XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA Trilha: Computing

Digital Game Development Using Large Language Models
(LLMs): An Exploratory Study

Cristiano Barroso Serra', Gabriel Mattos Barroso Serra?, Tadeu Moreira de Classe!

'Research Group on Games to Complex Contexts (JOCCOM)
Graduate Program in Informatics (PPGI)
Federal University of the State of Rio de Janeiro(UNIRIO)
Rio de Janeiro - RJ - Brazil

2Veiga de Almeida University (UVA)
Rio de Janeiro - RJ - Brazil

cristianoserra@edu.unirio.br, gabrielmbserral@gmail.com
tadeu.classe@Quniriotec.br

Abstract. Introduction: Large Language Models (LLMs) are powerful tools for
automating tasks like documentation, code generation, and prototyping in computer
science, but their integration into game development pipelines is an opportunity by,
also a challenge. Objective: This paper presents the development and implementation
of PromptingGameCraft (PGC), a tool that uses Large Language Models (LLMs)
to automate key steps in digital game development. The tool takes a Game Design
Document (GDD) as input and automatically generates a Game Design File (GDF)
in JSON format, along with a custom class diagram, directory and file structure,
and game code. Methodology: The architecture was implemented through a web
interface connected to the DeepSeek-reasoner model API hosted on Google Cloud. As
a proof of concept, a 2D ball-catching game with progressive difficulty was developed.
Results: The automated generation process demonstrated efficiency in the transition
Jfrom design to code, promoting modular organization, logical clarity, and reusability.
In addition to productivity and standardization, PGC has the potential to democratize
access to game development in educational, training, and community contexts. By
enabling the accessible transformation of ideas into working prototypes, it promotes
creative expression, supports active learning, and enhances participation among
diverse groups.

Keywords. Large Language Models, Game Design, Game Prototyping, Al-Assisted
Development

1. Introduction

The digital games industry has experienced rapid growth, surpassing $175 billion in revenue in
2021 and consolidating itself as a major segment of global entertainment [Newzoo 2021]. This
expansion has been driven by factors such as mobile gaming, the evolution of game engines,
and new monetization models like microtransactions and subscriptions [Tower 2021, Worldpay
2021]. In this increasingly competitive landscape, optimizing the development process has
become essential, given the complexity involved across areas such as design, programming,
and narrative [Redmond et al. 2024].

To address these challenges, structured design approaches such as the Entity-
Component System (ECS) and Unified Modeling Language (UML), for instance, have
been widely adopted [Muratet e Garbarini 2020]. More recently, Large Language Models
(LLMs) have emerged as powerful tools for automating documentation, code generation, and

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA Trilha: Computing

prototyping in different fields of computer science [Xu et al. 2022]. These models have shown
potential in tasks ranging from character creation to full code synthesis [Xu et al. 2022], yet
their integration into complete game development pipelines remains limited.

This paper investigates how LLMs can be systematically employed to automate early
stages of digital single game creation. It introduces PromptingGameCraft (PGC), a tool that
integrates semantic interpretation, architectural inference, and scaffold instantiation into a
unified pipeline powered by LLMs. By automating the transformation of high-level design into
structured implementation, PGC reduces cognitive and technical effort, promotes modularity
and reuse, and supports prototyping in educational or experimental settings.

The proposal is part of a broader project model aimed at developing intelligent, semi-
autonomous systems for digital game development and learning. In contrast to approaches
focused on narrative generation or agent-based orchestration, this work contributes an original,
implementation-oriented architecture grounded in LLM capabilities.

The remainder of the paper is organized as follows: Section 2 presents the fundamental
concepts; Section 3 discusses related work; Section 4 details the proposed architecture;
Section 5 reports the implementation results; and Section 6 presents the final considerations
and future directions.

2. Fundamental Concepts

This section presents the essential concepts for understanding the proposed solution, including
Artificial Intelligence and Large Language Models (LLMs), Prompt Engineering, and the Game
Design Document (GDD).

2.1. Large Language Models

Large Language Models (LLMs) stand out for their ability to process and generate
natural language using deep learning architectures such as transformers [Annepaka e
Pakray 2025]. Trained on extensive text corpora, LLMs excel in tasks such as content
generation, summarization, and programming assistance, enabled by their autoregressive
learning mechanisms.

In the context of game development, LLMs expand these possibilities by enabling
automated narrative generation, dialogue design, and even game logic definition [Kumaran
et al. 2023].

2.1.1. Prompt Engineering

Prompt engineering plays a key role in harnessing the full potential of Large Language Models
(LLMs), especially in complex or domain-specific tasks [Liu et al. 2021]. Well-crafted prompts
guide the model’s behavior, enhance accuracy, and can even activate advanced capabilities.

Among the core strategies, Zero-Shot prompting provides only a task description
without examples, while Few-Shot offers a small number of input-output pairs to improve
contextual understanding [Kojima et al. 2023]. Chain-of-Thought prompting encourages step-
by-step reasoning, enhancing performance in logical tasks [Kojima et al. 2023], and ReAct
(Reason+Act) combines reasoning with actions for interactive workflows [Yao et al. 2022].

For the execution of this study, several emerging prompt engineering techniques were
examined [Sahoo et al. 2024]: Scratchpad prompting introduces intermediate annotations to

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA Trilha: Computing

support complex reasoning [Nye et al. 2021], Program of Thoughts (PoT) expresses logic
in code-like structures [Chen et al. 2022], and Structured Chain-of-Thought (SCoT) adds
predefined reasoning stages [Li et al. 2023b]. Finally, Chain of Code (CoC) uses code
fragments to represent structured reasoning paths, benefiting computational tasks [Li et al.
2023a].

2.2. Game Design Document

The Game Design Document (GDD) is a structured reference document that describes
all core aspects of a game, including mechanics, narrative, scoring, interface, and visual
elements [Fullerton 2018]. It serves as a central artifact to guide development teams (designers,
programmers, artists, and audio engineers), ensuring consistency across the project lifecycle
[Salazar et al. 2012].

Maintaining an up-to-date GDD improves communication and transparency among
team members, supports scope control by clearly defining functionalities and milestones,
and facilitates change tracking through revision histories. These aspects contribute to better
project alignment, risk management, and collaborative efficiency [Salazar et al. 2012].

3. Related Work

This section reviews recent efforts that apply artificial intelligence to automate aspects of
game development. While several approaches focus on narrative generation or multi-agent
collaboration, this work distinguishes itself by targeting the implementation phase through
structured code generation from a Game Design Document (GDD).

Chen et al. [Chen et al. 2023] propose a multi-agent framework where roles such as
Development Manager, Engineer, and Tester are simulated to collaboratively produce game
components. Lima et al. [Lima et al. 2023] present ChatGeppetto, a tool that adapts literary
plots into interactive stories using a story-generation agent (ChatGPT) and an illustration agent
(Stable Diffusion).

In contrast, PGC automates the derivation of semantic structures, class diagram, and
executable code directly from the GDD. This shifts the focus from narrative or visual adaptation
to the technical abstraction and realization of game logic, offering a reproducible pipeline for
design-to-code automation.

4. PromptingGameCraft - Architecture

The proposed PromptingGameCraft (PGC) architecture conceptualizes a pipeline that
automates the early stages of digital single game development by transforming high-level
design specifications into a structured foundation for implementation. Unlike traditional
workflows, where design concepts are manually translated into system components, this
architecture abstracts the transformation process and orchestrates the interplay between design
intent and software realization through the use of Large Language Models (LLMs). This
approach enables the systematic derivation of modular and reusable components from a design-
oriented artifact, promoting consistency, traceability, and rapid iteration. It is particularly suited
for educational and experimental contexts, where quick prototyping and alignment between
team members are essential.

Table 1 outlines the sequential phases of the PGC architecture.

This architecture abstracts the transformation logic while encapsulating domain
knowledge within adaptive prompts and representations mediated by the LLM. All artifacts

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA

Table 1. The PGC Sequential Phases

Trilha: Computing

Phase

Description

Main Objective

Output

Design Input

Reception of the Game Design Document
(GDD) containing the conceptual
specification of the game.

Collect structured game
design information.

GDD artifact.

Semantic Interpretation

The Language Model interprets the GDD
and generates a formal semantic model of
the game.

Translate design intent into
a structured and

interpretable representation.

Game semantic model.

Architectural Inference

Inference of an abstract blueprint defining
component roles, interactions, and
structural patterns.

Organize the game logic
into an architectural
configuration.

Architectural blueprint.

Scaffold Instantiation

Instantiation of an implementation-oriented
scaffold based on the inferred blueprint.

Create a reusable and

modular project foundation.

System scaffold aligned
with design logic.

produced throughout the process are logically structured and can be reused, modified, or
extended in future iterations.

This pipeline is a core component of a broader project model focused on the
development of intelligent, semi-autonomous systems for game development. It aims to reduce
the cognitive and technical burden traditionally associated with early-stage design translation,
fostering greater accessibility, innovation, and pedagogical support in the field of digital single
games. Figure 1 illustrates the conceptual pipeline of the proposed architecture. The pipeline
starts with users (i) applying the GDD to our PGC server; next, (ii) our architecture derives a
GDF (game design file) converting the GDD information to PGC expected field patterns. Then,
the (iii) GDF is processed by LLMs systems using generic coding design patterns that will be
used to generate the specific game design pattern, source code and, file structures, which are
integrated with LLM reasoning and human creativity.

Figure 1. Conceptual pipeline - PGC Architecture

LLM’s Game Base Generation

‘ 2 User
48
‘ Web layer ‘ @

v
0

13
[cossoiwam | — [Fresivce -—
S~ —
J oo |

Prompt + GDF

Server
LLM

(i) Game Design Document

The Game Design Document (GDD) consolidates gameplay elements—mechanics, narrative,
interactions, and behaviors—into a unified, human-readable artifact that expresses the game’s
intent. Its role is to communicate design intent in a way that supports both human understanding
and automated interpretation. Table 2 details the main sections of the GDD used in the PGC
architecture.

(ii) Game Design File

The Game Design File (GDF) is a formalized representation derived from the GDD, in logical
patterns. It organizes design semantics into categorized structures that support interpretation,

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA Trilha: Computing

Table 2. Game Design Document (GDD) Sections

Section Description

Overview Main goal, game type, and duration

Platform and Target Audience Intended platforms and player demographics
Game Mechanics Movement, interactions, object logic, progression
Scoring and Penalties Rules for gaining or losing points

Game Over Conditions Criteria that trigger the end of the game

User Interface (HUD) On-screen information and player interface
Technical and Physical Parameters | Speed, collisions, FPS, resolution

Visual Style and Art Requirements | Artistic direction and graphic needs

validation, and downstream generation processes. It serves as an intermediary between
conceptual design and technical realization. Table 3 shows the semantic categories defined
in the GDF. Additionally, Table 4 shows examples of structured identification fields from the
GDF used to map the modular code in the project. Its primary objective is to ensure higher
fidelity between the designer’s vision and the outputted code. By pre-formalizing mechanics,
the GDF acts as a semantic control layer, mitigating recurring failures. Language models carry
an established risk of context inconsistency, which may lead to omission or oversimplification
of core mechanics during generation [Gallotta et al. 2024b, Gallotta et al. 2024a]

Table 3. Game Design File Categories

Categories Description

Game descriptions Themes, objectives, narrative, enemy paths, difficulty levels, environment, and story progression
System interactions | Menus, pause, settings, onboarding, game over

Game interactions Core gameplay such as movement, item collection, combat, puzzles, and abilities

Table 4. Identification Fields

Item Description

id Unique identifier (e.g., “"GAME_01")

name Interaction name (e.g., “Player Movement”)
type Category (e.g., “task”, “event”, “action”)
description | Brief explanation of the in-game action
parameters Input variables (e.g., “direction”, “speed”)
next Next interaction(s) in the sequence

(iii) Coding Class Diagram
A custom notation ! was defined for this project to enhance clarity and semantic precision
when modeling software architecture. Unlike standard UML diagrams, this notation introduces
additional symbols such as —>M for method calls, —>C for object instantiation, and —>O for
observer patterns. These conventions aim to simplify the visual representation of interactions
between components, classes, and modules while remaining intuitive and readable. The full set
of relationship symbols is summarized in Table 5.

4.1. Prototype Presentation - Demonstration

To demonstrate the applicability of the PGC architecture, a functional prototype was
implemented and deployed in a cloud environment. It integrates a web-based interface with
a Python backend, allowing interaction between the user, a Game Design Document (GDD),
and a Large Language Model (LLM), automating the generation of a structured game project.

'https://docs.google.com/document /d/1N4VCOgoQt XbkcIGGOPF 9C85uQEV59bDzHpzmCXEvWZw/
edit?usp=sharing

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA

Trilha: Computing

Table 5. Custom Notation

Relationship Symbol | Example Description

Inheritance -> Enemy -> Character Class inherits from another

Implements > Service > Interface Implements interface or protocol

Composition —* House —-* Wall Strong ownership: one object fully owns another
Aggregation -0 Team -o Player Weak ownership: object contains others without full control
Instantiates ->C Factory ->C Product Creates an instance of another class

Calls Methods | ->M Scene ->M loadAssets Calls a method from another module or class
Observes ->0 UI ->0 Subject Implements the observer pattern

Depends On -> Controller —-> Repository | High-level dependency

Provides => Service => Controller Provides resources or logic to another component
Association - Client -- Order General association

Upon receiving the GDD, the system performs semantic interpretation to produce a
formalized intermediate representation: the Game Design File (GDF). Based on this, a coding
class diagram and an implementation scaffold are derived, which serve as a base for generating
complete source code using the Phaser? framework. The prototype interface encapsulates these
stages, streamlining the user experience and enabling developers to focus on design aspects.
Figure 2 illustrates this interface.

Figure 2. PGC prototype interface.

PromptingGameCraft

GDD Source
o oo |

Output:

The prototype provides initial indications of the feasibility of using the proposed
architecture, operationalizing key principles such as semantic interpretation, architectural
inference, and scaffold instantiation with executable code generation.

5. Proof of Concept

The proof of concept suggests PromptingGameCraft (PGC) may support the automation
of the transition from game design to implementation. By transforming natural language
specifications in a GDD into a structured game scaffold, the system demonstrates its ability
to support early-stage development.

Using structured prompts, the system generated Game Design Files (GDFs) that
encapsulate mechanics, interface interactions, system states, and progression logic. These were
then used to infer class diagram and generate full JavaScript code in Phaser, representing all
key components specified in the GDD. PGC’s pipeline relies on prompts designed to address
each stage of the architecture.

To illustrate how PGC operationalizes these prompt stages, Listing 1 presents an
example used to generate the GDF. Additionally, Listing 2 shows an excerpt of a generated
GDF, highlighting how the model encodes system interactions in a formalized structure.

The prompt instructs a LLM to act as a game system architect, analyze a given Game
Design Document (GDD), and generate a complete, structured Game Design File (GDF)

’https://phaser.io/

DA W —

9
10

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA Trilha: Computing

Table 6. Prompt functions used in the PGC pipeline
Prompt Name Description
Prompt_ GDF Generates the Game Design File (GDF) from the GDD
Prompt_Pattern Infers the modular class diagram based on the GDF
Prompt_Structure | Generates the folder and file structure aligned with the inferred architecture
Prompt_Code Produces the final game code using the Phaser framework

in JSON format, detailing all game mechanics and interactions in a coherent flowchart-like
structure.

Listing 1. Game Design File Prompt

prompt_0 = (
"You are a game system architect. Based on the following Game Design Document (GDD): " + GDD + "\n"
"l - Create a co Game Design File (GDF) in J N format that covers all the game mechanic logic needed.\n"

"2 - Divide the structure into two main sections:
"3 For each interaction, define:\n"

’id’: unique identifier\n"

'name’ : descriptive name\n" ...

"4 Ensure the logic is complete and coherent as a flowchart represented in JSON.\n"
"5 Return only the final JSON file representing the GDF.\n"
)
Listing 2. Excerpt of generated Game Design File
"system_interactions": [
{
migr: msin,
"name": "Main Menu Trigg
"type": "trigger",
"description": "Opens/cl the main menu when ESC is pressed"
"parameters": { "key": , "screen": "MainMenu" },
"hext": ["S2", "S3"]

After the GDD is converted into a GDF, a class diagram is automatically generated, as
illustrated in Listing 3.

Listing 3. Excerpt of Class Diagram

[{
"game/static/src/scenes/MenuScene.js": [
"-M initMainMenu : Creates Navigation options",
"-M handleOptionSelect : Processes menu selections",
"--> SystemInteractions : Depends on system interaction definitions"
1,
"game/static/src/scenes/GameScene.js": [
"-> Basket : Instantiates player-controlled basket entity",
"-M updateGameState : Handles core game loop",
"-> DifficultySystem : Observes difficulty progression changes"
1,
"game/static/src/entities/Basket.js": [
"-M handleMovement : Processes input controls",
"-% PhysicsBody : Composition with physics representation",
"-> applyBoundaries : Keeps within screen limits"
]
}

The proof of concept suggests that PGC can support the transition from design to
implementation through a reproducible and structured process, which may be applicable to
experimental and educational scenarios.

5.1. Game Implementation - Example

To assess the effectiveness of the PGC architecture, a simple 2D game prototype was developed
using only the outputs generated by the system. This case study aims to verify whether the
GDD, Game Design File (GDF), coding design pattern, and code scaffold can be effectively
applied to create a fully functional game.

The implementation used the Phaser framework, an open-source HTMLS5 engine for
2D games. Its modular design, support for scenes, physics, and inputs makes it well-suited

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA Trilha: Computing

for rapid prototyping, aligning with PGC’s focus on producing usable, extensible code for
experimentation and education.

The GDD * provided as input was written in Markdown and described a fast-paced
arcade game, summarized in Table 7.

Table 7. Excerpt from the Game Design Document — Basket Catch Game

Element Description

Overview 2D game in which the player controls a horizontally movable basket to catch falling balls.
Duration 120 seconds base time, with possible increases from bonus elements and penalties from traps.
Objective Maximize score by catching beneficial balls while avoiding penalties.

Ball Types Common: +1 or -1 point, some reduce time by 3 seconds.

Golden: +2 or -2 points.

Time (punitive): 0 points, -5 seconds when caught, no penalty if missed.
Progression Difficulty increases every 30 seconds.

Game Over (optional) Triggered if the player misses 20 balls.

The game was built using the artifacts produced by PGC, including the complete
folder structure, scaffolding, and JavaScript code written for Phaser. Only minimal manual
adjustments were necessary, such as adding ‘.js‘ extensions to import paths due to ECMAScript
module syntax as showed in the Table 8.

Table 8. Manual Adjustments to LLM-Generated Code

Original LLM Output Expected Output Manual Adjustment
import { MenuScene } from import { MenuScene } from Added . js extension
! ./scenes/MenuScene’ ' ./scenes/MenuScene. js’

import { GameScene } from import { GameScene } from Added . js extension
! ./scenes/GameScene’ ! ./scenes/GameScene. js’

import { GameManager } import { GameManager } from Added . §s extension
from ’./core/GameManager’ ' ./core/GameManager. js’

import { GameConfig } from import { GameConfig } from Added . js extension
! ./config/GameConfig’ ! ./config/GameConfig. js’

The automatically inferred modular architecture is illustrated in Figure 3, showing the
component relationships and system organization. The game’s architecture follows a modular
design pattern, structured into presentation, logic, and data layers. Scenes like MenuScene
and GameScene manage flow and gameplay, while entities such as Basket and Ball
encapsulate behavior and physics. Systems handle core mechanics like collision, spawning, and
difficulty scaling, interacting through method calls and observer patterns. The GameManager
coordinates transitions and persistence.

Figure 3. Automatically generated class diagram.

©Gamecnnhg‘

3nttps://docs.google.com/document /d/1g8DLDYpsBB60TfZY55efC4srmhxbia8H/
edit?usp=drive_link&ouid=115202591714752543778&rtpof=true&sd=true

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA Trilha: Computing

The resulting game prototype is shown in Figure 4*, featuring the game layout and key
elements such as the player-controlled basket, falling balls, and HUD displaying time and score.
Figure 4 also contains excerpts from the generated code. The ball logic includes type variation
and time-based behavior, while the basket module manages user control. Other components
like the HUD system were also generated automatically and integrated without modification.

Figure 4. Game p
LS

TTor0 (

this.s ext

rototype using PGC.

BallSpawningSystem.js

In order to measure the impact of recent adjustments made to the source code, a
comparative analysis of file metrics including the number of files, lines, words, and characters
was conducted. The table 9 summarizes these metrics for both JavaScript and Python files,
before (i.e., directly after LLM-based generation) and after the manual adjustments. It also
presents the percentage variation observed in the JavaScript code, which was the only one
modified.

Table 9. Code Metrics Comparison Before and After Adjustments

Code Files Lines Words Characters
Before Adjustments

JavaScript 14 540 1231 15177
Python 1 38 83 1047
After Adjustments

JavaScript 14 547 1252 15352
Python 1 38 83 1047
Variation (JavaScript) 1% 2% 1%

Table 10 presents a rapid and alternative evaluation of the proposed tool. The code
samples were generated by the DeepSeek Reasoner and independently assessed by GPT-03 to
reduce potential bias from the generating language model. Code 1 was produced via a single-
shot prompt, resulting in a solution appropriate for educational purposes and rapid prototyping,
and received a score of 6.25. In contrast, Code 2 was generated using a structured prompt
architecture, with an emphasis on modularity and scalability. It achieved a score of 9.5, standing
out as the most technically robust solution. The independent review by GPT-03 ensures a more
objective and reliable assessment of the generated outputs.

This implementation offers preliminary evidence that the architectural pipeline
proposed by PGC can be operationalized in practice. By enabling the transition from design
to code with minimal developer input, the system demonstrates practical potential for modular
game development. These results provide preliminary evidence of PGC applicability to rapid

4The basket rasterized assets was created manually.

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA Trilha: Computing

Table 10. Code evaluation
Code Score | Generation Method | Remarks

Code 1 6.25 Single-shot Suitable for learning and rapid prototyping. Generated with a
single prompt execution.
Code 2 9.5 Prompt Architecture | Offers better structure, scalability, and modularity. Created

using a multi-stage prompt architecture.

prototyping and educational contexts, motivating a broader discussion of its capabilities and
limitations.

6. Discussion and Final Considerations

The implementation of the PGC interface suggests the potential feasibility of employing Large
Language Models (LLMs) to automate critical stages of digital game development. The
proposed architecture integrates semantic interpretation of Game Design Documents (GDDs),
structured generation of Game Design Files (GDFs), automatic inference of design patterns,
and instantiation of implementation scaffolds, culminating in the production of executable
code.

The results suggest that natural language specifications may be translated into reusable
and logically coherent software structures. By leveraging the Deepseek-reasoner model and
a prompt-driven pipeline, PGC aligns with established software development practices while
significantly reducing the technical overhead typically required in early-stage prototyping.

The GDF emerged as a pivotal intermediary artifact, enabling the formalization of
gameplay logic and supporting the generation of modular code within development frameworks
such as Phaser. The case study suggests the system’s capacity to bridge the gap between design
and implementation with minimal human intervention, as evidenced by negligible variations in
codebase metrics after manual adjustments.

In addition to its technical efficacy, PGC demonstrates potential for expanding access to
game development within educational and community contexts. Its accessible workflow fosters
creative experimentation, supports active learning methodologies, and encourages broader
participation in the production of digital technologies.

Despite its contributions, the system presents some limitations. Its effectiveness
depends heavily on the quality and structure of the input GDD; poorly defined documents can
result in incomplete or inconsistent outputs. Although the generated code provides a functional
baseline, manual intervention is still necessary for asset integration, adaptation to specific
game engines, and adjustments to enhance usability and performance. Future work includes
extending support for multiple GDD formats, integrating automated validation mechanisms,
enhancing compatibility with additional game engines, and evaluating the pipeline with more
advanced LLMs to assess potential improvements in semantic precision, reasoning capabilities,
and contextual adaptability.

Acknowledgments

The authors thanks to Carlos Chagas Filho Foundation for Research Support of the State of
Rio de Janeiro — FAPERJ (proc. E-26/204.478/2024 - SEI-260003/013219/2024) for partially
funding this research.

References

Annepaka, Y. e Pakray, P. (2025). Large language models: A survey of their development,
capabilities, and applications. Knowledge and Information Systems, 67:2967-3022.

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA Trilha: Computing

Chen, D., Wang, H., Huo, Y., Li, Y., e Zhang, H. (2023). Gamegpt: Multi-agent collaborative
framework for game development. arXiv preprint arXiv:2310.08067.

Chen, W. et al. (2022). Program of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588.

Fullerton, T. (2018). Game Design Workshop: A Playcentric Approach to Creating Innovative
Games. AK Peters/CRC Press.

Gallotta, R., Liapis, A., e Yannakakis, G. (2024a). Consistent game content creation via
function calling for large language models. In 2024 IEEE Conference on Games (CoG),
pages 1-4. IEEE.

Gallotta, R., Todd, G., Zammit, M., Earle, S., Liapis, A., Togelius, J., e Yannakakis, G. N.
(2024b). Large language models and games: A survey and roadmap. IEEE Transactions on
Games.

Kojima, T., Schmid, P, Li, Q., Alsaidi, A., Tan, C., Lu, X., e Song, D. (2023). What makes
chain-of-thought prompting effective? a counterfactual study. In Proceedings of the 11th
International Conference on Learning Representations (ICLR).

Kumaran, V., Rowe, J., Mott, B., e Lester, J. (2023). Scenecraft: Automating interactive
narrative scene generation in digital games with large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment,
volume 19, pages 86-96.

Li, X. et al. (2023a). Chain of code: Reasoning with code for interpretability. arXiv preprint
arXiv:2303.08168.

Li, X. et al. (2023b). Structured prompting: Scaling in-context learning to 1,000 examples.
arXiv preprint arXiv:2303.08774.

Lima, E. S. d., Feij6, B., Casanova, M. A., e Furtado, A. L. (2023). Chatgeppetto - an ai-
powered storyteller. In Proceedings of the 22nd Brazilian Symposium on Games and Digital
Entertainment (SBGames), Rio Grande, Brazil. ACM.

Liu, P, Yuan, W., Fu, J., Jiang, Z., Hayashi, H., e Neubig, G. (2021). Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural language processing. arXiv
preprint arXiv:2107.13586.

Muratet, M. e Garbarini, D. (2020). Accessibility and serious games: What about entity-
component-system software architecture? In Games and Learning Alliance (GALA).
Springer.

Newzoo (2021). Global games market to generate $175.8 billion in 2021. Accessed: 2025-04-
17.

Nye, M. et al. (2021). Show your work: Scratchpads for intermediate computation with
language models. In Advances in Neural Information Processing Systems.

Redmond, P., Castello, J., Calder6n Trilla, J. M., e Kuper, L. (2024). Exploring the theory and
practice of concurrency in the entity-component-system pattern. Proceedings of the ACM
on Programming Languages, 8(OOPSLA):1-29.

Sahoo, P., Singh, A. K., Saha, S., Jain, V., Mondal, S., e Chadha, A. (2024). A Systematic
Survey of Prompt Engineering in Large Language Models: Techniques and Applications.
arXiv e-prints, page arXiv:2402.07927.

XIV Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025) - Salvador/BA Trilha: Computing

Salazar, M. G., Mitre, H. A., Olalde, C. L., e Sanchez, J. L. G. (2012). Proposal of game design
document from software engineering requirements perspective. In 2012 17th International
Conference on Computer Games (CGAMES), pages 81-85.

Tower, S. (2021). State of mobile gaming 2021. Accessed: 2025-04-17.
Worldpay (2021). Microtransactions: Next big thing? Accessed: 2025-04-17.

Xu, F. F,, Alon, U., Neubig, G., e Hellendoorn, V. J. (2022). A systematic evaluation of large
language models of code. arXiv preprint arXiv:2202.13169.

Yao, S., Zhao, J., Yu, D., Yu, S., Gao, S., Zettlemoyer, L., e Narasimhan, K. (2022). React:
Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629.

