
Integrating a simulation model as an
architectural component of a game

André Koscianski1, Guilherme T. S. Abreu2, Luiz G. M. Padilha2

1PPGCC-PG – Universidade Tecnológica Federal do Paraná (UTFPR)
R. Dr Washington S. Chueire, 330 Ponta Grossa, PR - Brazil

2Department of Computer Science – UTFPR.
koscianski@utfpr.edu.br, {guiabr,luipad}@alunos.utfpr.edu.br

Abstract. Many computer games involve the simulation of
real-world phenomena, mechanisms, and behavior of beings.
Examples vary from simple Physics found in the platform style
to characters that learn and adapt according to user choices.
Another field that uses computer models is criminology, a
theme that is also a starting point for many games. This paper
studies the integration of a (serious) criminal simulation model
and a computer game, keeping the two perspectives
separated; the model functions as an add-on that reshapes
parts of the game.
Keywords— simulation model, computer game, software
architecture.

1. Introduction
Simulations found in games vary from simple physics of animated
cartoons (Super Mario) to detailed description of aerodynamics (Flight
Simulator). Another variation is the representation of historical facts
(Les Campagnes de Napoléon); one of the challenges in designing this
kind of title is to preserve historical accuracy but still offer a
legitimate game experience [Dillon 2008].

The present work was born from two initially separated projects:
a serious simulation model in the field of criminology, and a computer
game with a hero (the player) who fights bandits in a city. The game
was designed independently from the simulator, but should allow the
integration of the criminal model as an optional element. The central
problem in this context was to coordinate the architecture of both
elements, game and simulator, accounting for mutual functional
dependencies. The game does not depend on accurate descriptions of
criminal activities or police routines. In the same line, an
implementation of criminal theories is completely unconcerned with
things as scores, sounds, graphical animations, user interaction and
real-time execution. However, there are features that overlap since
game and simulation, NPCs and agents, environment, and data maps,
are elements that share a common ground. Both call for message



passing, state management, interaction, and spatial and temporal
coordinates. In the present case, there was a focus on the game
engine, and the situation would be different if the project started with
agent-centered platforms such as Netlogo, Repast, or Jacamo.

2. Background
The development process of games has important differences
compared with traditional software [Aleem et al 2019]. Architectural
descriptions present an inherently partitioned view of software and
the relations between parts.

Component-based development is a technique well adapted to
the needs of the game industry; it supports the variety of functional
requirements present in this type of software, provides flexibility to
create new elements, and supports reuse that contributes to lower
costs [Freitas et al 2012, Van der Vegt et al 2016]. The separation
between game and simulation model resembles the Model-View-
Controller architecture, where the simulator would correspond to the
controller. However, both the crime model and the game code are
responsible for different aspects of the functioning of the agents.
Some techniques that come to mind in this scenario are aspect-
oriented, component-based, and incremental design; nonetheless, the
crosscutting character of requirements may not be addressed
correctly under classical views [El-Hokayem et al 2018]. One way to
frame the problem is by means of feature-oriented software
development (FOSD), a paradigm that highlights feature modeling,
dependency, and interaction and fits some of the gaps of the other
cited techniques [Apel and Kästner 2009]. In short, features are
viewed as determinant of structure and not a by-product of functions
and behaviors. In that view, features drive both design and
implementation of software. Figure 1 illustrates the concept applied in
the present case.

Figure 1. A partial feature model of the project (using [Apel and Kästner 2009] notation).

Figure 1 shows that, while a bandit maps to an NPC in the game,
some elements of that entity also belong exclusively in the simulation.
One way to implement separated requirements in a completely
transparent way might be dependency injection with the support of
reflection [Passos et al 2010]; in the present case, scripts have
minimal awareness about each other and pilot variables and states to
accomplish their objectives.



2.1. Crime Simulation Models
Crime simulators can represent the main features of the behavior of
individuals to predict unlawful actions [Malleson et al 2013]. Some
elements found in such models are the representation of people’s
routines, criteria and processes used to choose a course of action,
and reinforcement mechanisms [Birks and Elffers 2014]. Agent-Based
Modeling (ABM) is an established approach in criminology [Groff et al
2019], and it can also be used to model a game architecture in terms
of its characters [Rhalibi and Merabti 2005].

In this project, bandits in the original game concept might follow
random rules concerning entering the scene and moving around; the
simulation would refine this information to drive agents according to a
logic prescribed by criminal models [Devia and Weber 2013].

3. Development
The implementation of a proof-of-concept was carried out with the
Godot game engine, with a simulated city in isometric projection.
Besides the city map, the simulator and the game must share a
common view of the state of the world. There are two general options:
either the two components run separate models and synchronize
information using some protocol, or they function on a client-server
basis. The crime model requires agents to navigate through a city;
many aspects of this function, like routing, kinematics, and collision
detection, are naturally supported by game engines like Godot. At the
same time, the very presence of those agents is a requirement of the
game itself. Because of this, the game code was chosen as a first
layer to breath life into the characters. The simulator delegates all
those responsibilities to the game code, which, in turn, may rely on
the simulator to obtain events signaling unlawful actions.

The NPCs were implemented with state machines. The decision
to pursue a citizen depends on the rules implemented in the simulator.
The model from Devia and Weber (2013) uses a probability
distribution and the mood of a bandit to define the likelyhood of an
assault. This model was the basis for the simulation component.

Periodically, the simulator is called by the game engine and
runs an analysis of the state of the scenery. If the right conditions are
met, the state of a criminal agent is switched to ‘Chase’. As shown in
Figure 2, the communication between the components begins with a
message from the game, notifying the simulator about the current
time. This message is generated in the game loop. The simulator
updates its internal clock and periodically queries the game. It sends
the position of a bandit and receives in return a list of civilians withing
a given radius, with the closest one in the first position. For this
implementation, a list with a single element is the condition to switch
the behavior of the bandit to the state ‘Chase’. The movement of the
NPCs is implemented in the game side; the interception of the victim



uses a traditional solution of following the target. Once this happens
the bandit agent sends a message informing the simulator.

Figure 2. Communication diagram.

The initial version of the software implements simple random
movement for regular citizens. The simulator chooses a destination
and sends the information to the game code, which computes a path
and moves the agent. A more detailed simulation model would define
the trajectories according to predefined schedules and profiles like
‘student’, ‘worker’ and ‘common’, and routines such as ‘going to
school’ and ‘return home’. The simulator can command these
behaviors by sending messages with state changes and destinations
to the NPCs in the game. To further improve authenticity, the agents
may make random detours and pauses along their routes.

In our study using Godot, the simulator was coded as a regular
object that, once instantiated, is activated (called) by the engine at
each frame update. It has all the engine’s capabilities at its disposal,
like the graphical design of scenarios and functions like path-finding.
Since all objects (NPCs) are public, the simulator script can directly
manipulate states and variables, overruling the regular (not-model-
aware) game code. Since this interference must not be treated as an
error, the NPC code must leave that possibility open; for instance,
state machines should not forbid foreign (unknown) states, which a
given simulator implementation can use to bypass the game logic.

3.1. Game Mechanics
An essential aspect of the game was the definition of a storyline that
could accomodate the autonomous activities of agents. A simple
concept was created; the basic mechanics are represented in Figure 3
using a Machinations diagram [Dormans 2012].

The diagram in Figure 3 starts with the generation of a crime
event by the simulator. This event triggers the action of a criminal
agent, and this generates a warning to the player. The possibility of a
bandit not accomplishing the action was left for future versions of the
software: it might be a consequence of the presence of police agents
patrolling the city. Following the diagram, the occurrence of a robbery



decreases the player’s score; on the contrary, the score increases
when the player catches a criminal. After a certain number of
victories (ten in this design), the player is granted access to a new
level. The game leads the player to enter a procedure-generated
maze where several bandits and a final boss are hidden.

Figure 3. Game Mechanics.

4. Conclusions
Simulation is intrinsic to most games, with Physics being the main
example and requirements varying from crude kinematics to
sophisticated dynamics. Normally a simulation is conceived as part of
the game logic. A different perspective is keeping a simulation model
separate from the game concept. In this project, the simulator
functions as a graft that can overcome the game control logic. At the
same time, the simulator also plays the role of a client that makes use
of NPC functions, like movement; an entity as ‘Citizen’ has features
from two perspectives: game/NPC and simulation/agent. Techniques
such as design by contract and data abstraction make it possible to
reduce coupling up to the point where a pluggable architecture is
defined. In the present case, manipulating object properties was the
key to addressing the issues illustrated in Figure 1. On other
implementation platforms, mechanisms such as reflection might be
explored to expose interfaces that would be queried and activated
from distinct software modules.

Several functions typically found in game help implement
agent-based simulations; this includes movement, collision detection,
and handling groups of characters. Visualization is another vital
function, allowing modelers to ‘feel’ and validate the adequacy of
behaviors. Game engines support all of those features using highly
efficient algorithms, and solutions like the one discussed here may
contribute to decouple dependencies from scientific applications.

References
. A. Dillon, “Signifying the west: colonialist design in Age of Empires III:
The WarChiefs,” Eludamos: Journal for Computer Game Culture, vol.
2, no. 1, pp. 129–144, 2008.



S. Aleem, L. F. Capretz, and F. Ahmed, “Critical success factors to
improve the game development process from a developer’s
perspective,” Journal of Computer Science and Technology, vol. 31,
no. 5, pp. 925–950, 2016.

L. G. Freitas et al., “Gear2d: an extensible component-based game
engine,” in Proceedings of the International Conference on the
Foundations of Digital Games, 2012, pp. 81–88.

W. Van der Vegt, W. Westera, E. Nyamsuren, A. Georgiev, and I. M.
Ortiz, “RAGE architecture for reusable serious gaming technology
components,” International Journal of Computer Games Technology,
vol. 2016, 2016.

El-Hokayem, A., Falcone, Y., & Jaber, M. (2018). Modularizing
behavioral and architectural crosscutting concerns in formal
component-based systems–Application to the Behavior Interaction
Priority framework. Journal of logical and algebraic methods in
programming, 99, pp. 143-177.

Apel, S., & Kästner, C. (2009). An overview of feature-oriented
software development. J. Object Technol., 8(5), 49-84.

Passos, E. B., Sousa, J. W. S., Clua, E. W. G., Montenegro, A., & Murta,
L. (2010). Smart composition of game objects using dependency
injection. Computers in Entertainment (CIE), 7(4), 1-15.

N. Malleson, A. Heppenstall, L. See, and A. Evans, “Using an agent-
based crime simulation to predict the effects of urban regeneration
on individual household burglary risk,” Environment and Planning B:
Planning and Design, vol. 40, no. 3, pp. 405–426, 2013.

D. Birks and H. Elffers, “Agent-based assessments of criminological
theory,” Encyclopedia of Criminology and Criminal Justice, pp. 19–
32, 2014.

E. R. Groff, S. D. Johnson, and A. Thornton, “State of the art in agent-
based modeling of urban crime: An overview,” Journal of
Quantitative Criminology, vol. 35, no. 1, pp. 155–193, 2019.

A. El Rhalibi and M. Merabti, “Agents-based modeling for a peer-to-
peer MMOG architecture,” Computers in Entertainment (CIE), vol. 3,
no. 2, pp. 3–3, 2005.

N. Devia and R. Weber, “Generating crime data using agent-based
simulation,” Computers, Environment and Urban Systems, vol. 42,
pp. 26–41, 2013.

J. Dormans, Engineering emergence: applied theory for game design.
Amsterdam: Universiteit van Amsterdam, 2012. [Online]. Available:
https://hdl.handle.net/11245/1.358623


