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Abstract—The transmission and storage of data collected by
devices are essential components of the Internet of Things (IoT).
When devices transmit irrelevant or redundant sensed data,
it spends more energy, unnecessarily using the communication
channel, and processing data that make a small contribution to
the application. Data compression is a possible solution for the
significant amount of data generated by IoT devices by reducing
the volume of data necessary to represent the information. This
paper proposes the use of Swinging Door Trending (SDT) in IoT
applications and a new self-configuration step to select its major
parameter: the compression deviation. A prototype was built,
and experimental results show the effectivity of the proposal.

Index Terms—Data compression, IoT, Internet of Things.

I. INTRODUCTION

As the area of information technology proliferates, data
generation grows faster than the capacity of storage and trans-
mission technologies. The Internet of Thing (IoT) is a trend
that has a relevant effect on this growth, due to its paradigm
that interconnects things and devices of the real world with
the digital world through the Internet. This paradigm makes
transparent the separation between the physical and digital
world, favoring the creation of new services [1].

Applications can be built combining these services and
devices, and this combination gives rise new kind of ap-
plications, involving different domains, such as health care,
precise agriculture and smart city. An important technology
that evolved together with IoT was cloud computing [2].

Cloud computing is a model that allows the on-demand
access of a shared set of configurable computing resources
such as servers, applications, and services. It can be rapidly
launched and provisioned with a minimal management effort
and brings significant advantages for IoT. However, the inte-
gration of cloud computing into IoT applications imposes new
challenges due to the massive amount of data coming from
IoT sources [3]. The use of cloud platforms has economic and
operational costs demanded by the transportation of informa-
tion from the device to the cloud, and the storage of IoT data
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generate additional costs since data continually increase over
time.

IoT devices commonly have storing, processing and energy
limitation being data transmission a significant source of
energy consumption [4], [5]. In general, reducing both the
transmitted and stored data are essential from the perspective
of IoT and cloud computing, and a possible solution to deal
with this question is through data compression techniques [6].

The Swing Door Trending (SDT) is an online and lossy
data compression algorithm traditionally used in Supervisory
Control and Data Acquisition (SCADA) systems aiming to
store historical data from process information systems (PIMs).
SDT has low computational complexity and uses a linear trend
to represent a quantity of data. Its most important parameter is
the compression deviation (CD) that represents the maximum
difference between the current sample and the current linear
trend used to represent the data previously collected [7].

This paper proposes the use of SDT on IoT devices as a
mechanism to reduce the number of data sent and stored on
the cloud. The SDT was selected for its low computational
complexity and small memory demand, allowing it to be
embedded into IoT devices. However, SDT has a well-known
disadvantage because the CD parameter should be pre-runtime
defined.

The contribution of this paper is to propose mechanisms that
allow IoT devices to properly self-determine the value of the
CD used locally for compressing its data amount. In this sense,
a compression criterion was proposed as a metric to evaluate
lossy compression algorithms. This metric takes account the
compression error and rate metrics in order to give to the SDT
algorithm an adequate balanced metric to represent the quality
of the compression.

This paper is divided into six parts. Section 2 presents
background about data compression and SDT algorithm. Sec-
tion 3 presents the proposal. Section 4 shows the related
work. Section 5 presents the experimental assessment of the
proposal. Section 6 contains final remarks.



II. BACKGROUND
A. Data Compression

The demand for data compression is not recent. One of its
first techniques was the Morse code in the nineteenth century.
Today, the field of information technology is evolving rapidly,
resulting in the generation of a massive amount of data,
leading to an ever-increasing in data storage and transmission
demands. The rate of growth of data is much higher than the
rate of growth of storage and transmission technologies [1].

Data compression techniques are a possible solution for
dealing with this kind of problem, eliminating redundant data
or representing it in a reduced way. These techniques are
fundamental in many real-time applications such as satellite
imagery, wireless sensor networks (WSN), 10T, and others [1].

Data compression is the process of representing data in a
compressed form, optimizing the resource usage [8]. There
are two types of data compression algorithms: lossless and
lossy. Lossless algorithms can reconstruct the original message
exactly from the compressed message. These algorithms are
normally used for data that cannot be modified and must
be equal than the original data. Lossy algorithms can only
reconstruct an approximation of the original messages. They
are commonly used in situations that are possible to eliminate
unnecessary data, like multimedia and sensing systems that
usually presents a lot of redundant data [1].

B. Swinging Door Trending

Swinging Door Trending (SDT) is a data compression
method that uses a linear trend to represent a number of
samples. It is a lossy compression algorithm and has, as the
most important parameter, the Error Compression Deviation
(CD) that corresponds to the maximal difference that a point
could have to be represented as part of some linear trend [7].

From a 2D representation where the x-axis represents the
time and the y-axis the data values to be compressed, SDT
creates a parallelogram that has a longitudinal trend line in
the center with a starting point at the first value (FV). Figure
1 illustrates an example of five samples. Two limit lines
delimit the parallelogram, the upper boundary (UB) and lower
boundary (LB), that are sited at a distance CD from the trend
line, and that begin, respectively, at the upper pivot (UP) and
lower pivot (LP) points [9].

SDT uses sloping lines as reference points, having a sloping
upper (SB) and sloping lower (SL) lines beginning in UP in LP,
respectively. SB only can move to counter-clockwise (increase)
and the SL to clockwise (decrease). When a new value arrives,
these slopes may vary to insert it in the coverage area. This
change is possible when SB is not larger than SL (SB is equal
than SL when UB is parallel to LB). When this happens, a
point is created inside the coverage area that represents the
last trend line value. This point is used as the first value of a
new parallelogram area. The SDT only sends the first and the
last value for each trend line [9]. Algorithm 1 represent the
eight steps of SDT [10].

1) Receive the first point.
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Fig. 1. Graphic representation of SDT.

2) Establish the upper and lower pivot point.

3) Receive the next point.

4) Calculate the current slopes, with respect to the upper
and lower pivot.

5) Compare current slopes with prior extreme slopes
(SUmax, SLmin). If SUmax is larger than SLmin the
algorithm continues in step 6, else return to step 3.

6) When some point is outside to parallelogram, the slope
between the last point and the current point is calculated.
The crossed boundary is adjusted for being parallel with
the other boundary. An interception point between the
crossed boundary and the slope is calculated, and a new
first point is decided.

7) Broadcast (deliver) the point ¢ as an output point in the
compressed data stream of the output signal.

8) Point ¢ is used as the first point of the next segment;
the extreme slopes are recalculated; the pivot points are
created, and the current point is used again in step 3.

C. Performance metrics

Two metrics are important for assessing the performance of
the compression algorithm: compression error (CE) and com-
pression rate (CR). CE measures the relative amount of error
observed after compression (Equation 1). It is calculated as the
summation of the differences between the uncompressed data
(T;) and the compressed data results after the decompressed
process (Ti/), divided by the summation of the absolute values
of the uncompressed data.

’
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CR aims to assess the efficiency of the compression process
(Equation 2) and represents the reduction of samples achieved
using a compression algorithm. It is calculated as the com-
plement of the division of the compressed samples by the
uncompressed ones.

CE = M

CR—1— CompressedSamples @
UncompressedSamples




Algorithm 1 SDT

Initialization
CD = selected error

¢ =d = (Time, Value)

u=c+ (0,CD), l=c+(0,—-CD)
S?M(w) = —00, Sl]\/Iin =00
BROADCAST(c)

> Step 1
> Step 2

AR

7: function NEW_WINDOW()

8: u=c+ (0,CD)

9: l=c+(0,-CD)

10: s% = (dy —uy)/(de — ug)
11: st = (dy —ly)/(ds — 1z)
12: Staw = S*

13: szzm =5t

14: end function

> Step 8

15: function SDT(Time, Value)
16: p=d

17: d = (Time, Value)

18: s% = (dy —uy)/(de — ug)
19: st = (dy —ly)/(ds — 1z)

> Step 3
> Step 4

20: if s > sp .. then > Step S,upper pivot
21: Staw ="

22: if s, > st . then

23: 5% = (dy —py)/(dz — pz) > Step 6
24: = (uy — py + 5Pz — Sy, Uz )/ (5° — simn)

25: e={c", uy+st . (c*—uz)—CD/2)

26: BROADCAST(c) > Step 7
27: NEW_WINDOW()

28: end if

29: end if

30: if s < Slmm then > Step 5, Lower pivot
31 Sinin = sl

32: if s%,, > sl . then

33: s° = (dy — py)/(dz — pz) > Step 6
34: cl = (ly — Dy + so)pz - S;’ﬁamlz)/(so - Sﬁm,m)

35: c={c, ly + s¥au(ct —1lz)+CD/2)

36: BROADCAST(c) > Step 7
37: NEW_WINDOW()

38: end if

39: end if

40: end function

Note: d is a sample point value, p is the past point value and c is a calculated
point by the SDT algorithm. These points are represented as a 2-tuple of the
form < time,value >.

It is important to note that these metrics should be used
together to represent the performance of an algorithm prop-
erly. In this sense, this paper proposes a new metric called
compression criteria (CC), as illustrated in Eq. 3.

2.CR-(1—CE)

COCE.CR) = —opT (1-CE)
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The harmonic mean of the two primary metrics is used in
this new metric because it is more sensitive when one value
is much smaller than the other. This metric represents the
compression efficiency. The set of valid CC values belongs to
the range [0,1], where a good compression has a value close
to 1, that corresponds to a high CR and low CE values.

III. SSDT PROPOSAL: THE SELF-DEFINITION SDT

The scenario adopted in the proposal just considers IoT
devices running an SDT algorithm connected to a server; it
is not considered interactions among devices. SDT has as an
important challenge: the appropriate selection of CD value.

Conventionally, it is necessary to have knowledge about the
signal behavior to select a suitable value. In this paper, a self-
configuration step is proposed, allowing the definition of an
appropriate CD value called Self-definition SDT (SSDT).

As SSDT was designed to run on IoT devices, it is a
lightweight CD decision process that executes in just N+1
sensing rounds. The absolute value of the slope between
consecutive points is used as the analyzed characteristic (Eq.
4).

i) = | L2 @
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The proposal in this paper includes four versions with
different mathematical equations.
The arithmetic mean (MEAN): It is the sum of the sampled
values divided by the number of items (Eq. 5).

j
fmean = 52){1 (@)
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Exponential Moving Average (EMA): It is a first-order
infinite impulse response filter that applies weighting factors
which decrease exponentially (Eq. 6). The o parameter has a
value in the interval [0,1].

fernu(d7 p) = (1 - Oé)CD + - Sz(d7 p) (6)

Mean without zero (ZMEAN): It corresponds to arithmetic
mean, but the values equal to zero are ignored, reducing the
number of samples used in the mean (Eq. 7).

R Lo W2 it d) £ 0
fzmean d,P = D.(N? N 1 (7)
%ﬁ) if Si(d,p) = 0

Range (RANGE): It corresponds to the difference between
the largest and smallest values (Eq. 8).

MAX + MIN
frange = f (8)

The SSDT code is illustrated in Algorithm 2.

IV. RELATED WORK

In this section, related work is divided into two parts. The
first address data compression proposals set in IoT environ-
ments and the second focus on SDT algorithms.

A. Data Compression in loT

The work in [11] proposes a method that reduces the amount
of stored data using an approximation method. The method
discards the values outside the sensor range, featuring a lossy
compression algorithm. The algorithm has low computational
complexity but a high error rate, because it may ignore relevant
information from the samples.

In [5], it is proposed a coding scheme for delta compression.
The main goal is to perform a data compression for IoT
solutions in applications with temporally correlated data. It is
based on the symbol reductions for representing frequency val-
ues and the reduction of redundant information. The messages
are only delivered when a threshold of messages is achieved.



Algorithm 2 SSDT

1: Initialization

2: d = (Time, Value)

3: CD =Count =0

4: Trainingmin = TRAINING

5: Trained = False

6: o =0.15 > EMA
7: N* =TRAINING > Zmean
8: Max = —o0 > Range
9: Min = oo > Range
10: BROADCAST(d)

11: function SSDT(Time, Value)
12: if T'rained == False then

13: TRAIN(Time, Value)
14: else

15: SDT(T'ime, Value)
16: end if

17: end function

18: function TRAIN(M ode, Time, V alue)

190 p=d
20: d = (Time, Value)
21: BROADCAST(d)

22: it Mode == MEAN then C'D = MEAN(d, p)
23: else if Mode == ZM EAN then CD = ZMEAN(d, p)
24: else if Mode == RANGE then CD = RANGE(d, p)
25: else if Mode == EM A then CD = EMA(d, p)

26: end if

27: if ++Count == Trainingm;, then
28: c=d

29: SN faw = —O0

30: Shgin = OO

31: Trained = True

32: end if

33: end function

This reduces the overhead caused by the message headers. The
results show that this technique can achieve up to 85% energy
saving if applied to data that are temporally correlated. The
scheme is not recommended in situations that require real-time
data.

Hossain [12] proposes a data compression in two steps. The
first is done in a fog node, using a lossy algorithm with a
compression rate of 50% and the second in the cloud storage
using a lossless algorithm. The main goal is to reduce the
energy consumption by the transmission of a large quantity of
data from the fog node to the cloud.

Deepu [13] proposes a data compression and transmission
scheme for power saving in IoT scenarios. It is a hybrid
scheme that uses a lossy and a lossless algorithm. It can
be used in situations that a lossy compression algorithm can
eliminate relevant information and a lossless algorithm does
not achieve an acceptable compression rate.

B. Swinging Door Trending

The proposal of [9] is an Adaptive Swinging Door Trending
(ASDT), a variation of the traditional SDT. ASDT has the
same basic characteristics than SDT but uses a real-time trend
analysis as a mechanism to incorporate variations on main
parameters. The analysis is made using an exponential moving
average (EMA) that works as a filter. A disadvantage of
ASDT is the necessity of a previous definition of the EMA
parameters.

[14] proposes the Improved Swinging Door Trending
(ISDT), which employs an adaptive CD that changes according
to the previous compression result. ISDT modifies the param-
eters dynamically as new data are acquired. ISDT proposes
a CD with an upper and lower limits that restrict the range
of values that CD can assume. An ISDT disadvantage is that,
as SDT, it requires parameters (e.g. upper and lower limit
definition) to be user-defined [14].

The propose of [15] is an in-network time-series data com-
pression algorithm called Distributed Swinging Door Trending
(DSDT) to be used in IoT devices. The goal is to use the
computing resource of the sensor to compress the raw sensing
data. The compressing center can self-adapt according to
the conditions of current bandwidth and computing resource
usage. DSDT has two algorithms, the first to the sensor device
and the second to the compressing center.

In [16] is proposed an improved SDT called KSDT algo-
rithm for being used in a wireless sensing for the acquisition of
the mechanical failure signal. The authors designed a way to
dynamically adjust the value of CD that is based on the specific
parameters used in machine condition monitoring. As the
algorithm was created for a specific use case, its applicability
to other usage scenarios cannot be assumed.

The SDT is proposed as a data compression algorithm in
a WSN in [17]. The focus of this research was to investigate
the performance of data compression algorithms in monitoring
applications for industrial automation environments. The case
study was to analyze the performance of a WSN that has
sensor nodes equipped with SDT. The results show that with
CR around 85% the network life is tripled.

An asynchronous Event-Triggered for Smart Sensor Net-
work Architectures is proposed in [18] to be used on OMG’S
standards. It integrated a data compression algorithm into
smarts sensors. The results show that a local compression de-
creases considerably the data exchanged in the communication
network.

V. SSDT ASSESSMENT
A. Experimental setup

An experimental setup was implemented by using WeMos
D1 Wi-Fi UNO ESP-12E boards equipped with temperature
and humidity DHT11 sensors as IoT devices [19]. Figure 2
(A) shows the hardware setup and Figure 2 (B) shows the
communication protocols that were used in each network layer.

i vop INTERNET PROTOCOL SUITE (TCP/IP)
- Layers standards/protocols
. —I. =] DATA: Application MQTT
. - e S NULL DHT Transport TCP
. = ] e Internet IPv4
Link 802.11 b/g/n
A B

Fig. 2. (A) circuit design. (B) TCP/IP model.

The system uses mosquito [20] as MQTT broker and a
Python script as a subscribe client to receive the sensor
information and manages a mongoDB database.



A database was formed in the LAPESD laboratory at the
Federal University of Santa Catarina, Brazil. Two IoT devices
(Device 1 and Device 2) sent data with and without SDT
algorithm for performance comparison. Data collection was
made every 5 seconds, and 192610 temperature and humidity
data samples were taken in each device.

As IoT devices have hardware limitations [21], it is impor-
tant to analyze if they have enough computational resources
to compress the data on the fly. At first, analyzing Algorithm
1, SDT computational complexity represented in BigO no-
tation shown to be just O(1). Next, the experimental setup
was executed, and the execution times from the WeMos D1
device with a clock of 160 MHz were analyzed. The worst-
case execution time obtained in the implementation was 162
microseconds, which can be considered a satisfactory result
for the major applications.

In addition to the two IoT devices, a temperature and
humidity dataset from Ljubljana and NovoMes stations [22]
were also used. All of these collected data were used in
a Python algorithm to evaluate the results and to simulate
different CD value scenarios.

Device 2
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Fig. 3. Impact of CD variation on CC results of temperature sensors.

B. CD selection on each sensor

In SDT methods, the value of the CD should be carefully
selected as it depends on the number of samples and the
behavior of the sensing device. A CD value that results in
high CR and CE values is not a good choice. This situation
may represent a CD with high compression but with a high
error in signal decompression. The CC metric was introduced
in this paper in order to balance the CR and CE metrics. When
CD value changes, CR and CE values are affected, as well as
CC metric that is formed by combining both.

Figure 3 shows the behavior of the CC in relation to the
CD variation of four temperature sensing devices. Devices 1
and 2 are from the LAPESD laboratory, and “Ljubljana” and
“NovoMes” are from Slovenia database. Table I shows the
best CC values for each device. The goal is to enable self-
selection of CD values with adequate values of CC. (Note
that the CD values from Figure 3 were obtained by brute
force, using all collected samples and varying the CD values
at intervals of 0.1, which is not feasible to be done on IoT
devices.)

TABLE I

BEST CASES OF CC VALUES.
Source Sensor CD CE CR CC
Device 1 10.9 | 0.080 | 0.999 | 0.958
Temperature D_evic_e 2 3.5 0.039 | 0.998 | 0.978
Ljubljana 1.9 0.134 | 0.893 | 0.879
NovoMes 2.1 0.151 | 0.885 | 0.867
Device 1 6.0 | 0.036 | 0.998 | 0.981
Humidity Devic_e 2 5.1 0.032 | 0.997 | 0.982
Ljubljana | 54.5 | 0.I51 | 0.999 | 00918
NovoMes 10.0 | 0.089 | 0.891 0.901

C. SSDT results

Tables II to V show the obtained CC for each device using
different amount of samples. The objective of assessing the
four techniques with different sample quantities is because the
number of samples used in the algorithm training influences
the performance of the algorithm. A technique that yields a
good result with fewer samples (e.g., 100) will be suitable
for use in online approaches. Moreover, note that using larger
samples does not always guarantee better performance. The
best results for each device are highlighted in blue.

In these results, the o value used in EMA algorithm was
assumed as 0.125.

TABLE I
VALUES OF CC PER SAMPLES, DEVICE 1.
Temperature

100 | 250 | 500 | 1000 | 2500 | 5000 | 10000
MEAN 0.69 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 0.74
RANGE | 0.89 | 0.89 | 091 | 091 | 092 | 0.92 0.94
ZMEAN | 0.89 | 0.87 | 0.89 | 0.89 | 0.89 | 0.89 0.89
EMA 0.67 | 0.66 | 0.66 | 0.67 | 0.67 | 0.86 0.86

Humidity

100 | 250 | 500 | 1000 | 2500 | 5000 | 10000
MEAN 0.73 | 0.78 | 0.79 | 0.78 | 0.79 | 0.77 0.77
RANGE | 098 | 097 | 097 | 097 | 097 | 0.97 0.97
ZMEAN | 091 | 094 | 095 | 096 | 0.95 | 0.93 0.91
EMA 0.71 | 0.67 | 093 | 0.59 | 0.59 | 0.73 0.78

TABLE 111
VALUES OF CC PER SAMPLES, DEVICE 2.
Temperature

100 | 250 | 500 | 1000 | 2500 | 5000 | 10000
MEAN 090 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 0.88
RANGE | 098 | 098 | 098 | 098 | 097 | 0.97 0.97
ZMEAN | 098 | 098 | 098 | 098 | 098 | 0.98 0.98
EMA 0.87 | 0.87 | 0.87 | 0.87 | 090 | 0.87 0.87

Humidity

100 | 250 | 500 | 1000 | 2500 | 5000 | 10000
MEAN 0.89 | 093 | 091 | 091 | 091 | 091 0.86
RANGE | 098 | 098 | 098 | 098 | 0.98 | 0.98 0.98
ZMEAN | 097 | 098 | 098 | 098 | 0.98 | 0.98 0.97
EMA 091 | 0.86 | 0.82 | 0.86 | 0.89 | 0.93 0.93

Analyzing the results in Tables II to V, it is possible to
assess the behavior of each mathematical formula. Note that,
MEAN and EMA had the bad results concerning the CC
metric. However, EMA could have better results by tuning,
for each scenario, its o value carefully.



TABLE IV
VALUES OF CC PER SAMPLES, LIUBLJANA.
Temperature

100 | 250 | 500 | 1000 | 2500 | 5000 | 10000
MEAN 0.83 | 0.85 | 0.84 | 0.83 | 0.81 0.84 0.85
RANGE | 0.88 | 0.83 | 0.82 | 0.81 0.81 0.81 0.81
ZMEAN | 0.84 | 0.85 | 0.85 | 0.84 | 0.83 | 0.85 0.86
EMA 0.87 | 0.83 | 0.86 | 0.74 | 0.86 | 0.83 0.52

Humidity

100 | 250 | 500 [ 1000 | 2500 | 5000 | 10000
MEAN 0.78 | 0.82 | 0.82 | 0.79 | 0.79 | 0.84 0.85
RANGE | 088 | 091 | 0.91 | 091 | 090 | 0.89 0.88
ZMEAN | 0.82 | 0.86 | 0.86 | 0.85 | 0.85 | 0.87 0.87
EMA 0.75 | 0.86 | 0.88 | 0.30 | 0.88 | 0.87 0.42

TABLE V
VALUES OF CC PER SAMPLES, NOVOMES.
Temperature

100 | 250 | 500 [ 1000 | 2500 | 5000 | 10000
MEAN 0.83 | 0.79 | 0.83 | 0.83 | 0.84 | 0.85 0.85
RANGE | 084 | 0.84 | 0.78 | 0.78 | 0.78 | 0.78 0.28
ZMEAN | 0.85 | 0.83 | 0.84 | 0.83 | 0.85 | 0.85 0.85
EMA 0.64 | 0.85 | 0.48 | 0.83 | 0.83 | 0.85 0.79

Humidity

100 | 250 | 500 | 1000 | 2500 | 5000 | 10000
MEAN 0.84 | 0.75 | 0.80 | 0.81 | 0.84 | 0.86 0.85
RANGE | 090 | 090 | 0.90 | 0.90 | 0.89 | 0.88 0.88
ZMEAN | 0.87 | 0.82 | 0.84 | 0.84 | 0.86 | 0.87 0.87
EMA 0.77 | 0.60 | 0.72 | 0.89 | 0.89 | 0.88 0.84

For most scenarios, RANGE and ZMEAN have the best
results, obtaining a CE close to 0, a CR close to 1 and,
consequently, a CC value close to 1, too. For most scenarios,
RANGE achieved the best results.

Table VI includes the CE and CR value when is used the
RANGE method. Note that the use of this compression method
achieves low error values (CE) and high compression ratio
(CR) on the IoT devices.

TABLE VI

RESULTS OF THE RANGE METHOD IN TEMPERATURE SENSORS.

Device 1 Device 2 Ljubljana NovoMes
Samples(CD| CR |CE [CD| CR [CE [CD| CR |[CE |CD| CR | CE
100 2.0/0.850{0.06(3.0[0.997|0.04] 1.8 [0.887[0.13| 3.7 |0.929|0.24
250 2.0[0.850{0.06|3.0|0.997|0.04[4.2{0.946]0.26| 3.7 |0.929|0.24
500 3.5{0.908(0.09]3.0{0.997{0.04 | 4.7]0.953(0.28| 6.7 [0.972]0.35
1000 3.510.908(0.09]3.0{0.997{0.04|5.20.960(0.29| 6.7 {0.972]0.35
2500 4.0[0.960[0.12(5.0[0.999(0.05]5.2 [0.960(0.29| 6.7 |0.972|0.35
5000 4.0[0.960{0.12|5.0/0.999|0.05[5.2 {0.960{0.29| 6.7 |0.972|0.35
10000 |5.0(0.977{0.09]5.0/0.999]0.05|5.20.960]|0.29{23.5(0.999{0.84

VI. FINAL REMARKS

In this paper, we have showed a modification of Swinging
Door compression algorithm to enhance the performance of
IoT devices. The results demonstrated that it is possible to
use different mechanisms to the self-definition of the CD
parameter. Four mechanisms were used in this proposal, and
both RANGE and ZMEAN presented the best results.
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