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Abstract. This paper presents an innovative technique for simulating crater
deformations caused by explosions in large height map-based vir- tual terrains.
Unlike traditional methods, our proposed approach does not directly deform the
landscape. Instead, we discretize the crater information into simple variables
and store it in a compact GPU-based hash table. The actual deformation is
then calculated later using compute shaders each time a block of the height map
is loaded to the GPU. This approach allows for the deformation of terrain at
very far distances without the need to load large heigh map textures, thereby
saving memory, as demonstrated by our comparison with another method.
Moreover, this paper explores techniques to enhance the visual quality of craters
by incorporating noise algorithms and appropriate coloring, thus increasing the
overall realism of the areas affected by explosions.
Keywords height map, hash table, virtual terrain, real-time deformation,
explosion, crater

1. Introduction
Action, war, and shooting games are known for their vast and intricate terrains, which
often serve as the backdrop for high-stakes battles and explosive combat. In many of
these games, the presence of missiles, grenades, and other explosive elements necessitates
the implementation of terrain deformation methods that dynamically respond to these
events. However, most of the implemented methods are proprietary and lack the ability
to reproduce the results in other game developments. Therefore, the capability to create
a real-time deformable terrain that reacts to what occurs during gameplay is crucial to
increasing the level of immersion and overall gaming experience.

Dynamic terrains have been widely utilized in video games to optimize
performance since they allow changing the number of vertices of the scenario in real-time
according to the need for detail. Among the various algorithms used in the creation of
dynamic terrains, Geometric Clipmap [Losasso e Hoppe 2004] and Geometric Mipmap
[de Boer 2000] stand out. These two methods represent the terrain as a height map,
where each pixel value represents a vertex height. Thus, any flat mesh with any level
of resolution can be loaded into the GPU, and its configuration changed to the desired
shape in real-time through the use of the height map.

Numerous techniques for terrain deformation rely on altering height maps in
real-time to simulate changes in the ground caused by various factors. For example,
[Crause et al. 2011] utilized a combination of simple and detailed height maps that could
be dynamically updated in GPU to create a variety of terrain deformations. Specifically,
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the coarse-maps were implemented using Geometric Clipmap to generate less precise
deformations, while the detailed-maps were used with tessellation techniques to produce
more intricate and complex changes in the terrain. However, it is important to note that
their approach uses large textures, which can be very memory-consuming. Applying
this technique to large areas across an entire terrain could lead to challenges related to
memory usage and loading speed, as many blocks of height map texture would need to
be used at the same time in case of multiple deformations happening simultaneously or at
great distances.

In this paper, a new approach for simulating real-time terrain deformations
caused by explosions is presented. Unlike previous methods [Crause et al. 2011]
[Aquilio et al. 2006], this approach stores the deformation information not in height maps
but in an external and more compact GPU-based hash table structure, allowing many
deformations across large terrains at a minimum memory cost. This structure can be used
to quickly shape the explosion craters in the terrain’s vertices or color it in the fragment
shader whenever an area affected by explosions is loaded. This capability enables the
game to simulate events that occur at great distances from the player’s current location
while still being able to interact with the ground.

2. Related Work
With the advancement of current GPUs, modern games strive to create an interactive
world where almost all kinds of explosives can interact with the terrain. Proprietary
methods are implemented in these games, so any assertion about the techniques used
is mere speculation. However, they are likely based on tessellation and parallax methods.

[Crause et al. 2011] employed a combination of coarse and detailed height maps
to represent the terrain, which could be quickly redrawn in the GPU whenever a
deformation is required to be displayed. Specifically, the coarse maps were implemented
using Geometric Clipmap [Losasso e Hoppe 2004] to generate simpler deformations,
while the detailed maps used tessellation techniques to produce smaller changes in the
terrain. Due to high memory consumption caused by the texture used, a caching system
was implemented to keep only the most likely-to-be-used maps in memory. However, this
approach restricted deformations to areas close to the player’s position, limiting how far
away deformations could occur.

[Aquilio et al. 2006] developed a technique capable of calculating and displacing
terrain deformations using height maps entirely on the GPU, providing highly efficient
deformation handling. However, their method is limited to the areas of the terrain that are
currently loaded and can be immediately rendered by the camera limiting the use of level
of detail techniques.

In modern terrain deformation techniques, representing the world as a simplified
2D surface provides improved performance and at the same time restricts the ability to
simulate 3D deformations, such as overlapping areas accurately. However, in simulation
scenarios where accuracy takes precedence over performance, alternative methods are
preferred. For instance, [Wan e Tang 2002] utilized a CPU-based algorithm to simulate
physically-based explosion deformations on the terrain. Their approach involved
employing the ROAM [Duchaineau et al. 1997] algorithm to dynamically reconstruct the
mesh of the whole terrain every time a new explosion happened, allowing any kind of
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possible deformation.

[Shao et al. 2020] devised a physical modeling approach to simulate vertical
deformations resulting from explosions on virtual terrains. They employed mathematical
geometries to approximate the shape of craters, considering the properties of the soils and
the explosive forces that induce the deformations. Our method uses an adapted version
of this technique to compute deformations in the height map due to its simplicity and
efficiency.

3. Proposed Method

Our proposed method is a novel approach to handling craters caused by explosions in
dynamic terrain-based applications that use height maps. The method involves storing
simple information about each explosion that occurs on the terrain using a hash table data
structure. A compute shader can access this information in real-time and use it to calculate
the appropriated deformation(if there be any) and store it in the terrain’s height map as it
is being loaded. For the blocks that are already loaded, the computer shader is also called
when an update occurs in the hash table.

In order to carry out the appropriate coloring of a crater, the fragment shader also
utilizes the hash table. However, unlike the vertex displacement stored in height maps,
color calculations would require a very high amount of memory to be stored in texture,
which is not reasonable. As a result, during each frame, the fragment shader needs to
iterate over the hash table to determine the color of a crater, which can be quite expensive
as shown in Section 4.

Our implementation does not rely on tessellation shaders, which limits how
detailed the deformation can be due to the terrain’s resolution. Without tessellation, there
is a limit below which craters become too small and compromise visual quality. The
smallest acceptable size depends on the desired quality and the terrain used. An example
of this effect is shown in Figure 1.

Figure 1. A very small crater in very low terrain resolution
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3.1. Calculating Deformation
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Figure 2. Base geometry of a crate
R1 - Ellipsoid and Toroid Radius; R2 - Toroid Major Radius; R3 - Crater Radius; H4 -

Toroid Height; H5 - Ellipsoid Depth(height)

The fundamental principle underlying our method is to dynamically recalculate the
terrain’s deformation on the GPU whenever necessary by computing the appropriated
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displacement of each vertex of the terrain inside the range of a crater. For that, we
employ a straightforward geometric definition proposed by [Shao et al. 2020] that can
be expressed using simple surface formulas. According to this definition, the shape of a
crater can be divided into three distinct regions: the cavity, the internal deformation zone,
and the external deformation zone. The cavity corresponds to a half-ellipsoid, while the
external and internal deformation zones are described as a half-ellipse that undergoes
rotation around the y-axis, resulting in an externally enclosed surface equal to a half-
toroid. Figure 2 provides a visual representation of this geometry.

Referring to Figure 2 as a visual guide, we can provide a simplified description for
each crater shape. The ellipsoid can be approximated as perfectly circular, allowing us to
define it using just two parameters, namely R1 (the radius) and D5 (the depth). On the
other hand, the toroid shape can be described using R1 (minor radius which is the same as
the ellipsoid’s radius), along with R2 (the major radius of the toroid) and H4 (the height
of the toroid). R3 can be considered equal to R2 plus its difference from R1, so it is not
necessary to be stored and can be discarded. In summary, apart from its world position,
the crater can be characterized using only four variables: R1, R2, H4, and D5.

Given a crater specified by these four variables, we need a way to calculate its
elevation at any arbitrary point inside its range. While it is possible to use the ellipsoid and
toroid surface formulas for this calculation, it is not ideal when dealing with height map
terrains. As discussed in Section 2, height maps cannot accurately represent overlapping
areas, which is caused by these formulas at the boundaries of the ellipsoid and toroid
surfaces. To address this issue, we approximated the cavity and internal deformation zone
using a smooth step function that received the distance from the center of the crater as
input. For the external deformation zone, we used the circle formula followed by another
smooth step function to refine the final output. These calculations can be seen in clear
steps in Algorithm 1.

Finally, to get the final displacement of any vertex, we need to consider if multiple
craters are intersecting each other. In this case, for each vertex of the intersection, simply
adding the elevation of each crater does not give a good visual, instead, it was chosen to
add negative displacement values and limit the positive ones to the maximum height of
the highest crater. An example of the intersection result can be seen in Figure 8.

3.2. Hash Table Structure

To perform the deformation of a vertex or the coloring of a fragment of the terrain,
it is necessary to know which craters are close to that vertex or fragment. Although
iterating through all the craters and checking the distances is possible, it would be
highly inefficient. To improve performance, our method uses a spatial GPU-hash table
[Pozzer et al. 2014], to identify which craters are most likely to be in contact with a given
point on the terrain and avoid unnecessary ones.

The hash table is created by segmenting the terrain into a rectangular grid
composed of square cells of equal size. Each cell contains a vector of structures that
hold the necessary data, as described in Section 3.1, to represent a crater. The dimensions
of each cell are defined in world coordinates and correspond to a specific square section of
the terrain in the world. If a cell contains craters, they exist in the corresponding position
on the actual terrain.
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Algorithm 1 Calculate Deformation Displacement
Input: crater, vertex
Output: deformation displacement
dist← distance(crater.worldPosition,vertex.position)

▷ EDZ = External Deformation Zone
if dist > crater.EDZ then

return 0
end if

▷ IDZ = Internal Deformation Zone
if dist ≥ crater.IDZ then

x← (dist− crater.IDZ)/(crater.EDZ− crater.IDZ)
y ← sqrt(1− x ∗ x)
y ← smoothstep(0, 1, y)
return y ∗ crater.height

end if

x← dist
y ← smoothstep(0,crater.IDZ, x)
return y ∗ (crater.height+ crater.depth)− crater.depth
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Figure 3. Example of craters approximated as squares being mapped to the
hash table cells

When an explosion or equivalent event occurs, the relevant variables are computed
in a serializable structure, and a new entry for it is added to a permanent list stored in the
RAM. In real-time, this list is verified in regular intervals and if any new entry has been
made, the current hash table in the GPU is released, and a new one is created on the CPU
and sent to the GPU. This process also triggers the compute shader to deform the blocks
of the height map that are already loaded.

During the construction of the hash table, craters are approximated as squares with
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side lengths equal to the craters’ diameters and centered at the craters’ centers. Each cell
that intersects with these squares receives the relevant information about the craters to
store. As a result, multiple cells may point to the same crater as can be seen in Figure 3.

When it needs to know if a given point of the terrain (e.g., vertex or fragment)
belongs to a crater, the world position of this point is used to determine the corresponding
cell in the hash table grid. Since each cell can contain multiple craters, an iteration process
is required to examine each crater inside the cell. The distance between the desired
position and the crater’s center position is calculated, and if it is found to be smaller
than the radius, that crater is considered in the deformation calculus.

3.3. Rendering the Craters

Various graphic techniques have been implemented and combined in order to represent
realistic deformations caused by explosions using the simple crater structures proposed.

3.3.1. Vertex Displacement

The vertices of the craters are the same as those that compose the terrain. Being a height
map-based terrain, modifying the height map by incorporating the displacement values
corresponding to all the created craters, will accurately simulate the desired deformation
on the terrain.

When a block of the height map is loaded, a compute shader is called. The shader
examines each pixel in the texture by accessing the hash table to check if the pixel’s
equivalent world position is within range of a crater. If one or more craters are found
within range, the displacement function is called with the craters’ information and the
pixel’s world position as parameters. Using these parameters, the new height of the
pixel is calculated and added to the height map’s value. It is important to note that this
modification occurs only on the GPU and does not affect the original height map texture.

3.3.2. Adding noise

Figure 4. An example of a radial Perlin Noise texture and its normal map
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As explained by [Shao et al. 2020], using geometric shapes to represent craters can result
in slim and smooth craters that do not appear realistic. In order to create more natural-
looking craters, some form of noise must be added to them. [Shao et al. 2020] employed
a simple spatial Perlin Noise [Perlin 1985] applied to the entire area of the crater, resulting
in homogeneously spread irregularities. To improve upon this approach, we utilized the
same spatial Perlin Noise but applied it in polar coordinates with the center of the crater
as its origin, which we refer to as ”radial Perlin Noise.”

(a) Crater with no noise

(b) Crater with noise

Figure 5. Crater with and without noise comparison
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Using the crater center as the origin of a polar coordinate system it is possible
to calculate radial noise values for each crater in real-time. However, it’s also a good
idea to pre-compute these values with random seeds and store them in gray-scale noise
textures similar to the one in Figure 4. Utilizing textures is generally computationally
lighter than performing calculations in real-time, but the main advantage is to use them to
pre-compute normal maps, as illustrated in Figure 4.

During the coloring process, the normal map can be blended with the terrain’s
normals, enhancing the visual coherence of the crater. The gray-scale texture serves
multiple purposes: it can contribute to the deformation calculation, adding depth
irregularities to the terrain, and can also be used in the coloring as explained in the next
section.

3.3.3. Coloring the craters

Naturally, it is expected that an explosion strong enough to cause deformation in the
terrain would also affect its appearance. To achieve a realistic result, various textures and
colors were utilized. A high-resolution dirty texture was used as the base, and on top of
that, a dark color was added based on the distance from the center of the crater to create
the impression of burned soil.

The transitions between the colors of the crater and the surrounding terrain are
controlled by the distance of each pixel from the crater’s center, ensuring the gradual
blending of the crater’s borders with the terrain. To enhance the transition effect and
prevent a too-smooth blending, the distance from the center is combined with values from
the noise texture detailed in Subsection 3.3.2. This combination results in a more nuanced
and realistic transition between colors, as can be seen in Figure 5.

If multiple craters intersect, blending their colors can be accomplished relatively
easily. However, if the number of intersecting craters is significant, this process can
become computationally intensive. To address this issue, the decision was made to only
take into account the two most recently added craters when determining the color of the
region at the intersection.

4. Optimization

In the GPU, determining the presence of craters at a specific location requires accessing
the corresponding cell in the hash table. However, if that cell points to many craters, it
results in a high number of iterations during access. This issue arises when the cell size
is not suitable for the application, such as when deformations are concentrated in areas
smaller than the hash table cell size.

A high concentration of craters per cell is particularly problematic for coloring
because, as explained in Section 3.3.3, the color calculation must access the hash table
every frame, directly affecting the FPS. To address this issue, it is necessary to choose an
appropriate cell size. If many craters are likely to be created close to each other, smaller
cell sizes should be preferred.
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Figure 6. Performance measurement of coloring craters in a 500-meter diameter
area

To validate these hypotheses, we conducted tests to evaluate the performance of
our method in such scenarios. We utilized a terrain built with a Geometric Clipmap and
a hash table with 1024 by 1024 cells. We recreated the terrain six times, varying each
time the side length of the hash table cells from 500 meters to 25 meters. In all terrains,
we gradually added new craters over time, starting from zero and going up to 1000, while
measuring the FPS. To maximize the overlap of craters, all were randomly added within
a circular 500-meter diameter area, which matches the largest cell size we tested. The
craters’ size varied from 5 meters to 20 meters in diameter.

Since the goal of this test is to see how the hash table behaves in different
configurations, it was made an extra experiment using no hash table at all. Without it, any
attempt to colorize a fragment of the terrain should require iterating over all the craters,
even the ones that are further from the fragment’s world position.

The results of the experiment can be seen in Figure 6. These tests were conducted
on a computer equipped with an RTX 3060, i5 12400F, and 32GB of RAM while
rendering a large-sized terrain in full HD resolution. The chosen terrain for testing
employs Geometric Mipmap and it was developed inside the Unity game engine which
uses meters as its default wolds coordinate unit system.

As can be seen in Figure 6, the presence of a significant number of craters
concentrated in a few hash table cells has a notable impact on performance, leading to
an almost 50% decrease in FPS during one of the tests. It is evident that the hash table
is essential to the viability of this technique and smaller cell sizes can help in multiple
overlapped craters scenarios. The figure also indicates that a cell size of approximately 75
meters is optimal. Beyond this value, there is no significant improvement in performance,
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likely because the cell size approaches the average crater diameter used during the test.

5. Experiments and Results

number of craters

m
em

or
y 

us
ag

e

0 KB

200 MB

400 MB

600 MB

200 400 600 800 1000

Our Solution Deformation By Texture

(a) 10,000-meter diameter area

number of craters

m
em

or
y 

us
ag

e

0 KB

10 MB

20 MB

30 MB

200 400 600 800 1000

Our Solution Deformation By Texture

(b) 500-meter diameter area

Figure 7. Memory usage comparison

The main purpose of our method is to save memory by not storing the deformation
of a crater directly but instead storing the metrics necessary to calculate it
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during terrain loading. Traditional terrain deformation methods [Crause et al. 2011]
[Aquilio et al. 2006] use textures to store deformation data, which works well for small
terrains. However, on larger scales, the memory required by these textures becomes
prohibitively expensive.

[Crause et al. 2011] addressed this issue by using a caching system that keeps only
the most likely-to-be-used height map blocks in memory. However, their approach has a
limitation: deformations cannot occur too far from the player’s position because it would
require loading height map blocks that are not in the cache.

To evaluate the memory-saving performance of our method, we conducted two
tests under the same configuration described in Section 4, using a hash table cell side
length of 500 meters. The only difference was the test areas: one was a small circular area
with a 500-meter diameter, and the other was a larger area with a 10,000-meter diameter.
During these tests, we measured memory consumption.

We compared our solution to a classical texture deformation method
[Crause et al. 2011], where deformations are stored in height map textures and used to
reshape the terrain during rendering. The textures used were 128 by 128 pixels, with
each pixel representing 1 meter at the most refined LOD. For accuracy, we measured
the total memory usage, including all components, not just the memory used by caching
mechanisms or similar techniques.

Figure 7 demonstrates that deformation using height map textures is advantageous
for small areas since many of the deformations are stored within the same texture,
maintaining consistent memory usage. However, even under these conditions, the use
of textures results in significantly higher memory consumption compared to our method.

6. Visual Results

Figure 8. Double crater intersection
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As described in Section 3.1, the shape of our craters can vary based on four distinct
variables: R1, R2, H4, and D5. In this section, we present illustrative examples of craters
generated using our solution, showcasing different soil types and sizes.

Figure 9. Example of a crater with high values for depth and height variables

Figure 10. Example of a crater viewed from first person

Figures 12 and 9 illustrate the range of crater shapes and sizes our
parameterization can achieve. The larger crater demonstrates the use of high depth and
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significant height, resulting in pronounced deformation. In contrast, the smaller crater
shows the effect of shallow depth and no height, resulting in less prominent deformation.
By adjusting these parameters, we can create a diverse array of crater shapes and sizes.
Craters from Figure 10 and 13 also showcase the parametrization but when seen from the
first person.

(a) Red dirt terrain

(b) Dense vegetation terrain

Figure 11. Craters generated using different scenarios
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Figure 12. Example of a crater with no height. Internal and external deformation
zones values are equal to zero

Figure 13. Another example of a crater viewed from first person

Figure 8 provides visual illustrations of the interaction between multiple craters
within our solution. In these examples, we showcase the accurate vertex displacement
calculation, as described in Section 3.1 which enables us to recreate the deformations
caused by the presence of multiple craters. In Figure 11, it can be seen how the craters
can be applied to different types of vegetation and colors.
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7. Conclusion and Future Work
In this paper, we presented a new approach for simulating real-time terrain deformations
caused by explosions in video games. Our method uses a hash table structure to store
deformation information, allowing us to create deformations even in areas that are at
great distances from the player without compromising memory. As a result, the game can
simulate deformation events that happen simultaneously over large terrains.

There are several directions in which this work can be extended. One possible
avenue is to explore the use of different data structures to store deformation information,
such as octrees or other spatial partitioning structures. Another direction is to investigate
how this approach can be applied to 3D-based terrain systems, where the problem of
overlaps between deformations can be more challenging. Additionally, the integration
of physically-based simulations for the terrain deformation caused by explosions could
increase the realism of the simulation. Finally, our approach can be extended to handle
other types of interactions with the terrain, such as impacts caused by bullets, vehicles, or
other objects.
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