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Abstract. Artificial Intelligence has been used to challenge human players in
chess for decades. In 1997, IBM’s Deep Blue won against the best chess player
of that time, and since then, the chess engines have continued to improve. How-
ever, it is not clear if these new high-performing chess engines are learning how
to replicate the way human grandmasters play or if they are devising new strate-
gies to win. Therefore, in this paper, we evaluated two chess engines that use
deep learning approaches: StockFish NNUE and Lc0, to compare their moves in
endgame situations to the moves in chess theory books. We collected 19 types of
endgames and we ran the engines to replicate the books’ moves. After that, we
computed the similarity, that is, the percentage of equal moves. The Lc0 engine
has 40.20% similarity in our experiments and StockFish NNUE 22.50%. These
results show that the engines replicate some moves from chess-theory books, but
they differ in most parts from what is expected from human players.

1. Introduction

Artificial Intelligence has been used to challenge human players in many games for
decades. Chess is one of the most popular games researchers have been using software to
play well and beyond human capabilities. In 1997, IBM’s Deep Blue won against Garry
Kasparov, the best chess player of that time. The development continued in the follow-
ing years, and new improvements were achieved [Maharaj et al. 2022]. Deep Blue used
a game tree search approach, but most recent chess engines have been using machine
learning and neural networks [Silver et al. 2018].

Several chess engines have been created that surpassed the best human players
[Acher and Esnault 2016]. The state-of-the-art engines have Elo ratings above 3,000.
For instance, StockFish NNUE1, and Leela Chess Zero (Lc0)2 are popular open-source
engines that use deep learning approaches with versions with 3,190 and 3,250 ratings,
respectively. The Leela Chess Zero’s neural network is based on the AlphaGo Zero
[Silver et al. 2017] and AlphaZero [Silver et al. 2018] architecture. However, there are
some changes. The main difference is that Lc0 uses a residual tower with squeeze and

1https://stockfishchess.org
2https://lczero.org



excitation [Hu et al. 2018] layers in its core. The architecture of Stockfish NNUE is dif-
ferent from the neural networks of the Lc0. It uses a shallow, fully connected network
with four hidden layers.

In the beginning, researchers took inspiration from the players to create chess
engines. However, recent neural network-based engines have employed machine learning
approaches to train their agents [Liu et al. 2021]. Their results have shown that these new
agents may learn to play in creative ways, which do not necessarily follow traditional and
well-known strategies. Nowadays, many players are studying chess engines to improve
their performance and understand the game better [McGrath et al. 2022].

In this paper, we aim to analyze the behavior of the engines StockFish NNUE
and Lc0 in endgame situations. We collected 19 endgames from books and used these
situations to compare the engines’ moves with human players. Thus, we could check the
similarities and differences between human players and chess engines.

2. Related Works

In [Haque et al. 2021], the authors evaluated the performance of the engine Lc0 in
endgames. This work aimed to evaluate how different neural networks learn and play
endgames. They analyzed the prediction of the next moves using neural networks that
played at different levels and compared them with moves that humans should make. Also,
the paper analyzes the prediction of the result of the game. The results showed that neural
networks improved with longer training, and can play close to the perfect game.

[Fayed 2021] trained supervised machine learning algorithms, for instance, lo-
gistic regression, decision trees, and neural networks, to predict the result of an endgame
situation. In the paper, the dataset used had examples of king and rook vs. king endgames.
In their experiments, neural networks had an accuracy of 98%, decision trees 97%, and
logistic regression 92%.

[Si and Tang 1999] studied three types of endgames using neural networks. The
authors made specific neural networks for each type of endgame, therefore they consid-
ered the specificities of the problems in their models. However, each neural network in
this paper has three layers (input, hidden, and output). The three endgames tested were:
endgames with rookies, endgames with queens, and endgames with pawns. The neu-
ral networks was trained with 1,000 instances, and the authors showed that the network
replicated the patterns by which they were trained.

3. Endgames

The exact moment when the endgame starts is not well defined [Whitaker et al. 1960].
However, we can think that the endgame is the moment of a game that the board has
few pieces. The endgame strategies often include one to three pieces, excluding the king.
Thus, the studies of endgames group strategies using combinations of these one-three
pieces. In [De La Villa 2015], there are 11 types of endgames: basic endings; knight
vs. pawn; queen vs. pawn; rook vs. pawn; rook vs. two pawns; same-colored bishops:
bishop and pawn vs. bishop; bishop vs. knight: one pawn on the board; opposite-colored
bishops: bishop and two pawns vs. bishop; rook and pawn vs. rook; rook and two pawns
vs. rook and pawn endings. Figure 1 shows an endgame example.



Figure 1. Endgame with king and pawn for the white and king for the black.

4. Elo Ranking
The Elo Ranking is a system used to measure the level of a chess player [Elo 1967]. The
International Chess Federation (FIDE) started to use the Elo Ranking in 1970. The FIDE
uses these values to select players for tournaments and to give them titles. For instance,
a Grandmaster, the highest title for a player, requires an Elo rating above 2,300. After a
game, the Elo ratings of both players are updated. The new value depends on the current
rating of players and the game’s result. The Equation 1 shows how a rating is updated.

r′(A) = r(A) + k(SA − µA) (1)

Where r(A) is the current rate of player A, and r′(A) is his updated rate. The
constant k defines the size of the updates. A small value means little updates and large
values cause big changes. SA is the result of the game, 1 means player A won, and −1
means he lost. Last, µa is the game’s expected result when player A competes against
player B. If A and B have the same rating, then µa = 0. If µA > 0, then we expect player
A to win, otherwise, if µA < 0 we expect player B to win. The range of µa is [−1, 1].

5. Method
We collect endgame moves from classic games from two books [De La Villa 2015]
[Polgar 2013]. The books show the moves in a graphic format and chess notation. Thus,
we transcribed all endgame moves to the FEN (Forsynth-Edwards Notation) format to be
able to use them in the engines. The final dataset for our analysis has 19 endgames.

In our experiments, we analyzed two open-source chess engines that use neural
networks: StockFish NNUE and Lc0. We used StockFish NNUE with a 3,190 rating
and Lc0 with a 3,250 rating. Also, the engines have a depth parameter. This parameter
defines how many future moves the engine considers to decide the current move. To
achieve our goals, we simulated games using the graphical interface BanksiaGUI3. Using
the graphical interface, we can analyze all moves and see the board.

The following endgames were examined: (1) Rule of the square; (2) Key squares;
(3) The Rook’s pawn. Defending King in front of the Pawn; (4) Imprisoning the stronger
side’s King; (5) Rook vs. Bishop. The wrong corner; (6) Rook vs. Knight. At the edge
of the board; (7) King + Knight checkmate; (8) The Knight’s dumb square; (9) Queen vs.
7th-rank Rook’s Pawn; (10) The strong King is near; (11) The Rook in front of the Pawn;

3https://banksiagui.com



Table 1. Simulations results using Lc0 and StockFish NNUE engine.

Endgame Moves Equal Moves Similarity Depth
Lc0 StockFish Lc0 StockFish Lc0 StockFish

1 9 3 5 33.33% 55.55% 2 8
2 9 9 2 100.00% 22.00% 2 4
3 2 2 2 100.00% 100.00% 2 2
4 9 6 8 67.00% 89.00% 2 6
5 13 8 0 62.00% 0.00% 6 2
6 13 9 3 69.00% 23.00% 4 2
7 3 3 3 100.00% 100.00% 3 2
8 3 2 1 67.00% 33.00% 2 2
9 10 8 0 80.00% 0.00% 3 2

10 9 8 0 89.00% 0.00% 2 2
11 10 1 0 10.00% 0.00% 2 2
12 19 1 6 5.00% 32.00% 2 2
13 9 1 4 11.00% 44.00% 2 3
14 7 1 1 14.00% 14.00% 2 9
15 13 12 7 92.00% 54.00% 5 9
16 9 1 1 11.00% 11.00% 6 5
17 9 0 0 0.00% 0.00% 2 2
18 25 5 1 20.00% 4.00% 4 7
19 19 1 1 5.00% 5.00% 2 2

(12) Special themes with a Knight’s Pawn; (13) Strong side’s King on one side of the
Pawns; (14) Driving off the defending Bishop; (15) Central Pawn; (16) Pawns on the 6th
rank; (17) The Philidor position; (18) Central Pawns; (19) Blocked Pawns. Key squares.

For each endgame situation, we used both engines to try to replicate the moves in
the books. For instance, if the books show 9 moves, an engine makes 9 moves as well.
Additionally, for each test with an engine, we varied its depth from 2 to 10. Last, with the
engines’ moves, we compare and check the similarity between the books and the engines.
For each move, we compare if it is equal, in the same order, to the move in the books.
Thus, the similarity is the percentage of equal moves.

6. Results
The Table 1 shows the results of the tests using the Lc0 and StockFish NNUE engines.
The first column of the table shows the endgame type, and the second column shows the
number of moves reported in the books. The following columns show the number of
moves the engine made equal to the books, the similarity percentage, and the minimum
depth that achieved the best result, respectively, for each engine.

The total number of moves in the dataset is 200. The Lc0 engine made 81 identical
moves (40.50%), and the average depth used was 2.8947. In endgame 17, Lc0 did not
match any move. In 3 tests (endgames 2, 3, and 7), the Lc0 made 100% of identical
moves. The maximum depth used was 6 for the endgames 5 and 16. The depth level 2,
the minimum used, appeared in 12 tests. The StockFish NNUe engine made 41 identical
moves (22.50%), and the average depth used was 3.8421. The engine did not match any
move in 5 tests (endgames 5, 9, 10, 11, and 17). In 2 tests (endgames 3 and 7), the
StockFish engine made 100% identical moves. The maximum depth used was 9 for the
endgames 14 and 15. The depth level 2 appeared in 11 tests. Notice that for endgame 17,



the Philidor position, both engines failed to reproduce the moves. In this endgame, the
game ends in a draw if the players follow all correct moves. Therefore, the engines may
try to deviate from the theory of the books, and then they may win the game.

Last, following or not following the moves of an endgame differs from being
correct or wrong. A move or a sequence of moves deviating from the books may also
achieve victory. Additionally, the Elo ratings of these engines are higher than the best
human players. Thus, human players can learn when an engine plays differently to try to
improve their performance. Also, researchers can learn when machines need to follow or
deviate from humans, hence they can improve the engines even more.

7. Conclusion
This paper aims to compare how StockFish NNUE and Lc0 engines play endgames and
the moves presented in chess books. The results show that, besides the engines having
greater Elo ratings than the best human players, they have some similarities in their moves.
The Lc0 has 40.50% similarity in its moves, and StockFish NNUE has 22.50%.

It is worth highlighting that similarities or differences do not mean good or bad
moves. Analyzing the results, we can conclude that the engines follow some human
moves in the endgames, but they differ for the most part. This result gives us two ways
for future studies. First, because engines have high Elo ratings, human players can learn
from them to improve their games. Second, researchers can analyze if the similarities are
creating worse or better results for the engine, so improving the current software.

To better understand the engines, testing more endgames and other phases, such
as openings and middlegames, would be interesting. Also, a detailed qualitative study of
some examples can clarify and assist the interpretation of engines’ moves. Further, we
can measure similarity to players or classic games because the players do not necessarily
follow all book moves. Another significant analysis is to compare other Elo ratings for
the engines. Both StockFish and Lc0 have versions of different ratings. Last, there are
other engines that we can include in future studies, for instance, Maia Chess.
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