
XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

Developing HLA distributed simulations using Model-Driven
DSEEP with OPM

João Gabriel da Cunha Schittler1, Alexandre Chagas Brites1,
Henrique de Oliveira Gressler1, Raul Ceretta Nunes1

1Graduate Program in Computer Science – Technological Center
Federal University of Santa Maria (UFSM) – Santa Maria – RS – Brazil

{jgschittler,acbrites,ceretta}@inf.ufsm.br

henriquegressler@gmail.com

Abstract. Distributed simulations aim to replicate real-world behavior via
computer networks. Developing source code for such simulations, especially
while following standards like High-Level Architecture (HLA), is often error-
prone due to its complexity, prompting code generators requiring abstract
models. This work proposes a model-driven methodology that explores the
Object-Process Methodology (OPM) modeling language in conjunction with
UML to generate accurate and readable high-level models in DSEEP and
transform them into code. For results, we present a case study in which a
stakeholder with no prior knowledge of OPM was tasked and succeeded with
modeling a distributed simulation to show how learnable and understandable
OPM is, bridging the gap between conceptualization and implementation.
Keywords Distributed Simulation, High-Level Architecture, Model Driven
Architecture, Object Process Methodology.

1. Introduction
In the industries that produce distributed simulations (DS), interoperability among serious
games (simulators) is an inherent requirement. One of the most prevalent standards for
achieving this interoperability is the High-Level Architecture (HLA) [IEEE 2010], which
leverages the publish/subscribe architecture as its foundational framework. Within the
HLA framework, a DS is referred to as a “Federation,” and each interconnected simulator
assumes the role of a “Federate” within that federation. HLA also defines the utilization of
a Federation Object Model (FOM) file to delineate the objects, interactions, and data types
that will be exchanged over the federation network. The widespread adoption of HLA
transcends various sectors, encompassing domains such as industry [Possik et al. 2023],
gaming [Choi et al. 2013], healthcare [Petty e Windyga 1999], military [Lee et al. 2005],
and space [Crues et al. 2022]. However, there are two widely known challenges when
developing HLA distributed simulations [Möller et al. 2006] [Graham 2007]: i) to design
an adequate and concise FOM file that aligns with the simulation’s objectives; and ii) to
accurately implement the simulation source code to conform to the established and ensure
effective execution of the simulation environment.

In game development, HLA can provide a common interface from which different
games can offer interoperability. This is particularly useful for simulator-type games.
It can also be used as a solution for distributed server architectures, helping overcome
scalability problems [Lees et al. 2006].

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

The Distributed Simulation Engineering and Execution Process (DSEEP)
[IEEE 2022] is a widely recognized development process for distributed simulations that
helps HLA-based developing processes. DSEEP defines clear steps to be followed to
create a distributed simulation, from the definition of the simulation objectives and the
conceptual modeling to the development and testing of the simulation.

Despite DSEEP, developing HLA simulations comes with its own set of
challenges. Implementing the simulation source code can be quite error-prone and
complex, requiring at least the use of automatic code generators from the federation
object model (FOM) [dos Santos e Nunes 2022]. Model-Driven Architecture1 (MDA)
is an approach to software design that provides guidelines for structuring software
specifications expressed as models, separating business and application logic from
underlying platform technology. In MDA, the simulation conceptual model can be, for
example, a set of SysML2 diagrams [Bocciarelli et al. 2019a], but the effort to produce
the required output to solve the requirements can often be a complex task [Mall 2018]. It
happens mainly when the separation of business and application logic is unclear.

Assuming the main problem is to coordinate the stakeholders’ and project
developers’ understanding, in this paper, we propose a new methodology for developing
HLA distributed simulations. The methodology implements a Model-Driven DSEEP
exploring Object-Process Methodology (OPM) [Dori 2002] and Unified Modeling
Language (UML). The use of MDA to add automatic model transformations on
DSEEP was first explored in Bocciarelli [Bocciarelli et al. 2019b] and D’Ambrogio
[D’Ambrogio et al. 2019], where SysML was explored as a modeling language. However,
SysML may not be the most appropriate language for the first conceptual model due to
having multiple diagrams to properly represent the system’s structure and behavior. There
are many known challenges in user comprehension and complexity associated with using
multiple diagram types [Ong e Jabbari 2019]. Furthermore, the high information density
required to fill the many diagrams that compose a SysML model may not be well defined
at the initial modeling [Šenkỳr e Kroha 2021]. So, using conceptual modeling language
that requires less information to describe the simulation and is more readable can be of
greater utility in the first steps of software development approaches [Basnet et al. 2020].

In our proposed methodology, after the acquisition of the simulation´s
requirements, an OPM model is developed, containing complete diagrams for the
abstract views of the system. Depending on the amount of information described in the
requirements, more detailed diagrams also be made for less abstract parts of the system.
The stakeholders review this OPM model, and the missing information is filled in. The
finished OPM model is then transformed into a UML class diagram that is automatically
transformed until it becomes the simulation’s FOM and HLA source code.

In summary, the main contributions of this work are i) A new industry approach
to build HLA distributed simulation conceptual modeling that is more readable for
people with less knowledge of modeling languages. With greater model readability, the
readers will better understand the simulation’s conceptual vision, increasing the alignment
between what the stakeholders want the project to be and what the developers interpret.
Thus, this contribution enables easier conceptual modeling and reduces the risks of

1MDA specification available at https://www.omg.org/mda/
2SysML language specification available at https://www.omg.org/spec/SysML/

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

changes in project requirements; and ii) An implementation framework of such modeling
step inside a complete HLA simulation development methodology based on DSEEP and
using OPM and UML as the modeling languages, QVT-Operacional3 as the language
used for model-to-model transformations, and the StringTemplates template engine for
code generation.

The rest of this work is organized as follows: Section 2 presents the concepts
required to understand this work’s proposition; Section 3 provides the explanation of
this work’s proposed methodology; Section 4 briefly explains how the methodology was
implemented; Section 5 presents a case study that shows how someone with no previous
knowledge of OPM learned and modeled a DS; Section 6 discusses and compares related
works; Finally, Section 8 provides this work’s conclusions.

2. Background

2.1. HLA and DSEEP

When developing HLA federations that will run on a middleware called Run Time
Infrastructure (RTI), the FOM design must be aligned with the simulation’s goals, and the
simulation code must be correct and efficient. To facilitate this, the creation of conceptual
models and the use of model transformations until automatic code generation has been
explored in HLA-based simulation development.

DSEEP has seven main steps: Define Simulation Environment Objectives;
Perform Conceptual Analysis; Design Simulation Environment; Develop Simulation
Environment; Integrate and Test Simulation Environment; Execute Simulation; and
Analyse Data and Evaluate Results. Since this work’s contributions are focused on
improving conceptual analysis, our methodology is based on the first four steps of DSEEP.

2.2. Model Driven Architecture

Model Driven Architecture (MDA) is a software development standard proposed by
Object Management Group (OMG) that presents a software development guideline using
different abstract representations (models) of the final software. MDA defines three
types of abstract models: i) The Computation-independent Model (CIM) conceptually
defines the system without specifying computational aspects, such as the separations of
functionalities in different sub-systems; ii) The Platform-independent model (PIM) also
conceptually defines the system, taking into account the computational aspects involved,
providing a view that shows the general structure of the system. However, the PIM model
does not show the specific technologies used in different parts of the system; iii) The
Platform-specific model (PSM) defines the system, considering the computational aspects
and specifying the different technologies used within said system. From its abstract
models, MDA promotes model-driven development, allowing the automatic creation of
systems from well-defined models.

2.3. Object-Process Methodology

Object-Process Methodology (OPM) [Dori 2002] is a systems modeling language
specified as ISO/PAS 19450. An OPM model is composed of a set of Object Process

3QVT language specification available at https://www.omg.org/spec/QVT/

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

diagrams (OPDs), which comprises objects, processes, states, and links between them.
OPDs contain a system’s structure and behavior and can have different levels of detail
on particular objects and processes. A single object in an OPD can comprise several
objects/processes in another OPD. This feature allows the OPM developer to create OPDs
with differing levels of abstraction.

The OPM also has a mapping of model elements into English sentences with
complete equivalence to its diagrammatic form, called Object-Process Language (OPL),
allowing a more direct way to interpret what was modeled. Figure 1 illustrates OPM in
practice; it contains an OPD representing a system graphically alongside its equivalent
OPL textual representation. An OPM modeler can choose to write sentences using OPL
or make graphical models using OPD.

Figure 1. OPM Model Example.

3. OPM-UML based Model-Driven Methodology for DSEEP
This section presents this work’s proposed OPM-UML based model-driven methodology.
A general view of the methodology is presented in Figure 2 and will be explained
throughout this section.

Simulation
Specification

Meeting

Simulation's
Requirements

Objective
Defining
Meeting

Define Simulation
Environment
Objectives

Perform Conceptual
Analysis

OPM Model
Development

OPM PIM

Modelling
Review

R
ej

ec
te

d

OPM-UML
Transformation

UML PIM

Reviewed
OPM PIM

HLA
Annotation

Approved

UML PSM

HLAUML-FOM
Transformation

Caption

Document

Manual Activity

Automatic
Activity

Design Simulation
Enviroment

FOM FOM-HLA Code
Transformation

HLA Code

Develop Simulation
EnviromentStart

Perform Conceptual
Analysis

Caption

Development
Tool

Manual Activity

Automatic
Activity

Document

Design Simulation
Enviroment

Develop Simulation
Enviroment

OPCat

OPM Model
Development

OPM-UML
Transformation

HLA Annotation

HLAUML-FOM
Transformation

Developed
Java Program

Developed C#
Code Generator

FOM-HLA Code
Transformation

HLA Code

UML PIM

FOM

HLA UML

Figure 2. Proposed Development Methodology.

The OPM modeling process is employed at the beginning of the DSEEP “Perform
Conceptual Analysis” step. It receives the simulation’s requirements from two initial

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

meetings in the “Define Simulation Environment Objectives” step. One focused on
establishing general objectives, and another on specifying how they will be achieved.
These meetings are commonly attended by the project’s stakeholders, often non-technical
people. As such, their requirements are described with a high level of abstraction.
Modeling languages like UML and SysML require more than high-level simulation
specifications to correctly model the system’s structure and behavior, separated into
different model types. The use of OPM, which allows for more abstract models, in
our methodology aims to bridge the gap in abstraction between the stakeholder’s high-
level requirements and the need for more information on the lower-level simulation
specifications. This solution leads to a better understanding of the stakeholders’
needs, making the simulation conceptual modeling phase more flexible and friendly to
stakeholders and developers, avoiding errors, and reducing the project’s cost.

OPL is perhaps the biggest factor in allowing its diagrams to be readable by non-
technical people. The OPL mapping allows for an ease of understanding of the many
different types of links connecting processes and objects in a diagram. Thus, it increases
the readers’ comprehension of a conceptual model. Also, the simulation system’s lower-
level details can be represented without damaging the high-level view of a model by using
different levels of Object Process Diagrams (OPDs). Some OPDs can abstract many
aspects of the system in favor of readability, while others OPDs can contain many details
of specific parts of the system. Models with many diagram types, like UML and SysML,
can have many problems with development and user understanding [Ong e Jabbari 2019].
In summary, the adoption of OPM allows us low and high-level modeling using intuitive
graphical diagrams at the same time, and it also allows us to automatically generate OPM
elements based on textual input in OPL.

As seen in Figure 2, a special feature of the proposed methodology is the OPM
modeling review activity, where stakeholders evaluate the model before development
begins. In DSEEP, reviews are normally done after project development, in the “Analyse
Data and Evaluate Results” step. Our approach allows the development team to ask
questions regarding missing or ambiguous requirements while an abstract view of the
system is already being presented. This makes it so the stakeholders can understand more
simulation details and give their input regarding doubts about specific requirements. If the
developed model requires many changes to its high-level views, it is deemed “rejected,”
and the meeting of the specific objectives is again held. If the developed OPM model
requires only a few changes to its high-level views, these changes should be made (in
addition to completing the lower-level OPDs with the information gained during the
review), and the model is deemed “approved” to continue to the next activity.

Once the OPM model has been approved, the next step is transforming the PIM
into a PSM. UML class diagrams were chosen to model the PSM because treating all
of the OPM objects as classes with their own types makes it easier to change the class
type to fulfill a specific HLA role while maintaining the rest of the class intact. Only
class diagrams are used because the code generation receives FOM files, which are
strictly structural, so there is no need for the intermediate models to have diagram types
containing behavioral information. Transforming the OPM PIM into a UML PSM is
a process that requires two activities. First, the automatic OPM-UML model-to-model
transformation creates a UML PIM. Then, a manual model annotation step is performed

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

to specify the HLA roles (“Federate,” “Object,” or “Interaction”) of certain classes from
the UML PIM, creating the UML PSM (nicknamed HLAUML).

With the HLAUML model, the automatic HLAUML-FOM transformation can
occur. This transformation generates the FOM containing all data types, object/interaction
classes, attributes, and hereditary relations. The final step is the HLA code generation.
This transformation involves reading the input file and the language generation templates
and generating a usable HLA API from which the developer can build the federate.

Lastly, this methodology also maintains the possibility of solely using UML if that
is more convenient for the team developing the simulation. The UML model would be
developed, reviewed by the stakeholders, and then annotated. Afterward, it would follow
the same path as Figure 2.

4. Implementation for the proposed Methodology

The proposed methodology was implemented as depicted in Figure 3. Initially, the OPCat
[Dori et al. 2010] tool is used for the OPM modeling activity and for the OPM-UML
transformation. Then, a Java program was developed to facilitate model annotation
by providing an interface where the developer can choose which HLA role to give to
each class of the input model. This program also automatically runs programmed QVT-
Operacional model-to-model transformations to turn the annotated UML model into the
federation FOM. Lastly, the resulting FOM is then used by our developed Code Generator
to generate the final HLA code for the federation as it was specified by the FOM.

Simulation
Specification

Meeting

Simulation's
Requirements

Objective
Defining
Meeting

Define Simulation
Environment
Objectives

Perform Conceptual
Analysis

OPM Model
Development

OPM PIM

Modelling
Review

R
ej

ec
te

d

OPM-UML
Transformation

UML PIM

Reviewed
OPM PIM

HLA
Annotation

Approved

UML PSM

HLAUML-FOM
Transformation

Caption

Document

Manual Activity

Automatic
Activity

Design Simulation
Enviroment

FOM FOM-HLA Code
Transformation

HLA Code

Develop Simulation
EnviromentStart

Perform Conceptual
Analysis

Caption

Development
Tool

Manual Activity

Automatic
Activity

Document

Design Simulation
Enviroment

Develop Simulation
Enviroment

OPCat

OPM Model
Development

OPM-UML
Transformation

HLA Annotation

HLAUML-FOM
Transformation

Developed
Java Program

Developed C#
Code Generator

FOM-HLA Code
Transformation

HLA Code

UML PIM

FOM

HLA UML

Figure 3. Implementation of the Proposed Methodology.

5. Case Study

This section showcases a case study performed in order to demonstrate how OPM is
easily understood by people unfamiliar with it or other conceptual languages. In this case
study, a military software maintainer with only basic notions of conceptual languages
and no prior knowledge of OPM was tasked with developing an OPM model to represent
a federation connecting two real simulators used by the Brazilian Army to educate two
distinct sectors. This model would then be analyzed to determine if it accurately depicts
the simulation and to see what someone unfamiliar with conceptual languages can do with
OPM. We highlight that UML model and other developing tasks are automatic derived

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

from OPM model and are omitted on this section. The case study used two real simulators
here called STat and SCon and they have the following characteristics.

STat Simulator: i) A virtual tactical simulator developed to educate the people
in charge of giving orders to the operators of a specific artillery battery (STBattery);
ii) It represents a virtual environment where STBattery can be controlled and have its
specific operations be performed to execute missions; iii) It offers a visual and interactive
representation of the artillery systems, containing a 2D view of the terrain where military
units are represented by 2D symbols and a 3D view of the terrain with a movable camera
that represents the vehicles of STBattery with detailed 3D models; iv) Trainees use this
simulator to learn the doctrine required to use STBattery to perform missions and evaluate
the damage done to the targets.

SCon Simulator: i) Represents the overall environment of the military operation,
including allied and enemy forces, marked areas, movement routes, and other relevant
factors; ii) Contains information regarding the terrain’s topography and updates the
positions and statuses of the deployed units to reflect their actions during the operation.
iii) Does not have a personalized doctrine for the operation of STBattery (since it contains
various other types of units). Those details are abstracted in favor of only representing the
final effects on the targets that STBattery shot.

The first activity of this case study was the “Objective Defining Meeting”. This
meeting was held, and the main objective of this federation was established:

The main objective of the distributed simulation is to integrate the simulators SCon
and STat and enable military exercises involving STBattery to be executed in parts
by SCon and STat.

Furthermore, the following directives were solidified:
• Doctrine-specific actions regarding STBattery will be executed by STat to provide

the artillery commander trainees with a more immersive and realistic experience.

• Relevant data regarding the state of the mission, like target coordinates and current
battery position and where the launched munitions landed, shall be shared between
the simulators.

• Both simulators shall use the Real-Time Platform Reference (RPR) FOM
[Möller et al. 2014] as a basis for the distributed simulation communication.
Extending the FOM when it is deemed necessary to fulfill a requirement.

Following the “Objective Defining Meeting,” the “Simulation Specification
Meeting” was held, and a list of requirements was created. These requirements relate
to functionalities the simulators need to implement to be used during the simulation. The
Table 1) summarizes the requirements. Most classes present in the requirements are from
the RPR FOM specification.

From these requirements, the subject of this study (stakeholder that is not a
developer) was tasked with creating an OPM diagram containing all of the requirements
related to the direct communication between the simulators. The resulting OPDs can be
seen in figures 4, 5, and 6.

Initially, the stakeholder had some difficulties coming up with the main diagram,
as it was their first experience with OPM. However, after looking at some basic examples

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

Table 1. Summarized requirements of the distributed simulation between SCon
and STat.

RQ Description
RQ1 SCon should be Time Regulating. This means publishing the Time and TimeScale

interactions.
RQ2 SCon shall publish the allied and enemy units involved in the exercise with the

AggregateEntity RPR ObjectClass.
RQ4 SCon shall publish the Drawings and DrawingLayers that are present in its exercise.
RQ5 SCon shall publish the impact of munitions from units owned by it with the

MunitionDetonationClass RPR InteractionClass.
RQ6 SCon shall subscribe to MunitionDetonation interactions sent by STat. Damaging any of its

entities that are within the radius of the detonation.
RQ7 SCon shall be able to acquire and release the ownership of units (AggregateEntity RPR

object) from/to STat using the RPR TransferControl interaction class.
RQ8 STat shall be Time Constrained, meaning it shall subscribe to the Time and TimeScale

interactions and change its date/time and simulation speed accordingly.
RQ9 STat shall subscribe to the AggregateEntity objects published by SCon, representing them

in the 2D terrain view with symbols corresponding to its EntityType and in the 3D view as
either blue or red cubes depending on whether they are an ally or an enemy.

RQ10 STat shall publish updates to the attributes of AggregateEntity objects it has ownership of.
RQ11 STat shall subscribe to the Drawing and DrawingLayer interactions, displaying the

drawings in the 2D view of the terrain and organizing them into their respective layers.
RQ12 STat shall be able to acquire and release the ownership of AggregateEntity objects of type

SBattery from/to SCon; Enabling STat to control the SBattery and perform the doctrine
actions to execute the artillery mission and release the control of it when the mission is
complete.

RQ13 STat shall publish MunitionDetonation interactions to indicate all detonation points of
munitions launched by SBattery.

RQ14 STat shall subscribe to MunitionDetonation interactions and be capable of calculating and
applying damage to vehicles of a given SBattery (that it has ownership over) in the radius
of the detonations.

of OPM diagrams for various purposes, the stakeholder was able to come up with a
suitable design for the OPD of Figure 4 and thus modeling the matter in which the
simulators would send and receive data from each other. Figures 5 and 6 contain the
diagrams responsible for representing all of the requirements from Table 1. Thus, it
contains the objects and interactions that each simulator publishes/subscribes to and a
simplified behavior of how the data from a published class goes to the simulator that
subscribed to it. When modeling these diagrams, the stakeholder noted that the OPL
representation of the model (automatically generated from OPCat) greatly assisted them
in confirming the semantics of the connections between the diagram elements.

One interesting point about this model is that it does not have explicit subscribing
processes for the simulators. Rather, they receive information directly from the publishing
process of the other simulator. When asked about this design choice, the stakeholder
reported that for every requirement requiring one simulator to publish a class, there was
another for the other simulator to subscribe to. So, they found it appropriate to leave the
subscribing implicit. This is a valid way to model a federation where everything published
by one simulator is subscribed by the other.

This case study showed that an individual with next to no prior knowledge of OPM

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

Figure 4. Main OPD of
the Subject Model

Figure 5. Subject Model: STat Publish OPD

Figure 6. Subject Model: SCon Publish OPD

could still model distributed simulation requirements, meaning OPM is quite learnable
and understandable for people with no prior contact with it. In addition, as explained by
the case study, from our methodology, the stakeholder could be the one to work on the
OPM conceptual modeling, and after, the developers can automatically generate a UML
model, FOM, and HLA source code, as shown in Figure 3.

6. Related Works
This section presents related works that have developed similar approaches to this paper’s
proposition.

The work described in [Dere et al. 2020] proposes a framework for agent-based
simulations that explores SysML as the conceptual modeling language. Specifically, they
explored Block Definition Diagrams (BDD) and Internal Block Diagrams (IBD) alongside
the Acceleo tool for code generation. SysML was chosen due to its popularity and its
purpose of being specialized in systems modeling. Unlike ours, they did not focus on
HLA code generation from a MDA approach.

A Model Driven Engineering (MDE) method based on formal models to develop
distributed simulations for healthcare systems is proposed in [Arronategui et al. 2020].
The authors use a Discrete Event System (DES) to determine disease propagation, and the

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

method starts with creating UML Activity diagrams, which are then transformed into Petri
net hierarchical models. Afterward, the Petri net models go through structural analysis
and are finally transformed into source code. Different from our work, which offers a
more readable model (OPM) in the first step of MDE, they look at the problem from the
perspective that the simulation modeling requires the use of mathematical models that
describe the emergent behavior without the need to describe low-level details.

A distributed simulation development approach that unites DSEEP and MDA,
called Model-Driven DSEEP (MoDSEEP), is presented in [Bocciarelli et al. 2019b].
MoDSEEP adds automatic transformations for DSEEP steps until source code generation.
The first conceptual model is made in SysML following the PIM model format, and
then it is annotated with HLA-specific terms, like “Federation,” and “ObjectClass,” etc,
becoming a PSM. The PSM is then transformed into the simulation’s FOM and source
code. Our work differs from [Bocciarelli et al. 2019b] in key parts, such as the choice of
modeling language(s) and the number of model transformations. We use two modeling
languages: OPM for the initial high-level PIM and UML for representing the system
with more details, including adding HLA concepts. We also adapted the number of
model transformations by adding one more model to model transformation, from OPM
to UML. Another important difference is how we handled UML/SysML profiles. Instead
of annotating HLA concepts into the models, we use Ecore meta-models to validate and
annotate our models.

In summary, our work has the benefit of generating HLA simulations for general
use while also having multiple modeling languages (OPM and UML) to help with mutual
understanding with stakeholders.

7. Acknowledgement

We thank the Brazilian Army and its Army Strategic Program ASTROS for the financial
support through the SIS-ASTROS GMF project (TED 20-EME-003-00).

8. Conclusions

This work presented a new conceptual modeling step integrated into a model-based
DSEEP process. Our approach results in a new model-driven methodology for
HLA distributed simulation developments that use OPM in the initial modeling phase
to increase the alignment between non-technical stakeholders and the development
team. The approach allows game developers to have a clear way to implement HLA
compatibility into their games. The methodology uses UML as an intermediary language
created automatically from the OPM model. UML is used for deep specification to
generate the federation’s FOM. An implementation was also provided, demonstrating
its feasibility. Experiments demonstrated how OPM contributes to representing the
simulation’s behavior through readable diagrams while offering a way to model-to-model
transform to UML. The advantage of the newly proposed conceptual modeling step is that
the provided methodology and its implementation can generate usable HLA source code
for a federation initially modeled in a learnable and understandable high-level model.

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

References

Arronategui, U., Bañares, J. Á., e Colom, J. M. (2020). A mde approach for modelling and
distributed simulation of health systems. In International Conference on the Economics
of Grids, Clouds, Systems, and Services, pages 89–103. Springer.

Basnet, S., Valdez Banda, O., Chaal, M., Hirdaris, S., e Kujala, P. (2020). Comparison of
system modelling techniques for autonomous ship systems, pages 125–139.

Bocciarelli, P., D’Ambrogio, A., Falcone, A., Garro, A., e Giglio, A. (2019a). A
model-driven approach to enable the simulation of complex systems on distributed
architectures. SIMULATION, 95(12):1185–1211.

Bocciarelli, P., D’Ambrogio, A., Giglio, A., e Paglia, E. (2019b). Model-driven
distributed simulation engineering. In 2019 Winter Simulation Conference (WSC),
pages 75–89.

Choi, C., Seok, M.-G., Choi, S. H., Kim, T. G., e Kim, S. (2013). Serious game
development methodology via interoperation between a constructive simulator and
a game application using hla/rti. In International Defense and Homeland Security
Simulation Workshop.

Crues, E. Z., Dexter, D., Falcone, A., Garro, A., e Möller, B. (2022). Spacefom-a robust
standard for enabling a-priori interoperability of hla-based space systems simulations.
Journal of Simulation, 16(6):624–644.

Dere, B. E., Görür, B. K., e Oğuztüzün, H. (2020). A framework for constructing agent-
based aerospace simulations using model to text transformation. In Proceedings of the
2020 Summer Simulation Conference, pages 1–12.

Dori, D. (2002). Object-Process Methodology. Springer Berlin, Heidelberg.

Dori, D., Linchevski, C., Manor, R., e Opm, O. (2010). Opcat–an object-process case tool
for opm-based conceptual modelling. In 1st International Conference on Modelling
and Management of Engineering Processes, pages 1–30. University of Cambridge
Cambridge, UK.

dos Santos, G. e Nunes, R. (2022). An approach to build source code for hla-based
distributed simulations. In Anais Estendidos do XII Simpósio Brasileiro de Engenharia
de Sistemas Computacionais, pages 98–103, Porto Alegre, RS, Brasil. SBC.

D’Ambrogio, A., Falcone, A., Garro, A., e Giglio, A. (2019). Enabling reactive streams
in hla-based simulations through a model-driven solution. In 2019 IEEE/ACM 23rd
International Symposium on Distributed Simulation and Real Time Applications (DS-
RT), pages 1–8.

Graham, J. (2007). Creating an hla 1516 data encoding library using c++ template
metaprogramming techniques. In 2007 Spring Simulation Interoperability Workshop
Proceedings, 07S-SIW-035.

IEEE (2010). Ieee standard for modeling and simulation (m&s) high level architecture
(hla)– federate interface specification. IEEE Std 1516.1-2010 (Revision of IEEE Std
1516.1-2000), pages 1–378.

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Indústria]

IEEE (2022). Ieee recommended practice for distributed simulation engineering and
execution process (dseep. IEEE Std 1730-2022 (Revision of IEEE Std 1730-2010),
pages 1–74.

Lee, T.-D., Yoo, S.-H., e Jeong, C.-S. (2005). Hla-based object-oriented
modeling/simulation for military system. In Systems Modeling and Simulation: Theory
and Applications: Third Asian Simulation Conference, AsianSim 2004, Jeju Island,
Korea, October 4-6, 2004, Revised Selected Papers 3, pages 122–130. Springer.

Lees, M., Logan, B., e Theodoropoulos, G. (2006). Agents, games and hla. Simulation
Modelling Practice and Theory, 14(6):752–767. Distributed Systems Simulation.

Mall, R. (2018). Fundamentals of software engineering. PHI Learning Pvt. Ltd.

Möller, B., Dubois, A., Leydour, P., e Verhage, R. (2014). Rpr fom 2.0: A federation
object model for defense simulations.

Möller, B., Karlsson, M., e Löfstrand, B. (2006). Reducing integration time and risk with
the hla evolved encoding helpers.

Ong, D. e Jabbari, A. (2019). A review of problems and challenges of using multiple
conceptual models.

Petty, M. D. e Windyga, P. S. (1999). A high level architecture-based medical simulation
system. Simulation, 73(5):281–287.

Possik, J., Zacharewicz, G., Zouggar, A., e Vallespir, B. (2023). Hla-based time
management and synchronization framework for lean manufacturing tools evaluation.
SIMULATION, 99(4):347–362.

Šenkỳr, D. e Kroha, P. (2021). Problem of inconsistency in textual requirements
specification. In Proceedings of the 16th international conference on evaluation of
novel approaches to software engineering–ENASE, pages 213–220.

