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Figure 1. Our model imputes a character’s missing pose collaboratively using all
the available information from other domains.

Abstract. Creating and updating pixel art character sprites with many frames
spanning different animations and poses takes time and can quickly become
repetitive. However, that can be partially automated to allow artists to focus on
more creative tasks. In this work, we concentrate on creating pixel art character
sprites in a target pose from images of them facing other three directions. We
present a novel approach to character generation by framing the problem as a
missing data imputation task. Our proposed generative adversarial networks
model receives the images of a character in all available domains and produces
the image of the missing pose. We evaluated our approach in the scenarios with
one, two, and three missing images, achieving similar or better results to the
state-of-the-art when more images are available. We also evaluate the impact of
the proposed changes to the base architecture.
Keywords Generative Adversarial Networks, Procedural Content Generation,
Image-to-Image Translation, Missing Data Imputation, Character Sprites.

1. Introduction
Asset creation is a vital part of the game development process, and it usually takes up
a large portion of the project schedule. In particular, the task of character design is
seldom executed in a forward-only way, typically involving a lot of going back and
forth [Schreier 2017]. In pixel art games, in which the color of each pixel is thoughtfully
picked, even small changes to a character might require updating many sprites, especially
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if characters can face multiple directions and contain different animation sequences span-
ning many frames [Silber 2015].

Despite the character creation process requiring high creativity and being an
established and well-suited responsibility for artists, some involved tasks can be-
come repetitive. For instance, creating normal maps [Moreira et al. 2022] from
colored sprites, designing every animation frame [Coutinho and Chaimowicz 2022a],
or propagating changes to the many sprites of a character. In that context, re-
cent Procedural Content Generation techniques can help streamline the pipeline,
particularly those involving Machine Learning (PCGML). Different works ap-
proached character generation through PCGML techniques using Variational Autoen-
coders (VAEs) [Loftsdottir and Guzdial 2022, Saravanan and Guzdial 2022], Genera-
tive Adversarial Networks (GANS) [Hong et al. 2019, Coutinho and Chaimowicz 2022a,
Coutinho and Chaimowicz 2024, Serpa and Rodrigues 2019, Choi et al. 2022], and Con-
volutional Neural Networks (CNNs) [Serpa and Rodrigues 2022], and all of them posed
their problems as an image-to-image translation task that generates an image given an-
other (e.g., a normal map from a shaded character). However, if more information is
available to the model, it can be leveraged to potentially generate better images.

In this work, we tackle the problem of generating a character sprite in a target
pose as a missing data imputation task, using all the images of the character available in
other poses. In particular, we propose a model that uses images of pixel art characters
in source poses (e.g., facing left, right, back) to impute a missing target direction (e.g.,
facing front). Figure 1 illustrates our approach.

We propose a generative adversarial network model1 based on the Colla-
GAN [Lee et al. 2019] architecture, with changes to the generator topology and the train-
ing procedure. Compared to the baselines using the metrics Fréchet Inception Distance
(FID) [Heusel et al. 2017] and L1 distance, the images produced by our model are sim-
ilar or better than the state-of-the-art. When fewer images are available, the model still
produces feasible images, but with less quality. In an ablation study, we show how each
of the proposed changes to the original CollaGAN influenced the improved results we
achieved.

Thus, our main contributions in this work are:

• a GAN with a single generator/discriminator that can target multiple character
poses;

• empirical demonstration that using more of the available information improves the
produced sprites; and

• changes to the CollaGAN architecture that enhance the quality of the generated
images.

2. Background

In this section we describe some concepts related to generative adversarial networks and
then present how such models can approach the image-to-image translation problem.

1Source code: https://github.com/fegemo/mdigan-characters.
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2.1. Generative Adversarial Networks

Goodfellow et al. [2014] introduced the concept of generative adversarial networks
(GANs) as a framework for generating content through an adversarial training process.
It consists of two models playing different roles in a minimax game: a generator G that
evolves to create new content similar to the examples seen during training and a discrim-
inator D that learns to distinguish between real and generated (fake) examples. If an
optimal state is reached, G captures the distribution of the training data and can produce
new samples that are indistinguishable from the real ones. At the same time, D cannot
tell whether an observation is real or fake.

The training algorithm traverses the set of examples for a number of epochs. At
each step, G receives a noise prior z and produces new examples, while D is called once
to discriminate a minibatch of generated samples and a second time with real ones. The
discriminator’s loss function LD is the mean value (of all examples) of (the log of) the
probability of incorrectly labeling an input example x as fake and (the log of) the proba-
bility of incorrectly labeling a fake example G(z) as real. D updates its weights ascending
the stochastic gradient of the following value function, while G updates descending it:

min
G

max
D

L(G,D) = Ex[logD(x)] + Ez[log (1−D(G(z)))]

In this work, we propose a GAN model to generate pixel art character sprites. In
particular, it generates a character in a target pose given input images of it facing other
source directions. Because it uses multiple images as input to generate a missing one, we
approach the problem as a missing data imputation task. However, it can also be regarded
as an image-to-image translation problem with multiple images as input and the target
as the missing domain. Next, we define the image-to-image translation task and present
some of the proposed deep generative architectures using GANs.

2.2. Image-to-Image Translation

Pang et al. [2022] define image-to-image translation as the process of converting
an input image xa in a source domain a to a target b while keeping some intrinsic
content from a and transferring it to the extrinsic style of b. The meaning of a do-
main, style and content differ according to the task. To illustrate, if we want to cre-
ate a cartoon version (domain b) from pictures of faces (domain a), we are translat-
ing faces xa to b, keeping the person’s identity (intrinsic content) but using cartoon-
ish techniques (extrinsic style). Different problems have been approached as image-
to-image translation using deep generative models (e.g., GANs, VAEs), such as image
colorization [Jiang and Sweetser 2021, Gonzalez et al. 2020], semantic image synthesis
[Serpa and Rodrigues 2019, Isola et al. 2017], style transfer [Zhu et al. 2017a], attribute
manipulation [Choi et al. 2018, Choi et al. 2020, Lee et al. 2019], and pose transfer
[Hong et al. 2019, Coutinho and Chaimowicz 2022a, Coutinho and Chaimowicz 2024].

The diversity of the presented problems involves different characteristics of the
task and of the proposed solution. A first important property is the use of supervi-
sion (label/annotated examples) for training, which largely depends on the availability
of such data. For instance, in a translation from grayscale to colored pictures, it is
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easy to have pixel-wise aligned examples, but that is not the case if we want to trans-
form horses into zebras, as the cost of acquiring completely registered pairs of pho-
tos of horses and zebras in the same position in the same environment is impracti-
cal. Hence, when paired data is available for some task, we can use supervised train-
ing [Isola et al. 2017, Lee et al. 2019], whereas when it is not, the algorithm needs to
train in an unsupervised fashion [Zhu et al. 2017a, Choi et al. 2018, Afifi et al. 2021].

A second characteristic of the tasks is the number of domains involved in the
translation and how the proposed architecture can deal with them. For instance, many
problems consist of only two domains (e.g., grayscale to color, photo to painting, semantic
labels to photographs). In contrast, others involve multiple (e.g., translating a neutral
face to one smiling, angry, or crying). Hence, the proposed architectures can be two-
domain [Isola et al. 2017, Zhu et al. 2017a] or multi-domain, supporting the translation
among all directions [Choi et al. 2018, Choi et al. 2020, Lee et al. 2019]. Additionally,
the architectures for two-domain translation can generate images in a single direction
[Isola et al. 2017] or in both [Zhu et al. 2017a, Zhu et al. 2017b].

Authors have proposed architectures for tasks with different sets of char-
acteristics. Here, we introduce a model based on the Collaborative GAN (Col-
laGAN) to generate missing poses of pixel art characters. In our experiments,
we compare the proposed architecture to baselines consisting of models based on
Pix2Pix [Coutinho and Chaimowicz 2024] and StarGAN [Choi et al. 2018].

Pix2Pix trains with supervision (paired images). It can translate images from one
domain into another in a single direction. In contrast, StarGAN trains without supervision
but supports multiple domains with a single generator and discriminator pair. CollaGAN,
in turn, requires supervision and is multi-domain, with the additional difference that it
uses images from multiple domains as input.

3. Related Work
As we investigate the generation of character sprites, we first describe some recent works
that tackle the automatic creation of characters. Most also deal with pixel art imagery and
use deep generative models. In sequence, we present some works related to the missing
data imputation problem, which is how we frame the generation of missing character
poses.

3.1. Sprite Generation
Some works propose generating characters in a target pose using a bone graph to indicate
the desired positions of each body part. Hong et al. [2019] approached that task with
a multiple discriminator GAN (MDGAN). It translates the image of a character (repre-
senting its shape and color) and of a target bone-graph sprite into an image of that same
character in the new pose. The model consists of a generator and two discriminators, one
to determine if two images share the same color and shape, while the other tells whether
a character’s pose is correct according to some bone-graph sprite.

Similarly, Choi et al. [2022] created a database of character sprites in walking and
running animations by feeding video frames of real people into body segmentation net-
works. Then, they trained a model to generate characters from the body-segmented sprites
in arbitrary poses created by users. Albeit successful in their proposed experiments, both
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systems require tailored datasets that match the positions of characters, making it chal-
lenging for the models to generalize, especially for games with different character shapes
and movements. In addition, both works use real images in their training sets, which do
not conform to characters in typical 2D games, especially those in the pixel art style.

Targeting the generation of in-between frames of animated sketches, Loftsdóttir
and Guzdial [2022] propose SketchBetween: a model that takes the initial and final
frames of a character animation and sketches of the internal frames, and generates colored
versions of the frames in the middle. It takes five images of an incomplete animation as
input and provides five images with the rendered sprite animation. Trained on a dataset
of cartoon animal animations, it had promising results on shapes and poses similar to
the ones from the training set. However, even the higher-quality examples presented the
blurriness typical of how VAEs optimize to reduce the average reconstruction error.

Regarding the particularities involved in the generation of pixel art im-
agery, researchers approached differently: adding specific layers to the gen-
erator [Saravanan and Guzdial 2022], framing the problem as a semantic seg-
mentation task [Serpa and Rodrigues 2022, Coutinho and Chaimowicz 2022b], doing
post processing steps [Coutinho and Chaimowicz 2024], or adding a histogram
loss [Coutinho and Chaimowicz 2022b] while training the generator.

Serpa and Rodrigues [2019] proposed a model based on Pix2pix to gener-
ate a grayscale-shaded sprite and another one that segments characters’ body parts
from rough line art sketches of animation frames from a pixel art fighting game. The
generated grayscale sprites were close to the ground truth, but the colored ones di-
verged, especially for characters in less common poses. In a later iteration of the
work [Serpa and Rodrigues 2022], the authors got improved results by framing the prob-
lem as a semantic segmentation task and changing the architecture accordingly. The pro-
posed model dropped the adversarial training and used dense connections to increase the
network’s depth, deep supervision to provide gradients at every step, and a class-weighted
focal loss to overcome the class imbalance in the training data.

Saravanan and Guzdial [2022] adapted the Vector-Quantized VAE
[van den Oord et al. 2017] to improve the quality of the generated pixel art charac-
ters by adding a 1× 1 convolution layer pair at the beginning and the end of the encoder
and decoder networks. Trained with Pokémon sprites, the model generated embeddings
that allowed a PixelCNN [van den Oord et al. 2016] technique to create new images of
static characters that tried to follow the training distribution. Using the additional layers
helped reduce the blurriness of the generated images.

Investigating the challenges involved in generating pixel art specifically, Coutinho
and Chaimowicz [2022] evaluated two hypotheses to improve the quality of the generated
images: representing them as indices in a color palette and adding a histogram loss term
when training the generator. While the palette representation led to much worse results
due to overfitting, penalizing the generator for using colors with a different histogram
than the one from the input image yielded slightly improved images.

In [Coutinho and Chaimowicz 2022a], the same authors propose an architecture
based on Pix2Pix to translate pixel art characters in a source pose (e.g., looking front)
into a target one (e.g., facing right). They trained models in different datasets with under
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1k examples. The generated images had varying degrees of quality, with good results
for characters more similar to the ones seen during training (e.g., similar shapes or color
variations) but bad results for more unique characters. In a later iteration of the work,
Coutinho and Chaimowicz [2024] investigated different data augmentation techniques.
They proposed a post-processing step to quantize the images to the color palette of the
input image. They also assembled a diverse dataset with 14k paired images of characters
in four directions and observed that training with much more data yielded better results
when validating with the more artistically cohesive and smaller individual datasets.

In this paper, we also tackle the generation of pixel art characters (like
[Serpa and Rodrigues 2019, Serpa and Rodrigues 2022, Saravanan and Guzdial 2022])
by translating among different poses (like [Coutinho and Chaimowicz 2022b,
Coutinho and Chaimowicz 2022a, Coutinho and Chaimowicz 2024]). However, un-
like the other works, we frame the problem as a missing image data imputation task.
Hence, instead of a trained model being capable of handling between only two poses
(two-domain) and a single direction, our generator receives the images of a character in
every available pose and generates an image of it in the one that is missing (multi-domain
with multiple inputs).

3.2. Missing Data Imputation
Data analysis can be drastically hindered when relevant parts of information are
missing. That can happen for various reasons: data can be absent because it
was never collected or produced, it might have been lost, or it might contain er-
rors [Yoon et al. 2018]. Researchers have proposed different missing data imputation
techniques to replace absent data with plausible substitutions. The choice of such tech-
niques depends on the data type, among other characteristics. It can be one or a mix
of categorical [Yoon et al. 2018, Shang et al. 2017], sequential [Liu et al. 2023], and im-
age [Shang et al. 2017, Lee et al. 2019, Sharma et al. 2019, Shen et al. 2021].

Inaugurating the use of deep learning-based techniques for missing data imputa-
tion, Yoon et al. [2018] proposed a generalization of the original GAN to deal with imput-
ing missing values, which they called Generative Adversarial Imputation Nets (GAIN).
The generator receives three inputs: the sample with missing values, a mask indicating
which values are present, and a random vector of the same dimension that introduces
noise. As output, it produces a version of the sample with replaced values for those miss-
ing. The discriminator, in turn, tries to distinguish which of the categorical variables are
imputed and which are from the original sample.

The imputation task becomes more challenging when the missing data are im-
ages due to the higher dimensionality. Some works approach the problem using
GANs [Shang et al. 2017, Lee et al. 2019, Sharma et al. 2019, Shen et al. 2021]. An ex-
ample is the View Imputation GAN (VIGAN) [Shang et al. 2017], that can generate miss-
ing values in a target domain by combining a modified CycleGAN [Zhu et al. 2017a] with
a Denoising Autoencoder in a three-step training process. A shortcoming of VIGAN is
that it performs bi-directional imputation between only two domains. When the task in-
volves more domains, other architectures are better suited. The Multi-Modal GAN (MM-
GAN) [Sharma et al. 2019], CollaGAN [Lee et al. 2019], and ReMIC [Shen et al. 2021]
can impute missing images among multiple domains and use the information of all avail-
able sources as input to the generator.
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Figure 2. Architecture of the proposed model. LEFT: The generator receives a
character in the source domains and a label indicating the target, which
is one-hot encoded, spatially spread, and concatenated with each input
image. The inputs follow the encoder branches and are concatenated at
the bottleneck layer, flowing into the unified decoder. Skip connections
provide early outputs to the decoder. RIGHT: The discriminator receives
the image (real or fake) that must be distinguished and outputs Dadv with
the real/fake logit and Ddmn with the probabilities of the image being part
of each domain.

MM-GAN’s generator [Sharma et al. 2019] has an equal number of inputs and
outputs, receives samples with images missing in random domains, and outputs imputed
values. The discriminator distinguishes between real and imputed same-size patches of
a full sample comprising all domains. CollaGAN [Lee et al. 2019] works similarly and
was proposed in the same year as MM-GAN. However, it produces an image of a single
target domain. Its generator varies depending on the task, but it also receives the images
in all available domains, concatenated with the index of the target domain spread spatially
and through the channels dimension. Both architectures presented good results in their
respective experiments. ReMIC [Shen et al. 2021] also takes the inputs from all available
domains and generates the missing ones, like MM-GAN. However, unlike the other two,
it disentangles the images and extracts a shared content encoding and a separate style
encoding for each domain.

All multi-domain architectures that deal with missing image data imputa-
tion [Sharma et al. 2019, Lee et al. 2019, Shen et al. 2021] were tested with medical or
natural images, but not with pixel art or other styles. In the next section, we introduce a
modified architecture based on CollaGAN to generate missing pixel art characters.

4. Architecture

We propose an architecture based on CollaGAN [Lee et al. 2019] to impute images of
pixel art characters in a missing pose (target domain). To facilitate understanding, let
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us consider that there are domains N = {a, b, c, d}, one representing each pose. The
architecture consists of a single generator and discriminator pair, of which the former
creates an image x̂t of a character in the missing pose t using the available images from
all of the other source S poses:

x̂t = G(xS, t),with t ∈ N,S = N − {t}

Our generator has one encoder branch to process the input from each domain, a single
decoder branch with concatenated skip connections, and outputs an image in the missing
domain. The discriminator distinguishes images as real or fake, as well as determines their
domain through an auxiliary classifier output. Figure 2 shows both network topologies.

4.1. Objective Function
As usually done with GANs, we train both networks adversarially, but also with additional
objectives. The generator’s loss function has five terms: regressive, cycle consistency,
structural similarity, adversarial, and domain classification. In turn, the discriminator
trains with adversarial and domain classification objectives.

Training requires a forward and a backward pass. In the first step, a minibatch of
paired images with a random missing domain t is fed to the generator G, which synthe-
sizes an image corresponding to the missing t domain. For example, if S = {a, b, c} and
t = d, the images xa, xb, xc are available and we want the model to generate x̂d as close
as possible to the real xd:

x̂d = G({xa, xb, xc, xzero}, d),

in which xzero is a tensor filled with zeros with the same dimension of an input image.

Subsequently, to ensure cycle consistency, the backward step comprises synthe-
sizing |N | − 1 images with each domain in S = {a, b, c} as a target, using the generated
x̂d instead of the real xd. The outputs of this pass, in our example, would be:

x̃a|d =G({xzero, xb, xc, x̂d}, a)
x̃b|d =G({xa, xzero, xc, x̂d}, b)
x̃c|d =G({xa, xb, xzero, x̂d}, c),

and should reconstruct the original images xa, xb, and xc.

A regressive loss term Lreg steers the generator towards using the information
from the source domains to translate an image to the target, whereas a multiple cycle
consistency loss Lmcyc leads it into encoding in x̂t enough information to allow cyclical
reconstruction of the original inputs. Both losses are pixel-wise L1 distances between the
generated and the real images:

Lreg = Ext,xS
[∥xt − x̂t∥1]

Lmcyc = Ext,xS
[
∑
s∈S

∥xs − x̃s|t∥1]

Besides Lmcyc, an additional objective Lssim is used to improve the quality of the
images generated in the backward pass. It uses the structural similarity index measure
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(SSIM) [Wang et al. 2004] to compose a loss term between the cyclically generated x̃S

and the real source images xS . Its formulation is the same as in the CollaGAN paper and
is omitted here for brevity.

The discriminator also uses the other two objectives for the generator: adver-
sarial and domain classification. The adversarial loss uses the one from Least Squares
GAN [Mao et al. 2017], which optimizes the square of the errors of the discriminator
classification of real and fake images. The discriminator LD

adv and generator LG
adv adver-

sarial losses are:

LD
adv =Ext [(Dadv(xt)− 1)2] + Ex̃s|t [(Dadv(x̃s|t))

2]

LG
adv =Ex̃s|t [(Dadv(x̃s|t)− 1)2]

The domain classification objective leads the generator to synthesize images classified
as having the intended target domain. For the generator, Lfake

dmn considers only generated
images, whereas for the discriminator, Lreal

dmn uses only real images. As a classification,
they are calculated using cross entropy, given as:

Lreal
dmn =Ext [− log(Ddmn(xt))]

Lfake
dmn =Ex̂t [− log(Ddmn(x̂t))]

To summarize, the full objectives of the generator LG and the discriminator LD are sums
weighted by λ scalars given as:

LG =LG
adv + λregLreg + λmcycLmcyc + λssimLssim + λdmnLfake

dmn

LD =LD
adv + λdmnLreal

dmn

4.2. Generator
The generator has four encoder branches, each receiving a source image from a partic-
ular domain and a channelized and spatially spread one-hot encoded label of the target
domain. There are four downsampling blocks for each branch and a bottleneck layer that
concatenates the activation maps from all encoder branches and further processes it. The
data is then passed onto a single decoder composed of four upsampling blocks. There are
skip connections from the concatenated activation maps (across the encoder branches)
from downsampling to the respective upsampling blocks. Compared to the original archi-
tecture, our generator contains four encoder branches, while theirs has eight.

The image size and number of channels we use is 64 × 64 × 4, contrasted to the
128 × 128 × 3 configuration of the original architecture. We increased the number of
channels for each layer to improve the network capacity: they are four times the original,
becoming 64, 128, 256, 512, and 1024 for the blocks in each encoder branch, and 1024,
512, 256, 128, and 64 for the decoder blocks.

4.3. Discriminator
The discriminator receives a batch of images and outputs values Dadv that should be one
for real images and zero for the generated ones. In addition, it classifies the domain of the
image, yielding probabilities Ddmn of images having each domain.
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Figure 3. Comparison of input dropout (left) and replacement procedures (right)
during training in the proposed model.

The network topology is the same as in the original, with 6 downsampling blocks,
each consisting of a convolution that halves the resolution while increasing the number
of channels, with a leaky ReLU activation. The last block also contains a dropout layer.
Following it, two parallel convolutions represent the Dadv and the Ddmn outputs, with
linear and softmax activations, respectively.

4.4. Training Procedure
At each training step, we select a batch of paired images xS with random target domains t.
The generator receives the batch of ⟨xS, t⟩ and creates the missing x̂t, in the forward pass.
Next, x̂t is used in place of xt to create a number of new batches equal to |N |−1, in which
each domain in S becomes the target, in the backward (or cyclical) pass. The generator
then creates x̃s|t,∀s ∈ S that must be as close as possible to the original xs,∀s ∈ S.

The CollaGAN architecture authors observed that images are much worse as the
number of available sources decreases. However, it is common to have use cases in which
more than one domain is missing. Hence, they proposed a batch selection strategy called
input dropout, in which the model trains with one or more missing domains. For instance,
for |N | = 4 and t = d, when a batch ⟨xS, t⟩ is selected using the input dropout strategy,
xS can have zero, one or two withdrawn images and be one of the following:

xS = {xa, xb, xc} xS = {xzero, xb, xc} xS = {xzero, xzero, xc}
xS = {xa, xzero, xc} xS = {xzero, xb, xzero}
xS = {xa, xb, xzero} xS = {xa, xzero, xzero}

In the original CollaGAN, the number of images to be dropped out is chosen
uniformly, leaving a 33% chance of having the full source domain set. That strategy
improved the results in our task too. However, we observed that a more conservative
approach in which the model trains more frequently dropping out few images yields even
better results in the scenario of having fewer available images. We adopted chances of
10%, 30%, and 60% to have two, one, and zero images dropped out. Figure 3 (left)
compares the three strategies (no dropout, original dropout, conservative dropout) with
different numbers of missing images.

Another change we made to the training procedure relates to the backward gener-
ation pass. When the cycled images x̃s|t,∀s ∈ S (e.g., x̃a|d, x̃b|d, and x̃c|d) are generated in
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the original implementation, the image x̂t produced in the forward pass replaces not only
the original target image xt, but also all images that have been dropped out due to the
batch selection strategy. We experimented with having x̂t replace only xt and observed
better results.

To illustrate the difference, considering a batch with t = d and the domain c
dropped out, the backward generated images x̃s|t, ∀s ∈ S for the original (left) and our
implementation (right) would be as shown next. We highlighted the differences in color:

x̃a|d =G({xzero, xb, x̂d, x̂d}, a) x̃a|d =G({xzero, xb, xzero, x̂d}, a)
x̃b|d =G({xa, xzero, x̂d, x̂d}, b) x̃b|d =G({xa, xzero, xzero, x̂d}, b)
x̃c|d =G({xa, xb, xzero, x̂d}, c) x̃c|d =G({xa, xb, xzero, x̂d}, c)

Figure 3 (right) compares the generated images when the model trains using the origi-
nal replacement procedure for the dropped-out images versus our version where only the
forward target image is replaced by the one generated in the forward pass. We can note
that with the original procedure, the generator produces images with artifacts from do-
mains other than the target one, mostly noticeable through the wrong number of eyes in
the examples.

Regarding the number of trainable parameters, the generator contains 104,887,616
values, and the discriminator has 44,726,272. After training, the generator takes ≈110 ms
to produce an image using a GeForce GTX 1050 GPU.

5. Methodology

We start by presenting the datasets used in the experiments to propose and evaluate models
for translating pixel art characters in different poses. Next, we describe the metrics L1 and
FID used to analyze the quality of the generated images using each model. Finally, we
conclude the section by presenting the baseline models used in the experiments.

5.1. Dataset

Unlike tasks that are more commonly tackled in Computer Vision research, we found only
one character sprite dataset readily available: TINY HERO2, which contains 912 paired im-
ages of characters facing the back, left, front, and right directions. To increase the number
of training examples, we scraped character sprite sheets from different sources from the
web, splitting them into individual character sprites, and generated characters modularly
by assembling various parts. The dataset contains 14,202 paired images of characters in
four directions spanning different art styles. They primarily comprise humanoid char-
acters of different sizes and art styles, but also a few sprites of animals, vehicles, and
monsters. Figure 4 shows examples depicting the high variability of the samples.

Images from each source had different character sizes, so the smaller ones were
transparency-padded to the largest size, 64×64. We also created an alpha channel with the
character shape for the images that lacked one. The training set contains 12,074 examples,
and the test set contains 2,128 examples (85% split). During training, we applied hue
rotation to each character as data augmentation.

2Dual license of GNU GPL 3.0 and CC-BY-SA 3.0. Source: https://lpc.opengameart.org/
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Figure 4. Sample images from the dataset showing different sizes/art styles
(columns) facing four directions (rows).

5.2. Evaluation Metrics

The evaluation of generative models is an active research problem with different metrics
proposed over the recent years [Buzuti and Thomaz 2023]. We evaluate the quality of a
model by how close the generated images are to their ground truth. However, a qualitative
analysis is important as the metrics do not always converge.

Hence, we analyze the results qualitatively through visual inspection and quan-
titatively using the L1 distance to the target images and the Fréchet Inception Distance
(FID) [Heusel et al. 2017]. The L1 distance measures the absolute difference between
the colors of pixels of two image sets (the generated and target). In turn, FID uses the
Inception v3 network (proposed for image classification) to get the distance between the
feature vectors of the two image sets [Szegedy et al. 2015]. As both metrics are distances,
they are zero for identical generated and target images, so lower numbers are better.

5.3. Baseline Models

We compare our model with two other architectures proposed for the image-to-image
translation task: Pix2Pix [Isola et al. 2017] and StarGAN [Choi et al. 2018].

Pix2Pix. We trained a modified version of the architecture proposed
in [Coutinho and Chaimowicz 2024] for generating pixel art characters in a target pose
given an image of it in a source one. Differently from the referenced work, we use 12
such models to support translation from and to all four poses: back, left, right, and front,
excluding models from and to the same direction. Each generator has 29,307,844 train-
able variables, so the model collection contains 351,694,128 parameters.

StarGAN. We trained a StarGAN-based model to perform multi-domain transla-
tion using a single generator and discriminator pair. The generator typically receives the
source image and a label indicating the target direction. Still, we found that providing
a label of the source domain increases the quality of the generated characters. In turn,
the original critic receives only the image to be evaluated, but we got better results by
sending the source image too (before translation), which makes it perform a conditional
discrimination. In that case, the network indicates whether the provided image is real/fake
considering that it is a translation of the source image. For a fair comparison, we train
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Table 1. FID and L1 of our CollaGAN-based model receiving three images and a
single for Pix2Pix and StarGAN

Target Average FID Average L1

Pix2Pix StarGAN CollaGAN-3 Pix2Pix StarGAN CollaGAN-3

Back 5.788 3.378 2.054 0.05402 0.06429 0.04530
Left 2.380 1.250 1.037 0.04934 0.06344 0.03439
Front 5.392 3.156 1.955 0.05875 0.07263 0.04985
Right 2.806 1.368 0.987 0.04880 0.06273 0.03360

Average 4.091 2.288 1.508 0.05273 0.06577 0.04078

the model using supervision (the original trains without paired images). The generator
contains 134,448,128 parameters.

6. Experiments
The model trained with the pixel art characters dataset for 240,000 generator update steps
in minibatches of 4 examples, which is equivalent to ≈80 epochs. It took 01:20h to train
using a GeForce GTX 1050 GPU. We used early stopping to select the model that had
the best metrics on its test set instead of getting the one in the end to prevent overfitting.
At every 1,000 update steps, we evaluate the model and select the one with the lowest
(best) L1 value throughout the training procedure. After training, it takes 110.03ms for
the model to generate a batch of images.

The generator and discriminator optimize their weights using Adam, with β1 =
0.5 and β2 = 0.999, and a learning rate that starts as 0.0001 and linearly decays to zero
during the second half of the training. The parameters of the objective function were
λreg = 100, λdmn = 10, λssim = 10, and λmcyc = 10.

In the following experiments, we start by evaluating the model’s performance us-
ing three input images (dubbed CollaGAN-3) against the baselines. Next, we evaluate
the same model (trained with three source domains) in the scenario of it receiving only
two (CollaGAN-2) and one (CollaGAN-1) input images. We then follow up with an ex-
periment to assess different input dropout strategies and an ablation study of the changes
proposed atop the original CollaGAN.

6.1. Missing Image Imputation
We trained our proposed model using conservative input dropout and the forward-only
replacer strategy. Table 1 shows the values of FID and L1 for our proposed model and
the baselines, with the rows representing the target pose and the columns displaying the
metrics for the baselines Pix2Pix and StarGAN, averaged considering the translation from
the other source domains and CollaGAN with the three other domains as input.

Regarding FID, CollaGAN-3 had the lowest (best) values of the evaluated models
in all target poses and, hence, on average too: 1.508 (CollaGAN-3) versus 2.288 (Star-
GAN) and 4.091 (Pix2Pix). Also, the L1 distance for CollaGAN was the lowest (best),
with the averages: 0.04078 (CollaGAN-3), 0.05273 (Pix2Pix), and 0.06577 (StarGAN).
Next, we visually analyze the generated images.
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Figure 5. Example images generated in different target domains. The columns
show the source images, the target, the generation with the baselines us-
ing different source domains, and the generation using all sources with
CollaGAN.

Figure 5 shows examples of generated images using the different models, with
each row having a different domain as the target. The columns for Pix2Pix and StarGAN
show three images per row. As they are models that take a single image as input, we
depict the image generated for the target pose from each of the other domains. In contrast,
CollaGAN uses all the other domains as input and, hence, has a single generated image
for each row.

The quality of the generated images varies with the model and the target pose. We
analyze the results qualitatively according to the use of colors and the generated shape.
Regarding the former, all models generate images with colors in meaningful positions but
employ many variations of the same tones instead of restricting to a small palette. Such
undesired behavior can be attenuated by quantizing the colors to the palette of the input
images, such as done in [Coutinho and Chaimowicz 2024] in a post-processing step.

Regarding the shape, the poses imputed by CollaGAN are very close to the in-
tended, and so are the ones generated by the baseline models that translate images from
left to right and vice-versa. Generating images in that scenario usually consists of learning
a horizontal flip transformation, which is an easier task endorsed by the lower FID and
L1 values when the target is left or right. When the target is back, a noticeable artifact is
the faint presence of details from the character’s face, especially prominent in the images
generated with CollaGAN.

Visually inspecting the results shows that the quality of the images generated by
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Table 2. FID and L1 metrics in the scenarios of receiving three, two, and one
images and the baselines

Model/Sources Average FID Average L1

Pix2Pix 4.091 0.05273
StarGAN 2.288 0.06577
CollaGAN-1 8.393 0.06449
CollaGAN-2 4.277 0.05035
CollaGAN-3 1.508 0.04078

our model is either on par or better than the baselines. We highlight that the CollaGAN-
based architecture contains 104,887,616 trainable parameters, which is 22% smaller than
StarGAN and 70% than the collective Pix2Pix. Next, we assess how the model performs
when less images are available.

6.2. Generating from Fewer Domains
Even though we propose a model to impute a single missing domain, we also evaluate it
in scenarios where it receives two (CollaGAN-2) or only one image (CollaGAN-1). The
metrics’ values are averaged among all targets and all available sources for each model
and scenario (i.e., CollaGAN-3, 2, and 1).

Table 2 compares the proposed model in those situations. We can observe that both
FID and L1 metrics progressively improve as the number of available domains increases,
with CollaGAN-2 still having better L1 than Pix2Pix and StarGAN.

6.3. Input Dropout
We evaluated the impact of different batch selection strategies on presenting examples
to the proposed model: Should it always see the three available domains, or should they
sometimes be omitted?

We investigated always showing all available domains (none), the original input
dropout strategy proposed in [Lee et al. 2019], a curriculum learning approach suggested
by Sharma et al. [2019], and our proposed conservative tactic. The original approach
has an equal chance of presenting three, two, or a single image in a training step. The
curriculum learning approach starts training with easier tasks (using three images) and
progressively makes it harder (using a single input) until half of the training, then it ran-
domly chooses between the number of domains to drop out for the second part. Lastly,
the conservative approach randomly selects the number of images to drop, but with higher
probabilities to keep more images: 60% with 3 images, 30% with 2, and 10% with a single
image.

Table 3 presents the results from the models trained with the different input
dropout strategies (columns) in the scenarios of having three, two, or one available image
as input (rows). We can observe that using any input dropout yields better results than
always showing all domains (none). Compared to the original and curriculum learning
strategies, our proposed conservative tactic has better FID and L1 metrics on the average
of the three scenarios. In particular, regarding FID, the model trained with the conser-
vative input dropout worsens its performance less drastically with the decrease of input
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Table 3. FID and L1 of different input dropout strategies when the model receives
3, 2 or 1 images as input

Sources None Original Curric. Conserv.

FID
CollaGAN-3 4.816 1.911 2.160 1.508
CollaGAN-2 19.050 6.835 9.233 4.277
CollaGAN-1 32.676 11.162 20.303 8.393

Average 18.847 6.636 10.566 4.726

L1

CollaGAN-3 0.04523 0.04277 0.04222 0.04078
CollaGAN-2 0.08003 0.05053 0.07389 0.05035
CollaGAN-1 0.12820 0.06243 0.12232 0.06449

Average 0.08449 0.05191 0.07948 0.05187

Table 4. Performance of the modifications made to the original CollaGAN archi-
tecture

Modification
(cumulative)

Average FID Average L1

Value Improv. Value Improv.

Original 8.866 — 0.06069 —
+ Increased capacity 11.078 -24.95% 0.05666 6.64%
+ Forward Replacer 6.636 25.15% 0.05191 14.47%
+ Conservative Inp. Drop. 4.726 46.70% 0.05187 14.53%

domains. Regarding L1, its metrics are better than the other models when two and three
images are available.

6.4. Ablation Study
To understand the impact of our changes to the original CollaGAN architecture, we
trained and evaluated models that progressively added each modification. Table 4 shows
the FID and L1 values of the generated images averaged over all domains and among the
scenarios of the model receiving three, two, and one input domains. The rows show the
results of each modification cumulatively: the first one is the original CollaGAN model
without any of our proposed changes, the second introduces the first modification, the
third uses two changes, and the last includes all three (our final model).

The original model had 6,565,712 trainable variables, but with the increased ca-
pacity, there are 104,887,616 parameters. That change alone improved L1 but worsened
FID. The replacement strategy of substituting only the original target with the image
generated in the forward step improves both metrics’ results. Lastly, training with the
proposed conservative input dropout further enhances the results, with FID and L1 values
that are 46.7% and 14.53% better than the original architecture.

7. Final Remarks
We posed the task of generating pixel art characters as a missing data imputation problem
and approached it using a deep generative model. It is based on the CollaGAN architec-
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ture, from which we proposed changes involving a capacity increase, a conservative input
dropout strategy, and a different replacement tactic during the backward step of the train-
ing procedure. The experiments showed that all of the changes contributed to achieving
better results.

Compared to the baseline models, our approach produces images with similar or
better quality when using three domains as input. The model can still produce feasible
images in scenarios with fewer available images but with increasingly lower quality.

In future work, we propose the study of other missing image imputation ar-
chitectures to the same task tackled here, such as ReMIC [Shen et al. 2021] and MM-
GAN [Sharma et al. 2019]. Differently from CollaGAN, both methods can receive and
generate images in any number of domains. Another line of investigation is to approach
the task with architectures that disentangle the source images into content and style
codes [Huang et al. 2018] and also latent diffusion models [Rombach et al. 2021]. An
interesting outcome of such architectures is their multi-modality nature, in that they can
generate different suggestions for the same input.
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