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arthurriuiti@alunos.utfpr.edu.br, costa@cos.ufrj.br, rgmantovani@gmail.com,

{alinnesouza, franciscosouza}@utfpr.edu.br

Abstract. Game development involves creating various content, from artistic
tasks to technical activities. Procedural Content Generation (PCG) and meta-
heuristics like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)
automate and optimize this process. This paper presents Dungeoncide, a game
using GA and PSO for procedural content generation. Dungeoncide features
a medieval knight battling monsters in procedural generated dungeons. The
primary contributions include the development process and player feedback on
the generated content’s quality and feasibility. Experiments showed that while
generated levels were well-received, they were less challenging and immersive
than manual ones. Future work will refine the algorithms to improve balance,
aesthetics, and engagement.

1. Introduction
As players demand for game content rises, the game industry faces the challenge of in-
creasing costs in content production [TOGELIUS et al. 2011]. Procedural Content Gen-
eration techniques can help reducing costs providing useful means to create content
such as levels, maps, quests, textures and rules with limited or no human intervention
[Togelius et al. 2013]. These contents can be pre-generated or created in real-time during
gameplay. Games like Minecraft, Terraria, and Enter The Gungeon, for instance, lever-
age run-time PCG to provide unique experiences with each playthrough. In this context,
meta-heuristics, enhance the PCG process by optimizing the generated content.

In general, meta-heuristics like the Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) can be employed to find optimal solutions to hard problems. GAs
uses the principles of evolution, in which states of the solution are generated by combining
two parent states [Russel and Norvig 2013], to search for the best solutions. At the same
time, PSO optimizes solutions by simulating swarms of particles, each with its velocity
and position relative to other particles in the search space [Kennedy and Eberhart 1995].

In this paper, we introduce a game called Dungeoncide, which was developed
using GA and PSO for procedural content generation. The algorithms generated the
dungeon map, positioned enemies, and controlled enemy behavior. The game draws in-
spiration from the board game Zombiecide [GUILLOTINE GAMES 2012], which is a
boardgame set in a zombie apocalypse enviroment where players must gather resources,
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survive zombies and complete objectives inside a modular board that can be assembled
in various ways to introduce new challenges. In Dungeoncide, zombies are replaced with
monsters, and the protagonist is a medieval knight. The main contributions of this work
can be summarized as 1) the development process of the Dungeoncide game using PCG
to automate the creation of game elements and 2) the evaluation of the generated content’s
quality and feasibility through feedback from real players.

This paper is structured as follows: Section 2 outlines the studies that served as
the foundation for this work. Section 3 details the implementation of the Dungeoncide
game. Section 4 describes an experiment conducted with real players to evaluate the
developed algorithms and analyze the results, and Section 5 analyzes and discusses the
results obtained through survey. Finally, Section 6 presents the conclusion of the work
and potential future directions.

2. Related Works
Several authors address the topic of PCG in game design. In this section, we explore some
of these works and the games created with PCG.

2.1. Maze Generation

The work of Adams and Louis [2017] seeks to produce mazes considered interesting to
be played without having the cost of manual production, for this, the author uses GA to
evolve the rules of Cellular Automata (CA) to create the mazes automatically.

The generation method uses a CA, the transition rules of these automata are
evolved by the GA used. Two approaches called binary and probabilistic for the tran-
sition rules were tried, in the binary approach each gene of the GA represents a transition
rule for n filled neighborhood cells. In the probabilistic approach, the gene presents a
chance for the cell to change state, unlike the binary approach in which the transition is
deterministic. Experiments were carried out with three different fitness functions, the first
(F1) corresponds to the minimum distance to complete the maze, the second (F2) eval-
uates the number of dead ends and the third function corresponds to the sum F1 + F2
(F3). Algorithms with the probabilistic approach performed better in all fitness functions
and were much closer to the maximum possible, the author notes that this is due to the
lower sensitivity of the chromosome to the mutation operator.

2.2. Generic Levels Generation

Zafar et al. [2020]’s work is based on the framework created by Khalifa et al. [2016] to
generate game levels with maps in grid format, the author’s focus is to build this generator
generically, focusing on the operation of the algorithm in any grid-style game. The works
presented so far focus on the development of a generator and apply the demonstration
in a specific game. This work focuses on finding good levels based on generic features
present in these games, the aesthetics (referring to the look formed by the architecture) of
the level, and the difficulty.

Two algorithms are used to achieve the mentioned objectives, the first algorithm
is responsible for initializing the parameters used in the generation of the chromosomes.
The second algorithm takes these parameters to construct the levels. The created chromo-
somes are divided into two different populations: feasible and non-feasible, this division
is based on the number of avatars in the level, objects, objectives, and solution size, among
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others. The population of infeasible chromosomes seeks to reduce the number of invalid
chromosomes, while the feasible population seeks to improve the solutions.

The algorithm was tested in several types of games, as the algorithms work gener-
ically, and only initial parameters are replaced. Levels were created based on the Zelda
games [NINTENDO 1986], Butterflies, Chase, Freeway [DAVID CRANE 1981], and
Survive Zombies. The results demonstrate the versatility of the heuristic used, in addition
to the work of Khalifa et al. [2016] there was an improvement in the general appearance
and difficulty of the generated levels.

3. Dungeoncide game

The Dungeoncide game was created within the Unity tool [Unity 2021]. The visual el-
ements (sprites) of the game, such as textures used on walls, floors, objects and charac-
ters, sound effects, and music, were obtained through the database Open Game Art1 and
itch.io 2 which are of repositories that conglomerate these elements and that can be used
for free. It is not necessary to download the game, as it is compiled for the language We-
bAssembly and hosted using the platform GitHub pages https://olafmustafar.
github.io/dungeoncide-web/.

The structure of the game is quite simple: the player can walk using the W, A, S,
and D keys or using the arrow keys on the keyboard; the mouse is used for aiming, and
the left click shoots the projectiles. There are some elements like music and sound effects
and a scoring system to help with player immersion.

As the player walks through the dungeon, he increases the chances of attracting
enemies in nearby rooms; enemies will also move toward the player if he is in their line
of sight. The player confronts the enemies by shooting projectiles; by defeating enemies,
it is possible to acquire a Power Up potion that strengthens the way the player shoots,
increasing his bullet amount, spread, fire speed, or size; defeating enemies also increases
the player’s score. When all enemies are defeated, a message of victory is presented to
the player. However, a defeat message will be given if the player runs out of life.

Figure 1(a) shows a snapshot of the game. To enhance the visual aspects of the
game, we chose a popular set of sprites known as the Dungeon Tileset for its simplicity
and charm. The dungeon enemies consist of various types of monsters, including zombies,
undead, demons, and orcs, rather than just zombies. An overview of the sprites used in
the game is shown in Figure 1(b).

Figure 2 illustrates the game creation process, in which the steps that involved
content generation are marked in blue. We first developed the algorithms for the layout
and enemies. Then, we created the game, incorporating the enemy behavior algorithm
and handling tasks such as collecting various assets. We used three algorithms to create
the game levels. The first algorithm generated the dungeon layout, the second placed
the enemies within this layout and defined their attributes and positions, and the third
controlled the enemies’ behavior during gameplay. The following sections will describe
the algorithms used to generate the layout, balancing, and allocation of enemies and their
behavior.

1https://opengameart.org
2https://itch.io
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(a) The player, with blue armor in the center, is
surrounded by monsters.

(b) Sprites used by Dungeoncide

Figure 1. Game Dungeoncode

Figure 2. The process used for Dungeoncide creation.

3.1. Dungeon Generation

The GA for layout generation described in Brown et al. [2017] work was initially used to
create levels for Hotline Miami, but it can also be adapted for generic dungeon develop-
ment. The algorithm receives as input the number of rooms (Nrooms) to be placed and the
dimensions of the grid. Initially, the rooms are positioned randomly and then evolve as
the genetic algorithm progresses.

Before the first iteration, the GA randomly creates a list of rooms. It then tries
to place them sequentially inside the grid. Initially, some rooms may have invalid loca-
tions and fail to be placed. This could be because their position overlaps with an already
placed room, or they are in a position that is disconnected from other rooms in the grid.
Understanding these reasons for room placement failures helps us grasp the algorithm’s
decision-making process. When optimizing the dungeon, the GA will attempt to place
the most rooms possible and also reduce the number of rooms that are too small. It will
try to maintain the dungeons with the largest sizes and will try to prevent the rooms from
being too interconnected. Upon completion, the outcome will be a dungeon with maxi-
mized fitness, ready for integration into the game. The resulting level, exemplified by the
generated dungeon in Figure 3, will be part of the game environment.

3.2. Enemy Generation

After the layout is created, the next step is the position of the enemies within the game,
enemies are the essential force that opposes the player from completing the objectives,
therefore their positioning and balancing is an essential step to the fun of the game. The
enemy generation is done by generating a set of enemies and evolving their placement
in the level layout through another GA. The enemies are composed of four attributes: (i)
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Figure 3. Layout generated by GA.

Health: The amount of damage the enemy has to take until it is defeated; (ii) Damage:
The amount of it does to the player once it attacks; (iii) Velocity: Is how fast it cam move
towards the player; and (iv) Attack Cooldown: Is how much it waits until it can attack the
player again.

As input, the algorithm receives the number of enemies it will try to position, this
number is used for the size of a list of enemies the algorithm will randomly create at the
start, know as the EnemyPool. The GA will then evolve the positions of the enemies
inside the dungeon, attempting to place enemies in rooms in a way that the sum of their
attributes approaches the room threshold in combination with other enemies in the same
room. The GA accumulates a set of enemies in a room, balancing the enemies’ attributes.
In this way, weak enemies may be paired up with strong enemies in the same room to
compensate for their attributes; in the same way, it is possible for a room to have a big
number of weak enemies or a low number of strong enemies.

3.3. Enemy Behaviour
A PSO is used to control the behavior of the enemies during the game execution, it works
by using the enemies as the particles and the dungeon as the search space, the best solution
in this search space is the player’s location. In this way, enemies will behave like a swarm
to find the player

A few differences exist between a normal PSO algorithm and its implementation
within Dungeonside. First, the solution is not static as it normally is. Since the opti-
mized solution is the player location, the PSO must be adapted to consider the moving
search space. To this end, two new parameters, PBestDecau, and GBestDecay, were
adopted to gradually reduce the PBest and GBest values over time. This is necessary as
the player can get away from the current best solutions, which are the player’s previous
location. The second change to the original PSO implementation is the introduction of
obstacles in the search space, since inside the game, some walls prevent the enemies from
moving across. This is adapted, changing the enemy inertial towards the closest path to
the player. Third, the inertia weight is prevented from being reduced over time since the
search for a solution is constant as the game is running.

With these three adaptations in mind, the PSO tries to optimize two attributes
when searching for the solution. The visionF itness is the distance between the particle
and the solution (the player location) when there is no obstruction between them. If there
is, then its value equates to zero. The second attribute is the soundFitness which is very
similar, it consists of the distance to the solution, but when there is a obstacle its value
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is only diminished instead of negated. The sum of visionF itness and soundFitness
composes the final Fitness value. It is expected that with this search heuristic and the
three adaptations, this adapted PSO algorithm will offer an innovative and interesting
solution in general as an alternative to algorithms used in games.

4. Experimental Study
We conducted an exploratory survey to analyze the players’ perceptions about quality
and feasibility of generated content of the Dungeoncide game. The survey was planned
following the process proposed by Kasunic (2005) and Kitchenham e Pfleeger (2008) for
effective design of surveys for the software engineering area .

4.1. Research Objectives and Target audience identification

We used the Goal-Question-Metric (GQM) model [Basili and Weiss 1984] to set out the
objectives of the experiment that can be summarized as follows:”Analyse generated con-
tent for the purpose of evaluation with respect to quality and feasibility from the point
of view of real players in the context of Dungeoncide game.” For achieving the goal, we
seek to investigate the two Research Questions (RQs), presented in Table 1.

Table 1. Research Questions according to Survey Goal

Research Questions Description
RQ1: What is the players’ profile? To answer this RQ, we identify some information about

players, such as their age, gender, city, and gaming ex-
perience.

RQ2: What are the players’ perceptions
about the levels generated for the Dun-
geoncide game?

To answer this RQ, we analyze difficulties, immersion,
enjoyment, the layout of the level played, balance and
distribution of enemies, and behavior of enemies gener-
ated through the GA and PSO algorithms and manually.

The target audience of this survey is players of a University. These players are
from different origin states. From the target audience defined, the next step consists in
selecting a sample. In this survey, we use a random sampling in which individuals of the
sampling frame are selected at random [Thompson 2012].

4.2. Survey instrument design and evaluation

Immersion, as defined by Brown et al. (2017) , is characterized by the player’s engage-
ment with a digital game, influenced by human, computational, and contextual factors. A
questionnaire with 15 questions to measure these factors. The questionnaire is grouped
into the following two sections: (i) information and experience of players; and (ii) play-
ers’ perception about immersion in the levels played and if they identify the similarity or
difference in the levels generated through GA, PSO and manually.

We conducted a pilot study to analyze instrument validity. Six players were chosen
based on availability and proximity. They answered questions defined by Hauck et al.
(2011). The players’ evaluations were positive, with suggestions to (i) reduce the number
of questions and (ii) make some questions non-mandatory.

4.3. Data Collection and Analysis

The questionnaire was open for one week, starting on November 10, 2022, and during this
time, 51 players responded to the survey. The data collection and analysis was divided
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into seven steps. In Step 1, we created ten levels using algorithms, half manually and half
generated. Each set has shared parameters: 10 rooms in a 20x20 grid with a maximum of
20 enemies and an average of two per room. We excluded instances where the algorithm
couldn’t position all enemies or rooms. In Step 2, we present instructions and a welcome
message on the game’s home screen. On the next screen, we introduce the research con-
text, inform the player about the questionnaire, and ask them to pay attention to the layout
of the levels, the enemies, and their behaviors. In Step 3, the player begins by answering
the first part of the questionnaire to assess their profile. After completing the questions,
they are introduced to the game.

In Step 4, the first level shown to the player is randomly selected from the gener-
ated or manual level groups. The player must defeat all enemies to proceed. Afterward,
the immersion quiz for the level is introduced. This process is repeated for a level from
the opposite group. In Step 5, we introduce the questionnaire about immersion after each
level is played. In Step 6, after evaluating the two levels, the player takes a test to identify
which level was generated through algorithms. Regardless of the player’s answer, we dis-
play the correct answer. Finally, we introduce the last part of the questionnaire, focusing
on similarity. We store all questionnaire responses in the browser’s memory and, upon
completion, send them to the Google Sheets API for storage. Finally, in Step 7, we car-
ried out two activities beforehand [A. and Pfleeger 2008] to assist the analysis process: (i)
validating the data by checking the consistency and completeness of responses, and (ii)
partitioning the players’ responses into two subgroups: those generated by GA and PSO
algorithms and those created manually.

5. Results and Discussion

In this section, we present the players’ profiles and their perceptions about the levels
generated for the Dungeoncide game.

5.1. Players’ profile (RQ1)

Initially, we aimed to outline the basic profile of the players. Figures 4(a) and 4(b) depict
a typical profile of players aged 10 to 20 and 21 to 30. It can be inferred that most
players fall within the 18-22 age group, reflecting the demographics of the university
groups where the game was promoted. Furthermore, most players have over four years of
experience with video games, and the majority are located in Paraná, Brazil. Given the
limited diversity in profiles, exploring their relationship with other obtained data is not
feasible.

(a) Players age. (b) Players experience time. (c) Players origin state.

Figure 4. Players profile.
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5.2. Players’ perceptions about levels generated for the Dungeoncide game (RQ2)
Figure 5 presents the player’s perceptions of difficulty, immersion, and fun for levels
generated by algorithms and manually. When comparing the difficulty of manual and
generated levels, we found that the generated levels tend to be easier (Figure 5(a)). This
scenario can be attributed to the limitations of enemy generation and the adapted PSO.
The lack of challenge negatively impacts immersion (Figure 5(b)) and fun (Figure 5(c)),
resulting in superior performance of manually created levels.

(a) Players difficulty. (b) Players immersion. (c) Players fun.

Figure 5. Players’ perception of difficulty, immersion, and fun.

Figure 6 present the layout, behavior, and balance scores further underscore the
advantage of manual level creation, consistently yielding higher average ratings. While
generated levels receive moderate scores for enemy behavior (Figure 6(b)) and dungeon
layout (Figure 6(a)), their scores for enemy balance (Figure 6(c)) are notably low. Re-
garding difficulty, enemy behavior plays a significant role. While the algorithm used for
attribute balancing performed well in expressiveness tests, it fails to consider the impact
of each attribute on gameplay. For instance, a ”balanced” enemy may possess high dam-
age but minimal movement speed, offering little challenge to the player. The enemies,
influenced by the adapted PSO, primarily contribute to the ease of generated levels. Ex-
perienced players tend to move more during combat, making it challenging for the PSO to
locate the player efficiently, as it must continually search for a solution after the player’s
position changes.

(a) Layout. (b) Enemy behavior. (c) Enemy balance.

Figure 6. Players’ perceptions of layout, enemy behavior, and enemy balance.

Based on player feedback, we observed that shorter corridors in manual levels
enhance gameplay by requiring less movement to reach map objectives. This scenario
contradicts the fitness function of the level generator, which favors levels with larger graph
diameters. Additionally, the symmetry observed in some manual levels positively impacts
their aesthetics. These factors explain the higher manual level ratings.
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Figure 7 present the structural similarity, generation percentage perception and
generation perception rate between the generated and manually created levels. Figure
7(a) suggests moderate similarity. Figure 7(c) shows how much players perceive the level
to be generated (a score of 5 indicates full awareness), with perceptions distributed across
the spectrum. While some players easily recognize the generated nature of the level, oth-
ers do not. Lastly, Figure 7(b) illustrates the proportion of the level that players believed
was generated. Since we generated the layout, enemies, and their behaviors, we can con-
clude that most of the level was generated, aligning with the graphical representation.

(a) Similarity between manual and
generated levels.

(b) Generation Percentage. (c) Generation Rate.

Figure 7. Players’ perception of similarity, percentage and rate of generation.

Figure 8 shows that half of the players were correct and which levels played are
part of the GA-generated group. From this, it is possible to divide the players into two
groups and relate them to the data obtained from the similarity and expressiveness ques-
tionnaires. As shown in Figure 8, players who more easily perceived the level’s generation
achieved higher success rates in the level identification test.

Another observation from these groups is the generation percentage: players who
correctly identified the level believed fewer parts of it were generated compared to those
who failed the identification test. However, the limited sample size prevents a clear expla-
nation of this relationship. Regarding layout ratings, players who accurately identified the
generated level tended to give higher scores to the manual level layout. This suggests that
the level in question was likely created manually. Analysis of the manual levels revealed
distinctive characteristics that set them apart from generated levels. We gathered critical
comparisons between the generated and manual levels from the survey results, focusing
primarily on immersion and difficulty differences. Several improvements are needed for
the generated levels to match the quality of manually created content. Additionally, feed-
back from some players outside the scope of the research, although not documented in
this work, guided possible improvements to the current algorithms.

5.3. Threats to Validity
A threat to the validity of this work is the small sample size of players, the majority of
players who participated in the survey have similar profiles, belonging to the same age
group, location and have experience with games, which may prevent the results from
being generalized.

6. Conclusion
In this paper, we presented the development and evaluation of the Dungeoncide game,
which utilizes Procedural Content Generation techniques and metaheuristic algorithms
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(a) Layout - Turing Test (b) Generation Perception Rate -
Turing Test.

(c) Generation Percentage Percep-
tion - Turing Test.

Figure 8. Layout, Generation Percent, and generation graphs, related to the iden-
tification test results.

to automate the creation of game elements. Our approach involved using genetic algo-
rithms to generate dungeon layouts, balance enemy attributes, and adapt a particle swarm
optimization algorithm to control enemy behavior during gameplay.

The results from our experiments, which included a player immersion study, in-
dicated that while the generated levels were generally well-received, they were often per-
ceived as less challenging and immersive than manually created levels. The generated
levels tended to be more accessible, likely due to limitations in the enemy generation
process and the effectiveness of the PSO algorithm in dynamically adapting to player
movements. Despite these challenges, the generated levels showed a moderate similar-
ity to manual levels, and many players could not consistently distinguish between the
two. This suggests that our approach has the potential for creating feasible and engaging
game content, though improvements are necessary to match the quality and challenge of
manually crafted levels.

Future work should focus on refining the fitness functions used in the GA to bal-
ance enemy attributes better and improve level layout aesthetics. Additionally, enhance-
ments to the PSO algorithm to more effectively track and respond to player movements
could increase the challenge and engagement of generated levels. Player feedback high-
lighted areas for improvement, such as corridor length and symmetry, which should be
considered in further iterations of the algorithms.
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