SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

Computing Track — Short Papers

Deep Reinforcement Learning Using a
Low-Dimensional Observation Filter for
Visual Complex Video Game Playing

Victor Augusto Kich
Universidade Federal de Santa Maria
Santa Maria, Brazil
victorkich@yahoo.com.br

Alisson Henrique Kolling
Universidade Federal de Santa Maria
Santa Maria, Brazil
alikolling @ gmail.com

Abstract—Deep Reinforcement Learning (DRL) has produced
great achievements since it was proposed, including the possibility
of processing raw vision input data. However, training an agent
to perform tasks based on image feedback remains a challenge.
It requires the processing of large amounts of data from high-
dimensional observation spaces, frame by frame, and the agent’s
actions are computed according to deep neural network policies,
end-to-end. Image pre-processing is an effective way of reducing
these high dimensional spaces, eliminating unnecessary informa-
tion present in the scene, supporting the extraction of features
and their representations in the agent’s neural network. Modern
video-games are examples of this type of challenge for DRL
algorithms because of their visual complexity. In this paper, we
propose a low-dimensional observation filter that allows a deep
Q-network agent to successfully play in a visually complex and
modern video-game, called Neon Drive. '°

Index Terms—Deep Reinforcement Learning, Image Prepro-
cessing, Deep Q-Network , Video Game

I. INTRODUCTION

Although earlier games used much simpler algorithms, and
the definition of Al shifts according to the era, it could be said
that video games have been incorporating Al since the first
Atari games — see [1] for a review. Al has also aided in the
improvement of the way humans play, understand, and build
games [2]. More recently, many studies began investigating
how an artificial intelligence that is external to the game itself,
can be used to play it at a human level or beyond, while
being subjected to the same boundaries in terms of perception
feedback and controls. Video games are ideal contexts for
Al research benchmark because they present intriguing and
complicated problems for agents to solve, and these problems
are defined in controlled and repeatable environments that are
secure and easy to manage. Furthermore, games provide an
abundant source of usable data for Machine Learning (ML)

Video available at: https://youtu.be/bKAMBKU68QU
2Code available at: https://github.com/victorkich/Neon-Drive-DRL

Junior Costa de Jesus
Universidade Federal de Rio Grande
Rio Grande, Brazil
dranaju@gmail.com

Gabriel Vinicius Heisler
Universidade Federal de Santa Maria
Santa Maria, Brazil
gvheisler @inf.ufsm.br

Ricardo Bedin Grando
Universidade Federal de Rio Grande
Rio Grande, Brazil
ricardogrando13 @gmail.com

Rodrigo da Silva Guerra
Universidade Federal de Santa Maria
Santa Maria, Brazil
rodrigo.guerra@ufsm.br

observation
Image

Preprocessing
Grayscale RGB

Environment

Low-D Filter

J

w action l

Fig. 1. System structure used to train the DQN agent using a low-dimensional
image as observation for the input.

observation

algorithms and often run significantly faster than real-time.
Games are a unique and popular topic for Al study because
of these properties.

Since Chess and Go have been effectively conquered, the
awareness that video games are good benchmarks for artificial
intelligence methods has been established throughout the Al
field. Since DeepMind’s landmark paper showing that Q-
learning combined with Convolutional Neural Networks (CNN)
could learn to play many of the Arcade Learning Environment
(ALE) games at a superhuman level [3] there has been an
almost daily flurry of new papers applying Al approaches to
video games. The ALE, which is based on an emulator for the
Atari 2600 games console and contains dozens of games [4],
has been used in numerous published papers.

In general, game Al is concerned with sensing and decision-
making in virtual worlds. There are some critical difficulties
and possible solutions associated with these components. Here
we highlight two of such difficulties. The first is that the game’s
state space is usually very wide. Such large-scale state-spaces
were successfully modelled with Deep Neural Networks (DNN)
thanks to the rise of representation learning. The second, is
that it is difficult to learn correct policies for making decisions
in a dynamic, uncertain environment. Data-driven methods,

XX SBGames — Gramado — RS — Brazil, October 18th — 21st, 2021

SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

such as supervised learning and Deep Reinforcement Learning
(DRL), are viable solutions for this problem.

In this work, we demonstrate the effectiveness of DRL on
a visually complex modern video game, focusing mainly on
the low-dimensional observation filter for preprocessing the
input image of each time step. Our proposed approach consists
of training our Deep Q-Network (DQN) [3] agent using our
image filter. Our system definition can be seen in Fig. 1.

II. RELATED WORKS

The current literature of DRL applied in classic video games
is wide, approaching a large set of problems. Super-human
skill levels have already been achieved in several classic video
games using DRL, demonstrating how effectively the approach
can be.

Arulkumaran et al. [5] provided a survey discussing the use
of raw pixels from images to train DRL agents, correlating
the historical progress of DRL in both video games and
robotics, using visual inputs for agents to better understand their
surroundings, enabling them to learn even high-level causal
relationships. Utilizing pixels observations together with data
augmentation, Laskin et al. [6] manage to obtain results on
par and better than DRL utilizing states observation, showing
the benefits of such approach.

Torrado et al. [7] trained some types of DRL algorithms,
including the DQN, in 2D classical environments used in The
General Video Game Al Competition (GVG-AI). The authors
trained different agents in 160 different environments using
only pixels as input, demonstrating the actual difficulty faced
by the agents when trying to correlate one game to another.

Ha and Schmidhuber [8] used a variational autoencoder
to reduce the dimensions of the observation space using the
latent space provided by the encoder as input for training the
controller in a 2D gym environment. In another work [9] the
same authors further developed the idea, training the agent in
an imaginary environment, inside of its simulated latent space
world. This approach spent much less time training to solve
the same 2D gym environment.

Shao et al. [10] promoted a more current review about
DRL using video games as training environments, including
Starcraft 2 [11], Dota 2 [12], Minecraft [13], and others. This
work also talks about the influence of optimization in the
training process, highlighting how much hardware intensive is
the training of such complex agents.

Lin et al. [14] replace the conventional CNN in favor of
a deep principal component analysis network in order to
reduce the dimensions of the observation space. Lin also
uses a DQN in both Flappy Bird and Atari Breakout games,
achieving a super-human performance. Tan et al. [15] use
an image preprocessing approach to reduce the dimensional
observation space, using image resizing followed by grayscaling
and binarization, applied to a part of the image. Tan uses a
DQN method to train the agent in the race car, a classic 2D
gym environment.

Computing Track — Short Papers

III. THEORETICAL BACKGROUND

It is difficult, in general, to train an agent to make decisions
given high-dimensional inputs. It was empirically observed
that RL from high-dimensional (state) observations with raw
pixel images are sample inefficient [16]. With the introduction
of Deep Learning (DL), researchers employ DNN as function
approximators to optimize policies.

A. Deep Learning

DL is a data representation learning methodology based on
artificial neural networks (NN). It is based on the concept of
brain development and can be taught in three different ways:
supervised, unsupervised, or semi-supervised. Although the
term “deep learning” was developed in 1986 [17], some argue
the field is still in its infancy due to a lack of sufficient amount
of data and capable enough computer hardware. However,
as larger-scale datasets and more capable hardware become
available, DL undergoes significant transformations [18].

CNN [19] is a type of DNN frequently used in computer
vision. CNN is built on shared-weights architecture and is
shift-invariant, as it is inspired by biological processes. Speech
recognition, image classification and segmentation, semantic
comprehension, and machine translation are just a few of the
disciplines where CNN systems have seen substantial success
[20].

B. Reinforcement Learning

Reinforcement Learning (RL) is a type of ML method based
on the idea of operand conditioning, in which agents learn the
best policy through experimentation, exploring a state space
by choosing actions and observing outcomes in order to model
and maximize future rewards [21]. RL may be successfully
applied to sequential decision-making tasks by interacting with
the environment. Considering a discounted episodic Markov
Decision Process (MDP) (S, A,~, P,r), the agent choose an
action ay in the state s; based on the policy 7 (a+|s:). The action
is received by the environment, which generates a reward 741
and transfers the agent to the next state s;+1 (s’) based on the
transition probability P(s¢41|st, a:). The operation is repeated
until the agent reaches a terminal condition or exceeds the
maximum time step. The purpose is to maximize the projected
discounted cumulative rewards

Ew[Rt] = Ew (1)

Z’Yirtﬂ} .
i=0

where v € (0, 1] is the discount factor.

Off-policy and on-policy methods of RL can be distinguished.
Off-policy RL algorithms are those in which the behavior policy
used to select actions differs from the one employed while
learning the policy. On the contrary, in on-policy RL algorithms,
the behavior policy is the same as the one used while learning.
Furthermore, RL can be separated into value-based and policy-
based techniques. Agents in value-based RL update the value
function to learn appropriate policies, whereas policy-based
RL agents learn the policy directly.

XX SBGames — Gramado — RS — Brazil, October 18th — 21st, 2021

SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

Computing Track — Short Papers

' Image Conv2d (Conv2d (Conv2d Linear
RGB —> BatchNq }—» —> BatchNq }—» —»{ BatchNi }—»
channels ‘ 1x16 e x5 - 32x32 | Baclom | 100x3
¢ » * Actions
Kernel = 5) Kernel = 5 - : Kernel = 5 A,
ReLU X ReLU erne
Strides = 2 [ETPPITRN Strides = 2 Bt Strides = 2 - RELU

Observation

No move

Fig. 2. Used structure to train the DQN agent with the low-dimensional observation filter. In our work, the observations generated by the environment can

have any resolution because of the resize label before the CNN.

Q-learning is an example of an off-policy value-based
method. The Q-learning update rule is

0p = rey1 + yarg m;lXQ(St-s-l, a) — Q(s¢, ar), 2

Q(st,at) < Q(st,at) =+ Oéét. (3)

where J; is the temporal difference error, and « is the learning
rate.

C. Deep Reinforcement Learning

DRL is the fusion of DL and RL, and has shown tremendous
development since its inception. This section will introduce
the DQN technique [22], a pure value-based DRL technique.

The classic DQN algorithm [3] succeeded to exceed humans
in numerous games by establishing the agent’s behavior. This
system was able to estimate the agent’s action on a human
level utilizing only a raw pixel image as input. DQN uses
the experience replay method to break the sample correlation
and stabilize the learning process with a target Q-network. A
target network generates targets for the temporal-difference
error that can regulate the learning and, as in the experience
replay, improve even more the stability of the method. The
target network (/) contains a copy of the Q-network (6),
however, with “soft” updates: 6~ < 70 + (1 — 7)6~. The loss
function of € at iteration i is

2
Ll(el) = E(s,a,'r‘,s’)NU(D) |i(y;,DQN - Q(S,CL; 91)) :|) (4)

with
N =1+ maxQ(s',d;07). Q)

DQN bridges the gap between high-dimensional visual inputs
and actions.

The training is performed with e-greedy exploration (the
agent chooses the best action with probability epsilon and
chooses a random action otherwise), and no regularization is
used. In particular, dropout is usually advised against in such
regression settings.

It is noteworthy that the DQN method has already shown
difficulty in learning using visually complex environments.
Another problem with DQN is the fact that this method could
only handle discrete action spaces, making it necessary to use
other approaches to perform it in a continuous space [23].

IV. METHODOLOGY

In this section, we discuss our DRL approach and we detail
the network structure of our agents. We also present the image
preprocessing pipeline and the proposed reward function for
the task the agent must accomplish autonomously.

A. Proposed Approach

Our environment is a visually modern game called Neon
Drive, which has a great variety of colors and changes in
luminosity and a discrete space in the action domain. This
game has a very simple purpose, to deviate from fixed obstacles
over time using three types of discrete actions: left, right, and
no move. Because of that, the DQN method, based on recent
articles, is a good option for solving our problem, training the
discrete agent using only the pixels of the image as input.

The neural network architecture used to train and other
significant steps of our DQN agent structure can be seen in
Fig. 2. We used a classical CNN architecture, with three layers
of convolution and layers of batch normalization between them.
The activation function was applied to the batch normalization
output and the outputs from the linear layer are the three
discrete actions that will be sent to be performed in the
environment.

B. Image Preprocessing

The core idea of reducing the extra image information present
in the environment observation revolves around cropping and
binary filtering. All of the realized processes in this subsection
have been made using python modules, in special: OpenCV
for image filters, Torchvision for image transformations, and
mss for screen capturing.

The image processing pipeline performed in this work can be
seen in Fig. 3. Through the mss python module, the screen was
captured and transformed into an n-dimensional array variable.
With the BGR screen saved, a color-to-grayscale filter was
applied. Then the image was cropped, removing 53.84% of
the upper pixels, 20% of the lower pixels, and 20% of the left
and right pixels. After that, the triangle threshold function was
applied to transform the image to binary. Finally, we resize
the final image to 160 x 90 pixels using area interpolation.

C. Reward Function

A reward and penalty functions must be established for the
DRL strategy. Rewards and penalties are values assigned to the

XX SBGames — Gramado — RS — Brazil, October 18th — 21st, 2021

SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

Image Preprocess Pipeline

RGB CroEied Imaie

Raw Image

Grayscale Image

H 'anile Binari Threshold

Fig. 3. The complete image preprocess pipeline was used to reduce the
environment observation. Cropping the borders and removing the colors to
binary black and white patterns.

Preprocessed Image

Area Interpolation
Resize

J

performance of the agent, allowing it to learn hyper-parameters
through the feed-forward and back-propagation phases of the
networks. A simple reward and penalty strategy was used,
described as follows:

if d, < d;

Talive
b = 6
rion) {rcollide if [H (i) ~ H(ig)] <0.15 ©

If the car at the time d; has already surpassed the first
obstacle in the d, a positive 741y reward of 1 is given. If
the car collides with any obstacle, a neutral r.;;;4. reward
of 0 is granted to the step, finishing the episode at this time.
The collision is verified by the Bhattacharyya distance of two
histograms H: if the similarity between the current raw image
i; and the game over image % is more than 85%, a collision
has occurred.

V. EXPERIMENTAL RESULTS

The DRL approach was implemented using the Python
programming language. The agent-related control modules
were also implemented in Python. The implementation of the
neural networks was carried out with the PyTorch? library.
Both development and training were conducted on a computer
with Ubuntu 20.04. The performance of our approach can also
be observed in a complementary video.

A. Training setup

We used the proposed approach to train the agent for the
Neon Drive in endurance mode. For all the training episodes,
the agent’s initial position was set at the start checkpoint. The
episode ends if the vehicle collides with any of the obstacles
present in the environment. This also means that the episode
does not end if the agent does not hit an obstacle, so the total
amount of reward of a given episode can reach a large value.

The neural networks have been trained with an RMSprop
optimizer and with a learning rate of 1073. The selected
minibatch size was 128. We set a limit of training of 4000
episodes for the scenario, and the replay memory has size
30000. The limit was defined empirically since good results
could be observed around these values.

3https ://pytorch.org/

Computing Track — Short Papers

B. Results

The use of e-greedy noise create a noisy reward graph, so the
moving average of the reward is. depicted in Fig. 4. It can be
seen that it took approximately 1000 episodes to start noticing
the agent was learning the task, yielding a considerably higher
amount of reward by the end of the training.

Reward per Episode

Real Rewards
—— Filtered Rewards

| W
Ll | ‘,\‘ | ”n ‘
Mol T T ST

Foisode

Fig. 4. Moving average of the reward of 4000 training episodes.

In our environment, the vehicle was set to always start at
the same initial checkpoint. The agent had also to navigate
through the environment, while avoiding the obstacles in order
to maximize the reward, reaching the “next goal” without
a collision. Since the map never changed, the navigation
was basically a memorization problem. The performance was
measured by the moving average of 25 training episodes. This
is shown in Fig. 4.

Since our environment is a real game, the frame generation
is uncontrollable, making the observation space even more
stochastic. In our empirical tests, we defined our control
frequency to generate 3 inputs per second. In order to take into
consideration the temporal difference through the observation
steps, we actually subtract the former observation from the
current one, feeding the difference as the input — except for
the game over screen.

To test the robustness of our approach, we input salt &
pepper (S&P) noise in the input images before the observation
preprocessing [24]. For this task, we use four samples of S&P
noise: 0.4%, 1%, 10%, and 25%. The results can be seen in
Fig. 5. For low noise inputs, the results kept almost the same
average, but for the higher noise inputs, 10% and 25%, the
moving average of the reward is decreased. The delay between
observations varies. The deliberate delay is 333ms, however
as the game continues to run, other system delays are added to
the total, and also the initial loading time of the game varies
a lot, all of this substantially randomizing the observations if
compared across different episodes.

VI. CONCLUSION

In this paper, we have proposed a DRL-based approach for
training an agent to play a visually complex modern video
game. The method only uses the image as input and the results
obtained in the trained scenario shown that the agent was
capable to perform in the proposed scenario successfully and
learn to avoid the obstacles to reach the desired target.

XX SBGames — Gramado — RS — Brazil, October 18th — 21st, 2021

SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

Reward per Test Episode

—— Without Noise
—— S&P: 0.4%
—— S&P: 1.0%
"l — S&P:10.0%
S&P: 25.0%

3

Fig. 5. Comparison of the moving average rewards performed in 100 test
episodes.

More specifically, we can examine that with a simple low-
dimensional observation filter structure, the DRL algorithm
obtained a good performance. It managed to avoid the obstacles
and execute a successful route in the environment. We can also
conclude that DRL approaches are suitable for the development
of systems that require discrete control for artificial agents, in a
visually complex environment using the image as observation.
The robust learning results obtained can also be attributed to
our rewarding scheme being simple and precise, such as those
proposed.

In future works, we aim to expand the study with more
DRL algorithms, such as Deep Deterministic Policy Gradient
(DDPG) and Twin Delayed Deep Deterministic (TD3). We also
intend to test our approach in more modern video games.

ACKNOWLEDGEMENT

The authors would like to thank the VersusAl team.

REFERENCES

[1]1 G. Skinner and T. Walmsley, “Artificial intelligence and deep learning in
video games a brief review,” in 2019 IEEE 4th International Conference
on Computer and Communication Systems (ICCCS), 2019, pp. 404—408.
G. N. Yannakakis and J. Togelius, Artificial intelligence and games.
Springer, 2018, vol. 2. [Online]. Available: https://link.springer.com/
content/pdf/10.1007/978-3-319-63519-4.pdf

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015. [Online]. Available:
https://www.nature.com/articles/nature 14236 ?wm=book_wap_0005

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,”
Journal of Artificial Intelligence Research, vol. 47, pp. 253-279, 2013.
[Online]. Available: https://www.jair.org/index.php/jair/article/view/10819
K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26-38, 2017.

M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srini-
vas, “Reinforcement learning with augmented data,” arXiv preprint
arXiv:2004.14990, 2020.

R. R. Torrado, P. Bontrager, J. Togelius, J. Liu, and D. Perez-Liebana,
“Deep reinforcement learning for general video game ai,” in 2018 IEEE
Conference on Computational Intelligence and Games (CIG). 1EEE,
2018, pp. 1-8.

D. Ha and J. Schmidhuber, “World models,” Conference on
Neural Information Processing Systems, 2018. [Online]. Available:
https://arxiv.org/abs/1803.10122

(2]

(3]

(4]

[5]

(6]

(71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18

[19]

[20]

[21]

[22]

[23]

[24]

Computing Track — Short Papers

——, “Recurrent world models facilitate policy evolution,” Conference
on Neural Information Processing Systems, 2018. [Online]. Available:
https://arxiv.org/abs/1809.01999

K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A survey of deep
reinforcement learning in video games,” 2019. [Online]. Available:
https://arxiv.org/abs/1912.10944

O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Kiittler, J. Agapiou, J. Schrittwieser
et al., “Starcraft ii: A new challenge for reinforcement learning,”
arXiv preprint arXiv:1708.04782, 2017. [Online]. Available: https:
/larxiv.org/abs/1708.04782

C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680,
2019. [Online]. Available: https://arxiv.org/abs/1912.06680

C. Tessler, S. Givony, T. Zahavy, D. Mankowitz, and S. Mannor, “A deep
hierarchical approach to lifelong learning in minecraft,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.
C.-J. Lin, J.-Y. Jhang, H.-Y. Lin, C.-L. Lee, and K.-Y. Young, “Using a
reinforcement g-learning-based deep neural network for playing video
games,” Electronics, vol. 8, no. 10, p. 1128, 2019.

R. Tan, J. Zhou, H. Du, S. Shang, and L. Dai, “An modeling processing
method for video games based on deep reinforcement learning,” in
2019 IEEE 8th joint international information technology and artificial
intelligence conference (ITAIC). 1EEE, 2019, pp. 939-942.

L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Camp-
bell, K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine
et al., “Model-based reinforcement learning for atari,” arXiv preprint
arXiv:1903.00374, 2019.

R. Dechter, “Learning while searching in constraint-satisfaction problems,”
Association for the Advancement of Artificial Intelligence, 1986.

J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
networks, vol. 61, pp. 85-117, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, pp. 1097-1105, 2012. [On-
line]. Available: https:/kr.nvidia.com/content/tesla/pdf/machine-learning/
imagenet-classification- with-deep-convolutional-nn.pdf

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature,
vol. 521, no. 7553, pp. 436-444, 2015. [Online]. Available:
https://www.nature.com/articles/nature 14539

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” NIPS Deep Learning Workshop, vol. abs/1312.5602, 2013.
[Online]. Available: http://arxiv.org/abs/1312.5602

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
in 4th Int. Conf. on Learning Representations, ICLR, Y. Bengio and
Y. LeCun, Eds., 2016. [Online]. Available: http://arxiv.org/abs/1509.02971
L. Bar, N. Sochen, and N. Kiryati, “Image deblurring in the presence
of salt-and-pepper noise,” in International Conference on Scale-Space
Theories in Computer Vision. Springer, 2005, pp. 107-118.

XX SBGames — Gramado — RS — Brazil, October 18th — 21st, 2021

