Development of a Sprite-Based Architecture for Creating 2D
Games in Reconfigurable Environments Using FPGA Devices

Gabriel Sa B. Alves!, Anfranserai M. Dias', Victor T. Sarinho?

IState University of Feira de Santana - Technology Department

2State University of Feira de Santana
Lab. de Entretenimento Digital Aplicado — LEnDA

bielbarretoalves@gmail.com, anfranserai@uefs.br, vsarinho@uefs.br

Abstract. The understanding of concepts worked on FPGAs combined with the
creation of games in hardware platforms has helped in the understanding and
assimilation of the necessary techniques and approaches to build digital game
systems. This work presents the development and validation of a Sprite-Based
Architecture that aims to develop 2D games in reconfigurable environments
based on FPGA devices. To this end, a set of functions and other resources im-
plemented in C language were develop, that aims to help the creation of games
through the developed architecture.

Keywords: FPGA; 2D Games; Digital Systems.

1. Introduction

For the development of electronic equipment, it is essential to understand the elements
related to the creation of digital systems and circuits. Therefore, in courses such as Com-
puter Engineering, Electrical and Electronics Engineering, universities use FPGA devices
(Field-Programmable Gate Array) as a learning tool for the academic development of
students on the elements of hardware, software and integration techniques.

FPGAs perform the physical simulation of sophisticated designs of circuits and
digital systems and verify their operation on a physical device. In addition, there are
several development boards on the market coupled with these chips, and structured with
different peripherals, such as displays, buttons, among other input and output interfaces.
These peripherals helps interaction with the system from the data entry to the graphic
visualization of the obtained results.

Given these aspects, this work presents the development and validation of an ar-
chitecture based on sprites that aim to develop two-dimensional games in reconfigurable
environments using FPGA devices [Alves et al. 2021]. The intention here is to explore
the possibility of provide a low cost portable video game for the creation of several 2D
games using a single reconfigurable platform.

2. Related Work

Different academic projects are carried out in universities using the method-
ology of creating electronic games based on FPGA devices. Classic games
such as Snake [Singla and Narula 2018], Galaxian [Xia et al. 2013], Space Shoot
[Mishraa et al. 2017], Pong [Y.Q.Loh 2020], a functioning simuation of the sport cricket

[Egyir and Devendorf 2020] and others [Ali et al. 2021], are interesting examples of
FPGA implementations. Such projects encourage students to develop skills in digital
circuit modeling, system verification and testing. Most projects are modeled using HDL
languages (Hardware Description Language) such as Verilog or VHDL (VHSIC Hard-
ware Description Language) [Jiménez-Fernandez et al. 2020] and synthesized through a
CAD system, such as Intel Quartus Prime. However, this approach is limited in terms
of the difficulty of creating new games, requiring the development of new control and
animation hardware in each project.

Another approach is to use microcontrollers, where the development is carried
out through a printed circuit board coupled with I/O peripherals and microcontrollers like
Arduino. APIs (Application Programming Interface) are also available to facilitate game
creation, game control and hardware access. The GameBuino [gam] and Arduino Esplora
devices are some examples. However, this approach makes it difficult to use sprites and
to make hardware improvements for the production of more complex games.

3. Proposed FPGA Architecture

Initially, was idealized the process of rendering and programming the games. The first
step of the rendering process consists in the initialization of two memories responsible
for storing the RGB color bits of the sprites and background of the screen. The second
step corresponds to the print control of sprites and background. The graphic standard
chosen was VGA (Video Graphic Array) with a resolution of 640x480 pixels. As a VGA
monitor is scanned from left to right and from top to bottom, when the entire active area
of the screen is scanned, the sprites can be updated, so that in the next frame, they are
redrawn according to the new definitions.

For the game programming process, each game must be programmed using the C
language through a general purpose processor. As the sprifes information are stored at the
hardware level, updates are made through instructions (commands) sent to the graphics
module responsible for the game rendering process. The rendering process is indepen-
dent, performing all control without the need of a software intervention. With this, the C
language code will be responsible for defining the game logic and sending the commands
to update the information pertaining to the objects to be rendered.

Based on this operating principle, the proposed architecture was modeled (Fig.
1). Its structure consists of a general purpose processor, two FIFOS (First In First Out),
a PLL (Phase Locked Loop) and a Graphics Processor. Nios II was chosen to act as
a general purpose processor, which consists of a 32-bit softcore RISC processor with
Harvard architecture developed by the company Altera. Its function is to execute the
source code in C language of the games that will be programmed. The Graphics Processor
is responsible for managing the game rendering process and executing a set of instructions
that allow initially moving and controlling the sprites, as well as modifying the layout of
the background of the screen. This set of instructions is received through the dataA and
dataB buses, as seen in Fig. 1. The main outputs of the Graphics Processor consist of
the horizontal (h_sync) and vertical (v_sync) sync signals from the VGA monitor, and the
RGB color bits. As Nios and Graphics Processor have different clock frequencies, FIFOs
are being used as intermediary devices for communication. The PLL is responsible for
generating the clock frequencies necessary for the correct functioning of the architecture.

Nios stores all instructions that must be executed by the Graphics Processor in
FIFOs. With the signal start at high logic level, the Written Pulse module will generate
a single write pulse in sync with wrelk, therefore, the instruction data present on buses
data A and data B will be stored in FIFOs. Each FIFO initially has the capacity to store
16 words of 32-bits. When the wrfull signal is at a high logic level, it means that the
FIFOs have reached their maximum capacity. In this way, the FIFOs’ internal protection
circuit is automatically activated to avoid possible Overflows. FIFOs facilitate the process
of modeling new instructions, without the need to include new buses and/or intermediary
devices between Nios and the Graphics Processor.

oy
clk_25
reset clk 50 PLL
instb

"

clk_100 e
| NIOS I ‘ S
w start _ Pulse
insta
wrfull
2 T
% ' monitor ,
. . signals |
data A [31:0]
[L wrfull [8:0]
el dataA [31:0] i
wrreg Graphic
FIFO A
® b wrelk Processor
| rdempty
rdreg T 2 reset
rdclk
¢ wrfull
data B [31:0] rdempty
>
>
wrreg FIFOB dataB [31:0]
wrelk
| rdempty
(— i
out_rdre
T _rdreg

Figure 1. Representation of the proposed architecture.

4. Simplified API for the Production of 2D Games

After modeling and implementing the proposed architecture [Alves et al. 2021], some
features in software such as functions, constants and composite types (struct) were built
(Listing 1). Its objective is to abstract low-level aspects of the architecture and thus help
in the programming of games using the C language. These resources are available in a
header file (graphic_processor.h).

int set_sprite(int registrador, int x, int y, int offset, int
activation_bit);

int set_background_block (int column, int line, int R, int G, int
B);

int set_background_color (int R, int G, int B);

void increase_coordinate (Sprite xsp, int mirror);

int collision(Sprite #*spl, Sprite =xsp2);
Listing 1. Auxiliary functions for the development of games and sprites control.

The set_sprite function is used to position a sprite on the screen. The field Op-
code is defined internally, before sending the command to the Processor. Its return is
1 if the operation was sent successfully, and O otherwise. The set_background_block
function is used to model the background by filling the 8x8 pixel blocks. Its parame-
ters consist of the components R, G, B and the row and column value that represents the
block to be filled. Internally, the row and column parameters are used to calculate the cor-
responding address in Background Memory. The set_background_color function is used
to set the background base color, whose parameters consist of its RGB components. In an
architecture, as the register used for the base color is fixed, the Register field is defined
internally, as well as the Opcode. Its return is 1 if the operation was sent successfully, and
0 otherwise. The increase_coordinate function is responsible for updating the x and y
coordinates of a moving sprite according to its movement angle and displacement value.
Its parameters consist of passing by reference a variable of type Sprite and an integer
value that informs whether the sprite coordinates should be mirrored when leaving the
active area of the VGA monitor. After performing the update, it is necessary to use the
set_sprite function to draw the sprite in the new coordinates. In the Listing 2, is presented
two structs used to store sprites information.
typedef struct{

int coord_x, coord_y;
int direction, offset, data_register;
int step_x, step_y;
int active, collision;
} Sprite;
typedef struct/{
int coord_x, coord_y, offset;
int data_register, active;
} Sprite_Fixed;

Listing 2. Constants and structures for a game production.

The collision function is used to check if a collision has occurred between two
sprites. It implements the Rectangle Overlay technique, using the height and width of
a sprite to define the boundary areas. It is checked whether the print area of one sprite
is inside the print area of the other. Its parameters consist of passing by reference two
variables of type Sprite with their attributes coord x and coord_y properly filled in. Its
return is 1 if the collision is detected, and O otherwise.

5. Obtained Results

Regarding the game loop of the proposed architecture, Figure 2 illustrates a general rep-
resentation of the execution flow for the developed games. The first action performed is
the initialization of the sprites that will be used during the game. This process consists
of declaring and initializing variables of composite types that will store the spriftes in-
formation. For this, the struct Sprite presented previously was used. Then, through the
set_sprite, set_background_color and set_background_block functions, the initial sprites,
the background base color and the scenario construction (in the case of Space Invaders)
are introduced in the screen.

Starting the main loop, there is the reading of the control buttons. This reading
is done through the function IORD(base, 0) available in the file altera_avalon_pio_regs.h.

[Initialization ", Setups scenario and /Reads Control |

' of sprites. sprites on screen Buttons
——— /—i—/
o 8 ",
i .,
No _‘Screen was ™.
Analize Collision | »
B . drawed ?
i Yes
o - ™, - - N,
- N, / N,

Vi s
(/ Spaceship .

No o« ies . No g
. >_»(/ Enem_ ies \)_,(\
. hit ? v . hit 7 -

% Yes
~ ™,

P s,

 Buailable . Yes the Pr state of
4 >—’
o lives? collision > buttons.
\? i
| GAME OVER ‘:I Refresh Sprites ——

Figure 2. Game execution flow.

The base parameter consists of the memory address of the registers that store the state of
each button. These addresses are found in the system.h file. Both libraries were developed
by the company Altera to facilitate access to peripherals connected to the Nios II processor
system. The access to these libraries is done after creating the project in the Eclipse IDE
integrated with the Quartus Prime platform. Once the buttons are read, it is checked
whether the time to scan a screen has already been reached.

The memory address is also used in the IORD function to check whether the in-
structions sent to Graphic Processor were read. If a screen has been drawn, the instruc-
tions was executed and the game is in progress, then the sprites are updated through the
increase_coordinate function and the update commands transmitted to the Graphics Pro-
cessor through the set_sprite function.

According to the game loop (Figure 2), if the scan time is not reached, collision
processing between sprites is performed. If the scan time has been reached, the states
of each control button are processed, and the sprites are updated according to the new
information. For the Asteroids game, the player will only have one life, so if the ship is
destroyed the game is over. For Space Invaders game (Figure 3), the player will have 3
lives. If the ship is hit and it has extra lives, the game is returned to its normal execution
after a period of 4 seconds from the game level in which the player is.

Figure 3. Initial prototype and the developed Space Invaders game.

Regarding the initial prototype, the entire architecture was compiled and synthe-
sized on the Quartus Prime Lite 20.1 platform. Signals for movement control, ship firing,
game pause and game resume operations are obtained through external hardware with
buttons and a joystick (Figure 3). Execution tests were performed by the DEO-Nano de-
velopment board coupled with the FPGA Altera Cyclone IV EP4CE22F17C6N chip. As
identified problem, performing an animation in the limit of 31 sprites on the screen causes
a loss in the update speed due to the limit of sending 13 instructions per frame. It is in-
tended to increase this value, in order to allow the control of more sprites in the same
frame, thus achieving a better performance in the execution of the implemented games.

6. Conclusions and Future Work

This work presented the validation of an architecture based on sprites that aim to create
two-dimensional games in reconfigurable environments. To this end, two games was
create based on functions and others resources implemented in C language that aims to
help the creation of games through the developed architecture.

As future work, new functionalities for the Graphic Processor will be developed,
such as the processing of geometric shapes and the change from the VGA graphic standard
to HDMI (High Definition Multimedia Interface), in a way that allows the display of
games directly on the external hardware display seen in Figure 3. A sound module will
also be developed, in order to guarantee to the user a better immersion experience during
all phases of the developed games. Finally, it is also necessary to apply the use of the
architecture by other game developers, in order to assess the production environment as
a whole, the required learning curve, possible learning difficulties, and the architecture’s
ability to develop different types of game genres.

References
Gamebuino. https://gamebuino.com/. Accessed in: 2022-01-18.

Ali, S. I. et al. (2021). A strategical approach for implementing digital games on
fpga. Turkish Journal of Computer and Mathematics Education (TURCOMAT),
12(10):3539-3549.

Alves, G. S. B., Dias, A. M., and Bittencourt, J. C. N. (2021). Collenda: A games
development platform in reconfigurable environments using fpga devices.

Egyir, R. J. and Devendorf, R. P. (2020). Design of a cricket game using fpgas.

Jiménez-Fernandez, C. J., Oliva, C. B., Fernandez, P. P., Soto, A. G., Ordénez, F. E. P,,
and Barrero, M. V. (2020). Learning vhdl through teamwork fpga game design. In 2020
X1V Technologies Applied to Electronics Teaching Conference (TAEE), pages 1-5.

Mishraa, A., Kumarb, A., and Pariharc, R. (2017). Design and fpga implementation of
space shoot game. International Journal of Control Theory and Applications, 10(30).

Singla, N. and Narula, M. S. (2018). Fpga implementation of snake game using verilog
hdl.

Xia, S.-M., Xu, X.-L., Qin, L., and Liu, C.-H. (2013). Galaxian game on altera de2-115
fpga architecture.

Y.Q.Loh (2020). Designing a game on fpga using verilog.

