS

The proposed tool consists of a web service that uses a
visual programming language to provide a means to generate
code for the Tiny Thing module. This service remains on two
phases, the first performed by the user and the second by the
tool. The first phase is when the user creates the finite state
machine to his device using the block language, and with this
language, he generates a model based on graphs. These graphs
are created using the Graphviz.

The second phase begins when the user compiles the created
model. The activities performed here are server-side. The first
phase generates a file in the format dot, and this file has
the FSM created by the user. This file is compiled using
the compiler generated with the Coco/r tool, which is a
compiler generator, which takes an attributed grammar of a
source language and generates a scanner and a parser for this
language. Finally, it returns code in the format “ino"(Arduino)
that is portable to the Tiny Thing module.

A. Modeling

The modeling process was designed to be simpler and
quicker than code development. To achieve this was necessary

to use a computational concept of modeling that can carry the
needed data for generating code. The finite state machine is
a mathematical model that is present in several things that
operate a designed sequence of actions depending on a series
of input cases. This concept fits on the behaviors of the IoT
device and can represent the devices used with the module.

The next step was to design how to create and visualize
this FSM. The chosen tool for this job was the Graphviz. Its
support for creating and visualizing graphs provided a way to
solve the needings of the modeling phase. Once there is a way
to handle the modeling, the next requirement was to create the
standards to it.

The standards should represent the main pieces of the
device’s operating besides presenting information necessary
for the construction of the devices using the module. These
standards cover the pieces of information about the type of
device (sensor or actuator), the states that the device has
and the transition among each one, the pins which it uses
to connect with the Tiny Thing. These standards were used to
generate a new modeling language based on the DOT format
used by Graphviz.

The first point of these standards is about how to categorize
the types of devices. There are two types: the actuators and
the sensors. Actuators do mechanical actions once they get an
electric or automated stimulus. By using this kind of device
combined with the Tiny Thing module provide a way to
make smart objects such as Smart LEDs and Smart Blinds.
Figure 1 shows an example of an actuator servo motor, which
can be used with Arduino. Sensors are devices that get an
outside physical or chemical incentive and return it to a
system responsible for handle this data (see Figure 2). Like the
actuators, sensors can use the module to create Smart Objects
such as automated monitoring systems of heat or presence.
However, sensors are monitoring devices and have different
behavior.

Figura 1. Servo motor, an example of an actuator.

Figura 2. LM35, an example of a sensor.



These concepts of types are the base of modeling the
devices. They were used to create the transition’s rules for each
device. However, the primary step of shaping a new object is
to indicate its type and name. Figure 3 shows the syntax used
to declare the expected information about the thing. This line
will generate the image shown in Figure 4.

Figura 3. Declare type.

Figura 4. Example of the input "...label="actuator Led"]".

Since the name and type are informed, the next step is to
handle the connection between the device and the module.
The module has three available pins to connect with things,
and there’s a value for each one of then (0, 2 and 3). The
module needs to know which pin will receive or send data
to the objects, so these values need to be declared. Figure 5
represents the way to inform this.

Figura 5. Pin type.

This declaration creates a new block on the model that
shows the names and the values of declared pins (Figure 6).

Figura 6. Example of the input "...label="link::0"]".

After these declarations, the model represents the type
and the connections acting at this system. These details are
useful for the code generation process. Nevertheless, they are
nott relevant to design the behavior of a device. The model
should have nodes for each state, and these nodes have arrows
representing the transition between them. These data are the
principal purpose of the process. Figure 7 gives an example
of these states and transitions declaration.

Figure 8 shows the output from these lines (Figure 7). Figure
9 represents the transition between two states (on and off).

These examples cover the base of modeling devices. Howe-
ver, sensors need more details for their models. The behavior
presented by this type has roots in valued inputs that cause
the transitions. There are two ways to get those inputs using
sensors one is doing only one reading and return the value.
The other way is doing a sequence of readings and return the
average of these readings.

The transition’s behavior using these functions depends on
the range values of each state. The transition between states

Figura 7. State and transition declaration

Figura 8. Visualization of State and transition declaration

happens when the input or the average is inside of a different
range.

These rules were used to create an Extended Backus-Naur
Form (EBNF) that express the grammar for this new language.
The EBNF is a notation of metalanguage used to express
context-free grammar. Programming languages could use this
notation to do formally describe themselves. Finally, using the
EBNF notation, we build the syntax of this new language.
Since EBNF is defined, it can be used to create a compiler to
translate this language to code for the Tiny Thing module.

B. Code generation

Since the new language was defined, the next step in the
process is to produce code for the module using the model.
To perform this job is necessary to create a translator from the
new language to language used by the Tiny Thing module, in
this case, a compiler. The translator recognizes the grammar of
this new language and translates the structures of this language
to a ".ino"file to be used by the module. To create this compiler
we used the compiler generator Coco/r. That tool receives the
grammar of one language and generates a scanner and a parser
for it.

The scanner created by the Coco/r works as a deterministic
finite automaton (DFA), this implies that the scanner accepts or
rejects strings of symbols (or tokens) of the grammar. Finally,
it produces or runs a single computation of the automaton for
each input. The EBNF grammar is essential to describe the
tokens which the scanner recognizes.

The parser generated with Coco/r recognizes LL1 gram-
mar. It makes a parsing decision based on a multi-symbol

Figura 9. Transition of states

Figura 10. Read and avg declaration



Figura 11. Transition read

Figura 12. Transition average

lookahead or, semantic information. The EBNF productions
with attributes and semantic actions specify the parser. The
Coco/R translates the structures into an efficient recursive
descent parser.

In the Coco/r, the semantic actions are a piece of code
written in the target language, in this case, Java. The parser
executes these actions at the point they were specified at the
grammar. The semantic actions can contain declarations of
variables which will be at the final code. These concepts were
necessary to create the EBNF of the new language using the
Coco/r.

C. Visual programming language

The result of the previous steps is a new language based
on the Graphviz format. Like any other language, this one
has a curve of learning and requires of its user knowledge
about programming languages. So, we decided to create a
more accessible approach to develop using this language. This
method is a visual language that represents the structures
using blocks. According to S. Chang and M. Erwing, a visual
programming language (VLP) is one language that allows the
users to develop programs using graphic elements in the place
of specifying them textually. To built this language we used the
library Blockly, which allowed us to create a visual language
based on blocks [4], [6].

The Tiny Thing Blocks is an open-source tool that allows
the user to develop code for the Tiny Thing module without
programming with a text editor. Each block was designed to
represent the syntax of one structure of the new language.

The blocks represent declarations of nodes in the model,
but not all of these nodes are one part of the final code.
Some of the declarations of a block are used only to create
the FSM. These declarations are responsible for representing
the transition between states.

Figure 13 and Figure 14 show the declarations of state
transitions, which is the base of creating an FSM. However,

Figura 13. example of transition for actuators devices

Figura 14. Example of transition for sensors devices

this model is the expected behavior of the device, and the tool
does not cover the code for functions. In Section VI, we talk
more about changes that would happen at the features of this
tool.

There are four categories to categorize the blocks, and each
one is a cluster of blocks that are directly linked.

• The first category is the “device"it is the two blocks
responsible for starting and finishing the model.

Figura 15. Device blocks

• The second is the "pin’s blocks"category. This one en-
capsulates the declaration of which pins will the device
use.

Figura 16. Pin’s blocks

• The third category is the “state’s blocks". This category
encapsulates the blocks which declare the states which
the device use, the blocks of transition between states in
the case of the device is an actuator and the declaration
of the initial state for the model.

• Finally, the last category is the “read’s blocks", which is
the group of declarations of functions and transitions that
the sensors uses. The user can use these blocks to create
logic expressions to build the operation of sensors.

These blocks generate the code to create models and using
this model at the compiler it generates the code to modules
like Tiny Thing and others that use ESP8266. The following
figures show examples of models and the code generated using
then.

This example uses blocks to create a model of behavior to
an led, which has two states "on"and "off". The system starts



Figura 17. State’s blocks

Figura 18. Read’s blocks

on the state "off "and can do transitions between the two states,
creating a loop.

After creating the model, the user can finally generate
code at the format ".ino", this code presents the main pieces
of operation to devices based on the modules which use
ESP8266. Information such as the states, the connections used,
the functions, the type of device and other data are present at
the result code of generating phase.

The process to create models for a sensor is a bit different,
since the sensor gets an input before changing the state of its
device. So, after declaring the states, the user will inform the
values of each case of transition between then. To do this, the
user needs the set of blocks linked to reading actions, which
give the support to logical structures.

IV. RESULTS AND DISCUSSION

The tests evaluated the usability and performance of the
tool from people with different levels of knowledge about the
development of IoT devices.

The tool was inspected using heuristic evaluations because
it is a user-centered system, facilitating the application of
heuristics and guidelines for evaluation. The first test was
about usability. Thus, a set of heuristics and guidelines were

Figura 19. Example of a model for led

Figura 20. Example of code generate using the previous model for led

Figura 21. Example of a model for ldr

Figura 22. Example of code generate using the previous model for ldr



used to evaluate each part of this feature. This approach has
its support in the user-centered feature of the tool. A list of
heuristics was used during the operating of the system, this
process should capture possible problems in the system.

Figura 23. Questionnaire about the usage of the tool

This process resulted in notes of which guidelines were
being affected, why they were affecting them, and their
severity level. At this activity, fifteen possible problems were
defined, and six of then were real defects. Problems have been
reported mainly about the various information that should be
given to the user regarding interactions with the system: what
did this button do? What is going on? What went wrong? None
of these questions were treated by the system. After conduct
these tests and fix the problems, the next step were to evaluate
the performance of users.

To achieve this, we defined a sample group of twenty stu-
dents from the Federal University of Amazonas, and classify
then using their familiarity with the subject. At this test, the
user should create a model of each type of device (actuator e
sensor), the metrics of this test were the achievement of the
proposed goal and the difficult to create the model. Figure 23
shows the questionnaire answered by the users after the tests.

The users who have more knowledge about programming
using visual editors had not difficulties using the tool. Users
who have less familiarity with this kind of tools have some
difficulties learning the way to create models for the first time.
However, after having an example of how to use the tool, the
doubts were cleared.

V. CONCLUSION

After evaluating the performance of the users, we notice that
users who have much familiarity with this kind of tool had no

difficulties in understanding the way of creating models using
it. Using simple concepts from both FSM and logic added to
the tool, the learning of how to build IoT devices is much
faster.

In addition, users have noted that the current state of the
tool is quite simple and needs to cover more tasks. Although
they consider this tool limited, most of then recognized it as
useful for creating FSM models for devices and teaching this
concept.

On the other hand, the users who have less familiarity with
visual programming had a few difficulties in the beginning.
However, after seeing examples of models and how the blocks
work together, all of them achieved the final goal. By analy-
zing the behavior of these users during testing, we recognize
the importance of giving examples and guides for beginners.
However, the experiments are not conclusive since the tests
had just a few participants.

For future work, the tool must receive new functionalities
such as programming the functions generated using the model,
creating accounts and projects, the capacity of saving projects
to work at any time„ sample models for users and improve
the usability of the tool.

VI. ACKNOWLEDGEMENTS

This research, according for in Article 48 of Decree nº
6.008/2006, was funded by Samsung Electronics of Amazonia
Ltda, under the terms of Federal Law nº 8.387/1991, through
agreement nº 003, signed with ICOMP/UFAM, by the Ama-
zonas State Research Support Foundation (FAPEAM) through
project 122/2018 (UNIVERSAL), and by Institutional Pro-
gram of Scientific Initiation Scholarships (PROPESP/UFAM)
through project PIB-E/0355/2018.

REFERÊNCIAS

[1] Márcio Alencar, Lucas Amorim, Eduardo Souto, and Raimundo Barreto.
Tinything: Um módulo hardware/software de baixo custo para internet
das coisas. Relatório Técnico - RT-GISE 001/2019. Universidade
Federal do Amazonas. Instituto de Computação, pages 1–6, 2019.

[2] Rajkumar Buyya and Amir Vahid Dastjerdi. Internet of Things: Princi-
ples and Paradigms. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition, 2016.

[3] Z. Cai, A. Bourgeois, and W. Tong. Guess editorial: Special issue on
internet of things. In Tsinghua Science and Technology, 2017.

[4] S.-K. Chang, T. Ichikawa, and P.A. Ligomenides. Visual Languages.
Plenum Press, 1986.

[5] Visualino: A desktop version of Roboblocks. A block-based
programming environment for arduino [online]. Available at
https://github.com/vrruiz/visualino/ (25/06/2019).

[6] Martin Erwig, Karl Smeltzer, and Xiangyu Wang. What is a visual
language? Journal of Visual Languages Computing, 38:9 – 17, 2017.

[7] Google for Education Blockly. [online]. Available at
https://developers.google.com/blockly/guides/get-started/web
(25/06/2019).

[8] D. Makoshenko and I. Enkovich. Iot development: Discovering, enabling
and validation of real life iot scenarios. In 2017 Second International
Conference on Fog and Mobile Edge Computing (FMEC), pages 159–
164, May 2017.

[9] Node-RED. [online]. Available at https://nodered.org/ (25/06/2019).
[10] Karen Rose, Scott D. Eldridge, and Lyman Chapin. THE INTERNET

OF THINGS: AN OVERVIEW Understanding the Issues and Challenges
of a More Connected World. Technical report, Internet Society, 10 2015.

[11] Visuino. [online]. Available at https://www.visuino.com/ (25/06/2019).


