SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

Computing Track — Short Papers

A structured review of game coding through
modeling

Diego Castro
PESC/COPPE
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil
diegocbcastro @cos.ufrj.br

Abstract—Game companies have grown a lot in recent years,
reaching billions of dollars a year, despite the game-building
process being very complex and time-consuming. This process has
evolved considerably over the years. However, it has always been
typically characterized by an ad hoc structure with little formal
documentation. This lack of structure and documentation can
cause severe problems throughout the game’s development, such
as delivery delays, wrong implementation, maintenance difficulty,
among others. One possible solution that can accelerate this
development process and increase the level of documentation is
the use of modeling for automatic code generation. Based on this,
the paper aims to perform a Structured Review to find some
information on modeling for game generation, collaborating in
game development processes by accelerating coding and assisting
with documentation.

Index Terms—Games, Development, Modeling, Code genera-
tor, Literature revision

I. INTRODUCTION

There are millions of game developers globally, thousands
of games created, and several companies that are working
with games. Games have become one of the most popular
entertainment sources, having fans of all genders and ages,
becoming one of the highlights in the industrial environment
and raising billions of dollars over the years [1] [2] [3].

Despite the growth of the game community in general, the
process of development is typically characterized by an ad
hoc development. In recent years, much effort has been made
to introduce methodologies in game development. However,
over the years, this process has become increasingly complex,
requiring larger teams and requiring extensive documentation
to maintain it. This documentation is not easy to maintain,
which causes many communication failures and problems to be
solved directly at the programming level, leading to complex
maintenance of the games and low productivity [4].

Despite the efforts to improve the development process,
creating a game can be very time-consuming, complicated,
and involve several professionals, taking a long time to be
built [5]. This long time of development is directly linked to
the project documentation and the time that programmers take
to code the games, create logic, phases, characters, and other
objects.

Claudia Maria Lima Werner
PESC/COPPE
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil
werner @cos.ufrj.br

Code generators aim to increase the quality of the code,
decrease development time, generate code through standards,
and maintain a high level of code consistency. Automatic code
generation aims to provide a high-level code skeleton, leaving
programmers to focus on specific aspects. Generators provide
more productivity; delivering large volumes of code, which
would take much longer if manually coded [6].

Code generators can speed up the game development pro-
cess and can help with the documentation process. One type of
documentation that is well known and used by programmers
is modeling, which allows a general view of the system’s
structure. There are several types of modeling with different
purposes: to visualize the structure, understand events over
time, among others [7]. In software programming there are
many tools, plugins, and Integrated Development Environ-
ments (IDEs) that support this development based on code
generation through modeling, such as the easyUML, GenMy-
Model, Modelio and Eclipse Modeling Framework [6, 8].

This paper aims to present the main ways to use modeling
in automatic generation of code for game development. The
remainder of this paper is presented as follows: Section II
describes the research method used in a structured review
performed, Section III shows the results that were found, and
Section IV concludes the paper with some final remarks.

II. RESEARCH METHOD

A structured review is a method that seeks to identify
concepts based on structured stages of analysis to provide an
overview on a given subject [9]. However, it does not follow
all the quality criteria of a literature review. This method is
mostly recommended for research where it is desired to get
information about a topic in a faster way. The research process
presented in this study covers papers that were published until
April 2021. The search string was executed in Scopus as
recommended by other studies [10]. The research questions,
inclusion, and exclusion criteria used will be demonstrated
below.

Research Questions
« Q1: What tools support game development through mod-
eling?

XX SBGames — Gramado — RS — Brazil, October 18th — 21st, 2021

SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

e Q2: What are the advantages / disadvantages of using
modeling to generate games?

Inclusion criteria

o The paper must be in the context of generating games
through modeling;

o The paper must demonstrate practical concepts;

o The paper must provide data to answer at least one of
the research questions;

o The paper must be written in English.

Exclusion Criteria

o Conference call,

« Studies that can not be fully accessed;

« Studies that are not in the area of Computer Science or
Engineering.

The definition of the search keywords was made based on
the PICOC (Population, Intervention, Comparison, Outcome
and Context) strategy [18], using four of the five levels. The
search string was defined by grouping keywords of the same
domain with the logical operator "OR” and grouping the three
domains with the logical operator "AND”.

The search string returned a total of 307 papers. When
analyzed according to the inclusion and exclusion filters, this
number dropped to 5 papers. To minimize the lack of other
search bases, considering that the study was only performed on
Scopus, the snowballing procedure was used, which according
to other studies [10, 19] can minimize article loss. The
approach was applied, searching for new papers through the
references (snowballing backwards) and through the papers
that referenced these works (snowballing forwards). 140 more
papers were analyzed and 6 more papers were included,
totaling 11 analyzed papers.

Tables 1 and 2 show the search string used and the analysis
process of the papers, along with the papers that were used
for the review. Table 3 presents the papers that were analyzed.
The Study Column demonstrates the information from where
the paper was retrieved: M (Main study), B (Snowballing
backward) and F (Snowballing forwards).

ITII. RESULTS
A. Information found

From a brief analysis of the dates of the papers analyzed,
it is possible to note that the topic is still a new topic, with
recent works.

Game development is a field typically characterized by ad
hoc development. However, much effort has been made to
introduce development methodologies in this area of research
[4].

From the model type column in Table 3, it is possible to
observe that four ways of generating code through modeling
were found, with Model-Driven Development (MDD) being
the most used. Each of the types of modeling will be described
in more detail below.

Computing Track — Short Papers

It is worth noting that not all the forms of modeling
described below are modeled according to the development
pattern known to most developers, such as UML. The model-
ing concept used in this work can be understood as any form
of visual representation of the characteristics of an input.

B. What tools support game development through modeling?

The first form of modeling found represents a high level
design where the developer can express his/her ideas through
sketches that are transformed into code structures. In this type
of modeling, there are mainly tools for 2D code generation
[11]. Extending this idea a little bit, we found tools that
allow real-time interaction with the game, where the user can
interact with the narratives by drawing objects, which are then
recognized by the system and converted into virtual objects in
history, thus affecting the narrative’s plot [12].

Another way found to generate codes through modeling is
through Model-Driven Development (MDD). This approach is
an emerging game development methodology that simplifies
game development by reducing the gap between game design
and implementation. For this type of modeling, different ways
of use were found. However, they all revolve around two main
steps: generating UML diagrams to describe the structure of
the game through a specific language and generating game
code structure from these models [13, 15, 16]. From this,
the developer needs to define all the game’s actions and, for
each action, he/she describes the triggered events according
to specific conditions. To model the game structure, a class
diagram is used to demonstrate the players’ characters, objects
and the relationships between each one of them [4, 8, 8, 20].
The tools found is generic enough to be used in different types
of games and to match 2D / 3D [13].

A product line is a set of systems with a group of similar
functionalities developed on the same basis, making large-
scale development more effective and productive. This strategy
allows programmers to analyze and implement systems col-
lectively through reusable domain assets, such as application
blocks, structures, patterns, domain-specific languages, gener-
ators, and tools [17]. Following this method, a product line for
arcade games was found. It used domain analysis processes to
organize the game information and group the possible reusable
components. From this, it was possible to create a base game
with all the common features of arcade games and to specify
new games with new features.

Finally, another form of modeling found is well-known by
some game developers, being available within some engines.
This type of modeling is called blueprint and can be un-
derstood as a visual scripting that provides an interface to
build game functionality through simple-to-use behavior trees
converted into code [14, 21].

C. What are the advantages / disadvantages of using model-
ing to generate games

There are different advantages and disadvantages depending
on the type of modeling to be used to create the game. The first
advantage of using modeling for automatic code generation

XX SBGames — Gramado — RS — Brazil, October 18th — 21st, 2021

SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

TABLE 1
SEARCH STRING

Computing Track — Short Papers

Game*

UML, *diagram*, sketch, modeling

Not applicable

tools, approach*, method*, ideas, framework*, interpretation®

create, creation, production, development, elaboration, generation, practice

=kpliel o/ laila-

ITLE-ABS-KEY ((*game*) AND (UML OR *diagram* OR sketch OR modeling OR blueprint) AND (tools OR approach* OR method* OR ideas
OR framework* OR interpretation®*) AND (create OR creation OR production OR development OR elaboration OR generation OR practice))
AND (LIMIT-TO (SUBJAREA ,"COMP”) OR LIMIT-TO (SUBJAREA , "ENGI”))

TABLE II
ANALYSIS OF THE PAPERS
Activit Main Number of | Snowballing | Number of | Snowballing | Number of
y Study papers Backwards papers Forwards papers
Repeated Papers 307 added 307 94 added 94 46 added 46
Papers in another language 4 withdraw 303 2 withdraw 92 2 withdraw 44
Remove books 11 withdraw 292 6 withdraw 86 0 withdraw 44
Remove by title 241 withdraw 51 57 withdraw 29 22 withdraw 22
Remove by abstract 42 withdraw 9 21 withdraw 8 16 withdraw 6
Papers not found 0 withdraw 9 0 withdraw 8 0 withdraw 6
Remove by full paper 4 withdraw 5 4 withdraw 4 4 2
Total papers included 5 papers 4 papers 2 papers
11 papers
TABLE III
TRACEABILITY MATRIX
Title Authors Year | Q1 | Q2 Modeling Type Study
Generating Stable Building Block Structures from Sketches Stephenson et al. 2021 X X Sketches M
Sketch-based interaction for planning-based interactive storytelling de Lima et al. 2020 X Sketches M
A framework for the development of serious games for assessment Hamiye et al. 2019 X X Model-Driven Development M
Modeling and Code Generation of Serious Games for Assessment Hamiye et al. 2018 X X Model-Driven Development B
Relr_lforcemen‘t learning for all: An implementation using unreal Boyd and Barbosa 2017 X X Blueprint B
engine blueprint
A model-driven framf:work to support development of serious games Tang and Hanneghan | 2015 X Model-Driven Development B
for game-based learning
A dsl for rapid prototyping of cross-platform tower defense games Séanchez et al. 2015 | X X | Model-Driven Development F
A MO('ieldnven serious game devglopmem integration of the gamification Matallaoui f al. 2015 X X Model-Driven Development F
modeling language gaml with unity
Improving digital game development with software product lines Furtado et al. 2011 X X SPL F
Accelerating the creation of customized, language-specific ides in eclipse Charles et al. 2009 X X Model-Driven Development B
Model-driven game Development: 2D platform game prototyping Reyno and Cubel 2008 X X Model-Driven Development M

is its fast and intuitive way of using it; without specialized
knowledge or programming skills, it would be enough for the
professional to understand modeling [11]. Generators can still
provide: more productivity; rapid prototyping; large volumes
of code, which would take much longer if manually coded,
among others [6].

As already mentioned, the process of developing a game is
mostly done in an ad hoc manner, requiring many problems
to be solved directly into the code. This makes documentation
difficult, leaving it out of date and not reflecting the reality of
the game. The advantage of using modeling for programming
is that the model will always be updated, making it easy to
understand the project.

Mainly focused on using product lines that are still possible:
using repositories on a segment of the market, potential
reduction in the number of errors with a large part of the code
being reused, incremental development, etc. Table 4 presents

a summary of the advantages of each type of modeling
presented.

Despite the advantages offered by the code generators, most
of the modeling/development tools presented are used as some-
thing complementary for coding (except for the blueprint).
These tools only generate a general structure of the code
to be created, saving initial development time for developers
[4, 11, 12, 13, 14].

D. Discussion

The study sought to find information on how software
modeling could facilitate and help game implementation.
Throughout the previous section, some strategies that could
help in this scenario were demonstrated. The main purpose of
these strategies would be to use them in some visual way for
automatic code generation.

XX SBGames — Gramado — RS — Brazil, October 18th — 21st, 2021

SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

TABLE IV
ADVANTAGES OF EACH MODELING METHOD
MDD | Sketches | SPL | Blueprint
More productivity X X X X
Rapid prototyping X X X
Generate large X X X
volumes of code
Incremental X X X
development
Less bugs X X
Updated] X X X X
documentation
Game modification X X

It is worth noting that the level of documentation of the tools
are different and according to the modeling.

Nowadays, hardly a person will create a game without
the help of an engine. These engines already have different
ways of modeling that facilitate coding and automatic code
generation, sometimes even being specific to a topic, such as
graphics, animations and script generations. However, these
ways of modeling can still be improved.

Regarding code generation for a single project, the blueprint
tool can help a lot in coding, being possible to create entire
games with it alone. However, some papers report some limi-
tations of this tool regarding what one can do with it, often not
being possible to do very advanced things, requiring explicit
programming. The code generation tools through Sketches
follow the same pattern on what it is possible to create by
using them, but they are also limited about the need for more
advanced functions to create games.

There are two ways to create software: to have an idea
and develop it from scratch or to build on something existing
to create a new one. Many games are created based on
existing games. Blueprints and Sketches tools aim to create
code through their modeling. However, they are not directly
concerned with the scalability of the game’s expansion or the
creation of games from an existing one. From Table IV, it is
possible to observe that the two tools that mostly support the
idea of creating a game and adapting it to create new ones are
the MDD and SPL tools.

Current engines do not have systems that support this
idea of game expansion and rapid modification. This is also
an important way of creating software, where a program is
adapted to generate a new one [22]. Currently, it is necessary
to expand the game in a way that new stages, characters, and
mechanics are modified directly in its source code. By using
support tools with MDD and SPL approaches, it would be
possible to create games where their expansion would happen
faster and that are more reusable. So that the main core of the
game would be created and it could be expanded in several
different ways, always preserving the main features of the
game.

Depending on how one wants to create a game, different
approaches can be used. Some that already exist in game
engines themselves and others that still need to be thought

Computing Track — Short Papers

about and supported by these engines.

IV. FINAL REMARKS

As previously mentioned, the process of building games
is very complex and mostly happens in an ad hoc manner,
causing many problems to be solved directly in code, leaving
the documentation inconsistent with reality. In this context, it
is possible to point out two general problems: a long time to
build a game and lack of documentation.

This paper presented the information found in a review on
the use of code generators through game modeling. Through
this information, it was possible to observe four types of
modeling, each with its particularities, advantages, and dis-
advantages, with emphasis on the MDD method that was the
most used. Among the main advantages, the following stands
out the gain in speed in the development and continuously
updated documentation, thus solving the two general problems
demonstrated and possibly being a good option for games.

ACKNOWLEDGMENT

The authors would like to thank CAPES and CNPq for their
financial support.

REFERENCES

[1] D. Lee, D. Lin, C.-P. Bezemer, and A. E. Hassan,
“Building the perfect game—an empirical study of game
modifications,” Empirical Software Engineering, pp. 1—
34, 2020.

[2] S. Pashkov, “Video game industry market analysis: Ap-
proaches that resulted in industry success and high
demand,” Unit International Business Administration,
2021.

[3] wepe, “Video Game Industry Statistics In 2020,”
https://www.wepc.com/news/video-game-statistics/, on-
line; accessed 10 January 2021.

[4] E. M. Reyno and J. A. C. Cubel, “Model driven game
development: 2d platform game prototyping.” GAMEON,
pp- 5-7, 2008.

[5] K. Bilinska-Reformat, A. Dewalska-Opitek, and

M. Hofman-Kohlmeyer, “To mod or not to mod—an

empirical study on game modding as customer value

co-creation,” Sustainability, vol. 12, no. 21, p. 9014,

2020.

P. Charles, R. M. Fuhrer, S. M. Sutton Jr, E. Duesterwald,

and J. Vinju, “Accelerating the creation of customized,

language-specific ides in eclipse,” ACM Sigplan Notices,

vol. 44, no. 10, pp. 191-206, 2009.

[7] H.-E. Eriksson and M. Penker, “Business modeling with
uml,” New York, pp. 1-12, 2000.

[8] F. Hamieh and B. Said, “Modeling and code generation
of serious games for assessment,” ICT in our Lives,
Alexandria, Egypt, p. 8, 2018.

[9] K. K. Wollard and B. Shuck, “Antecedents to employee
engagement: A structured review of the literature,” Ad-
vances in Developing Human Resources, vol. 13, no. 4,
pp. 429-446, 2011.

[6

—_

XX SBGames — Gramado — RS — Brazil, October 18th — 21st, 2021

SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

XX SBGames — Gramado — RS — Brazil, October 18th — 21st, 2021

R. C. Motta, K. M. de Oliveira, and G. H. Travas-
sos, “Characterizing interoperability in context-aware
software systems,” 2016 VI Brazilian Symposium on
Computing Systems Engineering (SBESC), pp. 203-208,
2016.

M. J. B. Stephenson, J. Renz, X. Ge, and P. Zhang, “Gen-
erating stable, building block structures from sketches,”
IEEE Transactions on Games, pp. 1-10, 2019.

E. S. de Lima, F. J. Gheno, and A. Viseu, “Sketch-based
interaction for planning-based interactive storytelling,”
2020 19th Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames), pp. 154-162, 2020.
F. Hamiye, B. Said, and B. Serhan, “A framework for the
development of serious games for assessment,” Interna-
tional Conference on Games and Learning Alliance, pp.
407-416, 2019.

R. A. Boyd and S. E. Barbosa, “Reinforcement learn-
ing for all: An implementation using unreal engine
blueprint,” 2017 International Conference on Computa-
tional Science and Computational Intelligence (CSCI),
pp. 787-792, 2017.

S. Tang and M. Hanneghan, “A model-driven framework
to support development of serious games for game-based
learning,” Developments in E-systems Engineering, pp.
95-100, 2010.

K. Sanchez, K. Garcés, and R. Casallas, “A dsl for rapid
prototyping of cross-platform tower defense games,’
2015 10th Computing Colombian Conference (10CCC),
pp. 93-99, 2015.

A. W. Furtado, A. L. Santos, G. L. Ramalho, and E. S.
de Almeida, “Improving digital game development with
software product lines,” IEEE software, vol. 28, no. 5,
pp- 30-37, 2011.

M. Petticrew and H. Roberts, Systematic reviews in the
social sciences: A practical guide. John Wiley & Sons,
2008.

S. Matalonga, F. Rodrigues, and G. H. Travassos, “Char-
acterizing testing methods for context-aware software
systems: Results from a quasi-systematic literature re-
view,” Journal of Systems and Software, vol. 131, pp.
1-21, 2017.

A. Matallaoui, P. Herzig, and R. Zarnekow, “Model-
driven serious game development integration of the gam-
ification modeling language gaml with unity,” 2015 48th
Hawaii International Conference on System Sciences, pp.
643-651, 2015.

N. Valcasara, Unreal engine game development
blueprints. Packt Publishing Ltd, 2015.

C. W. Krueger, “Software reuse,” ACM Computing Sur-
veys (CSUR), vol. 24, no. 2, pp. 131-183, 1992.

Computing Track — Short Papers

