
XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

Enhancing Player Levels in the Nim Game Using Genetic
Algorithms

Matheus Peres1, Francisco Henrique de Freitas Viana1, Kennedy M. Fernandes2,
Pedro Henrique Gonzalez3, Leandro de M.B. Soares1, Eduardo Bezerra1,

Joel Andre F. dos Santos1, Diego Brandão1

1 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ)
Rio de Janeiro – RJ – Brasil

2Universidade Federal do Sul da Bahia (UFSB)
Teixeira de Freitas, BA – Brasil

3Universidade Federal do Rio de Janeiro (UFRJ)
Rio de Janeiro, RJ – Brasil

{francisco.viana,diego.brandao}@cefet-rj.br

Abstract. The Nim game is a fundamental example in combinatorial game
theory, exemplifying impartial games where moves depend solely on the current
position. Creating difficulty levels in Nim for computer play presents challenges,
as small changes in game element positioning can significantly alter the game’s
difficulty. Initial ideas, such as randomly applying the winning formula or
ensuring constant computer wins, but it proved unsatisfactory due to erratic
or discouraging gameplay. This article proposes using Genetic Algorithms
(GAs) to develop varied difficulty levels in Nim. Our approach avoids the
established winning formula, making defining an independent fitness function
complex. Instead, we employ a competitive coevolutionary fitness function,
where individuals are evaluated against each other, allowing the fitness criteria
to evolve with the population. This method produces more nuanced and
engaging difficulty levels, enhancing player experience through a balanced and
evolving challenge.
Keywords Combinatorial Games, Nim game, Genetic Algorithms.

1. Introduction

The Nim game is important in combinatorial game theory, serving as a primary example
of an impartial game. An impartial game is one where the available moves depend only
on the current position and not on which player is making the move. Analyzing Nim
helped establish fundamental concepts and methodologies for studying more complex
games [Mukhar 2013].

It is often used as an educational tool to teach mathematical reasoning
and problem-solving. It helps students understand how to break down complex
problems into simpler parts and how to use logic to devise strategies [Rougetet 2018,
Stoffová et al. 2019].

Furthermore, Nim is well-known for its connection to binary numbers and
the concept of Nim-sum, where the binary representation of pile sizes are XOR



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

together [Bouton 1901]. The first player has a winning strategy if the Nim-sum is non-
zero, and the second player wins if the Nim-sum is zero.

A challenge in game development is balancing the interaction between the
game’s level design and the desired player experience. Changing the level’s layout
can affect the routes available and the interactions of various agents within the
level [Berseth et al. 2014]. Even minor adjustments to the positioning of game elements
can significantly alter the difficulty of the player’s journey toward their goal. In the
context of the NIM game, these adjustments are pretty delicate because, as mentioned,
the strategies for winning a game are well-known.

This article aims to create difficulty levels in the game played against the
computer. One initial idea would be randomly applying or not the formula. However, this
would generate a characteristic far from a human being, toggling between very smart and
weak plays that do not make sense together. Another possibility is to apply the formula
so that the computer player always wins, which would end up causing human players to
lose interest in the game.

The idea developed here is based on artificial intelligence techniques. Specifically,
we have used Genetic algorithms to create different levels in the NIM game. A
genetic algorithm (GA) is a good option for evolving an average human-like machine
player. This player is neither a novice nor an expert but represents the typical player
who understands the basic rules and strategies of the game. This is possible because
the instances used to develop the genetic algorithm were generated from the plays
of different human players, so in a way, the GA generates human behavior. In our
approach, the algorithm does not consider the formula proposed by [Bouton 1901].
In this case, it becomes a complex task to establish an independent fitness function to
evaluate the individuals. A competitive coevolutionary fitness function seems a more
advantageous tool [Angeline e Pollack 1993]. In competitive fitness, each individual
from the population is only evaluated against others. Thus, our fitness function evolves as
the population proceeds with more qualified individuals in the GA generations.

This article is structured in six more sections. The Section 2 presents related
work. Section 3 presents some definitions of the NIM game. Section 4 presents the
genetic algorithm approach developed. The computational experiments are presented in
Section 5. Finally, Section 6 presents the final considerations of the work.

2. Related Work

Competitive fitness functions have multiple advantages against the usual independent
functions commonly applied in GA. Many complex problems require very
little knowledge of the domain and the search space [Angeline e Pollack 1993,
Takagi e Pallez 2009, Rosin e Belew 1996]. When the nature of the problem allows it,
competition between individuals in the population can be used as a performance measure
instead of an objective function [Vrajitoru 2007]. Empirical studies have analyzed the
effects on the performance of the dependency between algorithm properties and problem
properties [Popovici et al. 2012].

In general, the coevolutionary algorithm evaluates individuals based on their
interactions with other individuals. Coevolutionary programming falls into two main



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

groups: Competitive and Cooperative Coevolutionary algorithms. In cooperative
coevolution, individuals from each species temporarily enter collaborations with members
of the other species and get rewarded according to the success of the collaborations in
solving objective functions [Potter 1997]. In [Luke et al. 2011], a study is conducted
regarding the parameter settings for moderately large problems and the use of large
populations.

Back to competitive coevolution, we present some works that successfully applied
competitive fitness functions in evolutionary programming. [Rosin e Belew 1995,
Rosin e Belew 1997] have used competitive coevolution in three domains: Tic-Tac-Toe,
Nim game, and a small version of Go. They have presented new methods for fitness
evaluation with multi-population. The first one is called Competitive Fitness Sharing,
in which an individual‘s fitness is divided by the sum of its similarities with the other
individuals in the population. Second, they present Opponent Sampling, which tests each
individual in the host population against only a limited sample of parasites from the other
population. Third, they introduce the Hall of Fame, in which the best individual from
every generation is retained for future testing [Rosin e Belew 1995, Rosin e Belew 1997].

Competitive coevolutionary fitness was used to evolve decision-making strategies
in multiple other games. In [Hauptman e Sipper 2005], genetic competitive
programming evolved a game-playing strategy for chess endgames. They have
used K-Random opponents [Panait e Luke 2002] to evaluate each individual in the
population. The evolved program finished second in the 2004 Computer Chess
Championship. In [Fernández-Ares et al. 2017], genetic programming has been applied
to create the behavioral engine of bots able to play a simple Real-Time Strategy
(RTS) game. They conclude that so-called victory-based fitness generates better
bots, on average, than other objective functions tested. Furthermore, battle strategy
games [Wilisowski e Dreżewski 2015], 8-card poker [Oliehoek et al. 2006], Othello
[Szubert et al. 2013], chess endgames [Sipper et al. 2007, Hauptman e Sipper 2005],
backgammon, and tank-fight simulation [Sipper et al. 2007] were also used as a domain
for competitive coevolutionary programming.

Besides games, real-world problems have also been solved using competitive
coevolution. Competition-based fitness was used to find suppliers’ optimal strategies in a
deregulated electricity market [Ladjici et al. 2014]. Additionally, the so-called BrilliAnt
won the Ant Wars contest at the GECCO-2007 Genetic and Evolutionary Computation
Conference. They have used competitive one-population coevolution to evolve the ant
to collect food in a square toroidal grid environment in the presence of competing ants
[Jaśkowski et al. 2008]. Moreover, competitive fitness has outperformed objective fitness
in evolving a multi-agent autonomous pilot for motorcycles. The objective function was
based on average speed and time efficiency criteria, while the competitive function used
the K-Random Opponents model [Vrajitoru 2007].

Some studies have also explored the consequences of intransitive superiority
in coevolutionary programming [Funes e Pujals 2005, Watson e Pollack 2001,
Luke e Wiegand 2002, Samothrakis et al. 2012]. In an intransitive game, if A beats
B and B beats C, not necessarily A beats C. Intransitivity is one of the main reasons
for cycles in the population dynamics [Watson e Pollack 2001]. By definition, the Nim
game is an example of an intransitive domain.



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

The use of genetic algorithms for the NIM game is not new, as seen from the
literature review. However, previous work has primarily focused on the genetic algorithm
itself and the development of coevolutionary competitive approaches. This is the first
work focused on developing a player-machine that behaves almost on the level of a player
applying the victory pattern formula, allowing the human player to encounter significant
difficulty and still have a chance of winning. It is also the first to compare three different
fitness evaluation methods.

3. NIM Game
There are multiple different versions of the Nim game found in the literature. Here, we
will present three: a Random Start Nim Game, a Single Heap Nim Game, and a Fixed
Start Nim Game.

3.1. Random Start Nim Game (RSN)

In RSN, the initial configuration consists of several heaps of objects (we will treat these
objects as matchsticks), as shown in Figure 1. Two players take turns removing an
arbitrary number of matchsticks from a single heap at a time. The player who removes
the last matchstick on the table loses the game.

Figura 1. Example of Nim game

In our experiments, the simulations always start with four heaps. The number of
matchsticks in each of the four heaps is randomly set for each game with a value ranging
from 1 to N. Where N is the maximum number of matchsticks a heap can assume in the
evolutionary run. The player who starts each game is also set at random.

In this paper, we evolve machine players that simulate a medium human being.
For this, we set a limited time for GA to run and compare the performance of different
techniques. We will test and compare three competitive fitness methods to select the
best for generating a machine player: Single-Elimination Tournament, round-robin, or
K-random [Angeline e Pollack 1993, Panait e Luke 2002].

3.2. Single Heap Nim Game (SHN)

In this version of Nim, one single heap is placed on the table, and players alternate
between removing matchsticks. However, the number of matchsticks that a player can
remove is bounded by a minimum and a maximum value. The player who removes the



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

last matchstick loses. GA is applied to the SHN domain with competitive fitness by
[Hynek 2004] and [Panait e Luke 2002]. Both have used a single population to evolve
a Nim game machine player. [Hynek 2004] also explores using the macromutation
operator, the Headless Chicken Crossover. In macromutation, random individuals are
inserted into the population during evolution. This technique is used to encourage
diversity and thus avoid premature convergence.

3.3. Fixed Start Nim Game (FSN)

This version is very similar to the RSN that we are using here. Players take turns removing
an arbitrary number of matchsticks from one of the heaps at a time. However, in this
version, the player who removes the last matchstick wins. The four heaps always start
with 3, 4, 5, and 4 matchsticks, respectively: (3, 4, 5, 4).

FSN is applied to competitive fitness in [Rosin e Belew 1995,
Panait e Luke 2002]. [Panait e Luke 2002] compares five different methods for
evaluating an individual. In Round Robin, individuals are tested against the entire
population. Each individual plays only one game against an opponent in a random
pairing. In the Single-Elimination Tournament, individuals are randomly paired to play
one game; the losers are eliminated, and this continues until reaching the champion.
In K-Random, each individual plays against K individuals randomly selected from the
population. In the Hall of Fame, individuals are tested against the good individuals
discovered so far in the evolution.

[Panait e Luke 2002] concludes from the experiments that Round Robin always
appears to be a wrong choice against K-Random when both have a maximum time to run.
In this work, we will compare the performance of Round Robin and K-Random again,
now in the RSN Domain, and use another external function to evaluate the GA efficiency.

4. Our Approach

The main goal of this paper is to evolve machine players that simulate the behavior of
an average human being playing the Nim Game. We aim to reach it in multiple search
spaces, varying the maximum number of matchsticks per heap, which affects the total
number of possible situations in the game. It is natural to imagine that increasing the
search space creates stricter work for the GA to reach the objectives.

We will also test GA, considering its limited time to run. To compare the
performance of different methods and operators, we will run GA multiple times under
the same circumstances and during the same time, varying only one parameter per test.
Thereby, we can determine which competitive fitness function presents the best results.

The GA will be applied with one-population evolutionary runs, high elitism, and
competitive fitness functions. Individuals will be evaluated by one of the three fitness
methods. The individuals who obtain the best scores in the fitness evaluations will proceed
intact to the next population to decrease the probability of losing the best individual so
far in the run (elitism). The missing spots in the next population will be filled with the
crossover of the entire old population, where the chance of crossing is proportional to the
individual’s evaluation against the others.

Figure 2 shows the flowchart of the GA operators and how they were set.



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

Figura 2. Flowchart shows an overview of how GA was set to operate

4.1. Solution Representation

We will treat each game situation in ascending order of matchsticks per heap, considering
all permutations as the same situation. For example, if (4, 3, 2, 1) appears during a game,
it will be converted to (1, 2, 3, 4) before any work over it. With this, we can shorten
search space. Taking this, counting with (0, 0, 0, 0), the total number S of different
situations, considering R heaps and a maximum of N matchsticks per heap, characterizes
a combination with repetition allowed (multiset). The value of S is then given by the
Equation 1.

S(N,R) =
(N +R)!

N !×R!
(1)

The chromosome from an individual will be represented as a set of ordered pairs
(X, Y) with integers, one pair for each situation. X is the number of matchsticks in a heap
before the play, and Y is the number of matchsticks left in the same heap after the play. It
is important to notice that X should be one of the four values in the concerning situation.
Also, Y should be less than X. For instance, if the problem is (1, 2, 2, 3), X=2, and Y=1,
the situation left after the play should be (1, 1, 2, 3). We should also notice that it does
not matter which heap containing 2 matchsticks will take the play because, as we have
mentioned, the order in which the heaps are set does not count.

The population is generated based on this concept of chromosomes. Many



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

individuals are randomly created. Each individual is filled with one random (X, Y) pair
for each possible situation. So, the chromosome size of an individual will change if we
change the number of situations by changing the maximum number of matchsticks per
heap.

4.2. Fitness Function

There are multiple methods to evaluate a population in a competitive environment. The
choice of a fitness function may affect two main points in the GA run. First, varying
the function can change the time the algorithm takes to evolve a population through each
generation. Second, opting for a good fitness function may retard a convergence to a local
optimum.

We will consider three different methods of competitive fitness function. We aim
to determine which presents the best performance under the same conditions and during
the same time to run.

4.2.1. Round Robin

In Round Robin (Full Competition), each individual once plays all the others in the
population. Each game counts for the fitness of both individuals involved. The number
of wins represents the individual’s fitness. This is known to be a costly function when it
comes to wasting time because of the large number of games required.

The number of games in each generation for Round Robin (GR), as a function of
the population size (P), is given by the simple combination presented in Equation 2.

GR(P ) =

(
P

2

)
=

P × (P − 1)

2
(2)

4.2.2. K-random

In K-random, every individual plays k (in lower case) randomly selected individuals from
the population. In our experiments, each game also counts for both players. However,
once the opponents are randomly picked, individuals may have a different number of
games played. An individual’s fitness is determined by the percentage of wins instead of
directly taking the number of wins. The round-robin method is similar to K-random when
k tends to the population size. Playing only k individuals instead of the whole population
is mostly used to decrease the time to evaluate the fitness of a population.

Once we vary the population size in different runs, we will consider K (in the
upper case) equal to the percentage of the population size with which individuals will
play, so 0 < K < 1. So k stands for the number of individuals to play against, while
K stands for the percentage of individuals to play against. The number of games in each
generation for K-Random (GK), as a function of the population (P ) and the number K, is
given by the sum of K ∗P games for each player (i), which leads to the formula presented
in Equation 3.



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

GK(P,K) =
P∑
i=1

KP = P ×KP = KP 2 (3)

4.2.3. Single-Elimination Tournament

Each individual plays one randomly paired game in a Single-Elimination Tournament
(SET). The losers are eliminated, which goes over until a champion is reached. As in K-
Random, SET is generally used to shorten the number of games played in each generation
even more. To apply SET, the population size should be a power of two so that the
tournament ends perfectly with two opponents to play.

Figura 3. Number of games in each level of SET

For SET, the number of games per generation (GS), as a function of the population
size (P), is given by the sum of the powers of two represented in Figure 3, for a population
P=16. This leads to the formula presented in Equation 4. It represents the number
of games per generation(GS) in a Single-Elimination Tournament as a function of the
population (P).

GS(P ) =

log(P )−1∑
i=0

2i = P − 1 (4)

Round Robin, K-Random, and SET methods require a very different amount of
games per generation. Plotting the three functions to compare their behavior regarding
the population size is interesting. Figure 4 presents GR(P), GK(P, 0.2), and GS(P) with
the population size ranging from 0 to 32. As we expected and see in the plot, the gap
between the methods regarding the number of games required increases as the population
increases.

4.3. Cross-over

As mentioned in 4.1, the chromosome comprises a set of ordered pairs (X, Y), one pair
for each situation. In this work, we use a uniform crossover. Each ordered pair in a
chromosome has a probability of 0.5 from each parent. Figure 5 represents a possible
crossover of Parent 1 (in blue) and Parent 2 (in red), while the green color represents
mutation as will be described in Section 4.4.

All individuals in the population have a chance to crossover. We use the roulette
wheel selection to pick couples to reproduce. The probability of being selected to
crossover is proportional to the individual’s fitness. Thus, the best and worst individuals



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

Figura 4. Number of games per generation needed in K-Random, Round Robin,
and SET

in the generation may get to crossover, which should avoid uniformity among the
competitors.

We allow elitism to guarantee that the quality of the solution is not reduced.
Individuals with the best fitness are carried over unaltered to the next generation. We have
experimentally noticed that a large elitism in this domain, around half of the population,
seems beneficial to the attempt to accelerate the GA results.

4.4. Mutation

After newborn individuals are created, the mutation is added to their chromosomes to help
maintain genetic diversity. There is a small probability that random pairs (X, Y) are added
to modify the chromosome. The mutation is represented (in green) in Figure 5.

Figura 5. Mutation

5. Experiments

The experiments were performed using computational routines implemented in Java
language on an Intel(R) Xeon(R) Gold 5120 CPU 2.20GHz, with 28 cores and 192GB
of RAM.

We target to run two main experiments. First, K-Random, round-robin, and
Single-Elimination Tournaments (SET) will be compared under the same circumstances.
We will test the scalability of these methods concerning the search space size. Second,
we will take qualitative tests with average human beings, i.e., those who have not played
the game before and have just learned the rules.



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

We use an objective external fitness to determine the algorithm achievements. As
mentioned in Section 1, winning the Nim game depends on a formula that uses binary
numbers to determine if a play is not leading to a win [Bouton 1901]. Therefore, we will
analyze all the plays composing the chromosome of each individual so we can plot the
number of perfect plays of the best individual from each generation. It is important to
emphasize that the GA does not know this formula. It is only used to measure the GA’s
performance. GA evaluates each individual by comparing its number of wins against
other individuals.

5.1. Competitive Fitness Techniques

The purpose is to compare the performance of K-Random, Round Robin, and SET. These
methods use different procedures to evaluate the fitness of the population. Because
different procedures may require a different amount of time, each competitive fitness
method will have the same maximum running time instead of a limited number of games.

Multiple experiments have used the FSN domain in the literature, where games
always start with (3, 4, 5, 4) matchsticks in each heap. Even though this is an exciting
set to start games, we aim to vary the search space dimension by changing the maximum
number of matchsticks per heap (N) that games can start with.

This work will compare the three competitive fitness techniques in search spaces.
First, games will start with heaps containing a random number of matchsticks ranging
from 1 to 5. This limit (N=5) includes all the possible situations in the Fixed Start Nim
Game used in other works. Second, we will set N=10. The number of potential situations,
such as the chromosome size, S(N, 4), grows exponentially as we increase N. Games will
have at most five matchsticks per heap in the first set of runs. K-Random, Round Robin,
and Single-Elimination Tournament will have 15 seconds to run.

Parameters were empirically set. In the experiments, the best half of the
population passes identically to the next population (elitism). The other half is completed
using the roulette wheel crossover technique. The entire population can crossover, but the
probability is proportional to the individual´s fitness.

Table 1 shows the parameters used in the first set of tests. With these settings,
we ran the three fitness methods for 15 seconds. For this test, we set K=0.2 (20% of the
population) in the K-Random method. Figure 6 shows the number of perfect plays of the
best individual so far reached by each method through the generations. The results are
an average of 30 runs for each method. For N=5, there is a maximum of 103 situations
where a perfect play can be made.

As shown in Figure 6, K-Random evolves a better individual for N=5, followed
by Round Robin. SET comes last. In the second set of runs, we use N equals 10. The
fitness methods will now have 2 hours to run. The intention is to determine whether the
search space dimension influences the performance of the methods.

We need a larger population to obtain good results as the search space increases.
With an exponential growth of search space and number of games, the GA requires much
more time when we double the N. Table 2 presents the parameters used in the second set
of tests. For this comparison, we test different values of K in K-Random. Figure 7 shows
the outcome of the fitness methods to evolve Nim game players. For N=10, a maximum



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

Tabela 1. Parameters for N=5

Parameters Values
N 5

S(5,4) 126
Max. Number Perfect Plays 103

Runtime 15s
Population 200
Mutation 0.02
Elitism 0.5

Macromutation 0
Fitness Method Variable

of 910 situations allow a perfect play.

Figura 6. Performance of K-Random, Round Robin, and Single-Elimination
Tournament to evolve game strategies with at most 5 matchsticks per heap

Unlike the case with N=5, when we increase N to 10, Round Robin performs a
better result than SET and K-Random for any value of K less than 100%.

Tabela 2. Parameters for N=10

Parameters Values
N 10

S(10,4) 1001
Max. Number Perfect Plays 910

Runtime 2h
Population 600
Mutation 0.02
Elitism 0.5

Macromutation 0
Fitness Method Variable

With these two tests involving K-Random, Round Robin, and SET, we are tempted
to affirm that the performance of each method in comparison to the others depends on



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

search space. For RSN, as we have seen in Figures 6 and 7, as we increase the maximum
number of matchsticks per heap in the games, it becomes a better option to use a method
that requires more games to evaluate the population.

Figura 7. Performance of K-Random, Round Robin, and Single-Elimination
Tournament to evolve game strategies with at most 10 matchsticks per
heap

5.2. Discussion and Limitations
This study proposes using genetic algorithms (GAs) to develop varying difficulty
levels in the game Nim and enhance the player experience through balanced and
evolving challenges. The traditional victory formula for Nim was avoided, making
defining an independent fitness function complex. Instead, we employed a competitive
coevolutionary fitness function, where individuals are evaluated against each other,
allowing the fitness criteria to evolve with the population.

Our experiments were designed to compare three competitive fitness evaluation
methods: K-random, round-robin, and Single-Elimination Tournament (SET). These
methods were tested in different search space dimensions, varying the maximum number
of matches per stack (N). K-Random showed superior performance for smaller search
spaces (N=5), evolving better individuals faster than Round Robin and SET. However,
as the search space increased (N=10), Round Robin outperformed the other methods,
indicating that the efficiency of the fitness evaluation method depends on the complexity
of the problem space.

The results showed that GAs with competitive coevolutionary fitness functions can
effectively generate human-like game strategies in the Nim game. This approach can lead
to more engaging and balanced difficulty levels, improving player satisfaction. However,
human users’ satisfaction and engagement with the game are needed to be evaluated.

6. Final Remarks
As a fundamental model in combinatorial game theory, the Nim game offers profound
insights into impartial games and is an excellent educational tool. Its connection to binary
numbers and the concept of Nim-sum provides a clear framework for understanding
winning strategies. However, designing varying difficulty levels for computer-based Nim
play presents unique challenges.

Our exploration of using genetic algorithms (GAs) to address these challenges
has demonstrated the potential for creating more engaging and balanced gameplay



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

experiences. By avoiding reliance on the traditional winning formula and employing a
competitive coevolutionary fitness function, our approach allows the difficulty levels to
evolve, simulating human-like play and maintaining player interest.

This study highlights the benefits of integrating advanced AI techniques in game
design to enhance player experience and further educational objectives in mathematical
reasoning and problem-solving. Future work may explore refining these algorithms and
applying similar methods to other games, ultimately contributing to the broader field of
game theory and AI-driven game design.

Acknowledgements

The authors would like to thank the following Brazilian Agencies: CAPES and the
National Council for Scientific and Technological Development - CNPq. DB thanks
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
(FAPERJ) for the financial support through the grants E-26/210.798/2024.

Referências

Angeline, P. e Pollack, J. (1993). Competitive environments evolve better solutions
for complex tasks. In Proceedings of the 5th International Conference on Genetic
Algorithms, page 264–270. Morgan Kaufmann.

Berseth, G., Haworth, M. B., Kapadia, M., e Faloutsos, P. (2014). Characterizing and
optimizing game level difficulty. In Proceedings of the 7th International Conference
on Motion in Games, pages 153–160.

Bouton, C. L. (1901). Nim, a game with a complete mathematical theory. The Annals of
Mathematics, 3(1/4):35–39.

Fernández-Ares, A., Mora, A., Garcı́a-Sánchez, P., Castillo, P. A., e Merelo, J. (2017).
Analysing the influence of the fitness function on genetically programmed bots for a
real-time strategy game. Entertainment Computing, 18:15–29.

Funes, P. e Pujals, E. (2005). Intransitivity revisited coevolutionary dynamics of numbers
games. In Proceedings of the 7th annual conference on Genetic and evolutionary
computation, pages 515–521.

Hauptman, A. e Sipper, M. (2005). Gp-endchess: Using genetic programming to evolve
chess endgame players. In European Conference on Genetic Programming, pages
120–131. Springer.

Hynek, J. (2004). Evolving strategy for game playing. In 4th international ICSC
symposium on engineering intelligent systems, pages 1–6.

Jaśkowski, W., Krawiec, K., e Wieloch, B. (2008). Winning ant wars: Evolving a human-
competitive game strategy using fitnessless selection. In Genetic Programming: 11th
European Conference, EuroGP 2008, Naples, Italy, March 26-28, 2008. Proceedings
11, pages 13–24. Springer.

Ladjici, A. A., Tiguercha, A., e Boudour, M. (2014). Nash equilibrium in a two-settlement
electricity market using competitive coevolutionary algorithms. International Journal
of Electrical Power & Energy Systems, 57:148–155.



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

Luke, S., Sullivan, K., e Abidi, F. (2011). Large scale empirical analysis of cooperative
coevolution. In Proceedings of the 13th annual conference companion on Genetic and
evolutionary computation, pages 151–152.

Luke, S. e Wiegand, R. P. (2002). When coevolutionary algorithms exhibit evolutionary
dynamics. In 2002 Genetic and Evolutionary Computation Conference Workshop
Program, pages 236–241.

Mukhar, K. (2013). Using evolutionary computing to develop game strategy for a non-
deterministic game. PhD thesis, University of Colorado Colorado Springs.

Oliehoek, F. A., De Jong, E. D., e Vlassis, N. (2006). The parallel nash memory for
asymmetric games. In Proceedings of the 8th annual conference on Genetic and
evolutionary computation, pages 337–344.

Panait, L. e Luke, S. (2002). A comparison of two competitive fitness functions. In
Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation,
pages 503–511.

Popovici, E., Bucci, A., Wiegand, R. P., e De Jong, E. D. (2012). Coevolutionary
principles.

Potter, M. A. (1997). The design and analysis of a computational model of cooperative
coevolution. George Mason University.

Rosin, C. D. e Belew, R. K. (1995). Methods for competitive co-evolution: finding
opponents worth beating. In ICGA, pages 373–381. Citeseer.

Rosin, C. D. e Belew, R. K. (1996). A competitive approach to game learning. In
Proceedings of the ninth annual conference on Computational learning theory, pages
292–302.

Rosin, C. D. e Belew, R. K. (1997). New methods for competitive coevolution.
Evolutionary computation, 5(1):1–29.

Rougetet, L. (2018). Machines designed to play nim games (1940–1970): A possible (re)
use in the modern french mathematics curriculum? Teaching and Learning Discrete
Mathematics Worldwide: Curriculum and Research, pages 229–250.

Samothrakis, S., Lucas, S., Runarsson, T. P., e Robles, D. (2012). Coevolving game-
playing agents: Measuring performance and intransitivities. IEEE Transactions on
Evolutionary Computation, 17(2):213–226.

Sipper, M., Azaria, Y., Hauptman, A., e Shichel, Y. (2007). Designing an evolutionary
strategizing machine for game playing and beyond. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 37(4):583–593.

Stoffová, V. et al. (2019). Computer games as a tool for the development of algorithmic
thinking. European Proceedings of Social and Behavioural Sciences, 53.

Szubert, M., Jaśkowski, W., Liskowski, P., e Krawiec, K. (2013). Shaping fitness function
for evolutionary learning of game strategies. In Proceedings of the 15th annual
conference on genetic and evolutionary computation, pages 1149–1156.



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Computação

Takagi, H. e Pallez, D. (2009). Paired comparison-based interactive differential evolution.
In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pages
475–480. IEEE.

Vrajitoru, D. (2007). Competitive coevolution versus objective fitness for an autonomous
motorcycle pilot. In 2007 IEEE International Conference on Electro/Information
Technology, pages 557–562. IEEE.

Watson, R. A. e Pollack, J. B. (2001). Coevolutionary dynamics in a minimal substrate.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2001), pages 702–709.

Wilisowski, Ł. e Dreżewski, R. (2015). The application of co-evolutionary genetic
programming and td (1) reinforcement learning in large-scale strategy game vcmi.
In Agent and Multi-Agent Systems: Technologies and Applications: 9th KES
International Conference, KES-AMSTA 2015 Sorrento, Italy, June 2015, Proceedings,
pages 81–93. Springer.


