
Design Patterns and Code Maintainability in Games: A Case
Study

Vitor Braga Estevam1, Alysson Diniz dos Santos1, Matheus Paixao2

1Instituto Universidade Virtual – Universidade Federal do Ceará (UFC)
2Universidade Estadual do Ceará (UECE)

Fortaleza – CE – Brasil

vitorestevam02@gmail.com,alysson@virtual.ufc.br,matheus.paixao@uece.br

Abstract. Design patterns are a common strategy employed in software devel-
opment to promote several aspects of software quality, including code maintain-
ability. Game development is a multidisciplinary field that includes not only
software development but also animations, interactivity, sound design and oth-
ers. Given the short deadlines in which game developers commonly operate,
on top of the intrinsic complexity of the field itself, code maintainability is of-
ten overlooked by game developers. Hence, this work investigates how design
patterns can impact the code maintainability of games. First, we performed a
review to understand how (and which) design patterns can be applied to dif-
ferent game mechanics. Next, we selected two small games and refactored the
code by applying design patterns to some of the games’ mechanics. By lever-
aging static analysis to assess the games’ code maintainability before and after
the application of the design patterns, we observed an overall code maintain-
ability improvement of 5.5%. The preliminary results indicate the potential to
use design patterns as a strategy to improve code maintainability in the context
of game development.

1. Introduction
Object-oriented design patterns (DPs) have been originally proposed by the Gang-of-
Four (GoF) [Gamma et al. 1995], and they provide reusable structures for solving com-
mon software development problems. DPs are extensively adopted in the development
of software systems, and their usage has been shown to positively affect software qual-
ity [Wedyan 2020]. One of the software quality attributes that has been associated with
the use of DPs is code maintainability [Ampatzoglou et al. 2013], which refers to the de-
gree of effectiveness and efficiency with which a product or system can be modified by
the intended maintainers [IEEE/ISO 2011].

The development of a game embraces particularities that highlight the need for
code maintainability. Indeed, game project management is a complicated task that di-
verges from traditional software project management [Ampatzoglou and Stamelos 2010],
due to the fact that games deal with multiple interweaving areas, such as: interactivity,
animation, audio, among others [Kanode and Haddad 2009]. In addition, the creation of a
profitable and competitive game may require many hours and thousands of lines of code,



introducing significant complexity. Consequently, game developers must adopt specific
software engineering practices to improve the structural quality of the game’s assets, in-
cluding its code [Paschali et al. 2021].

DPs have already been extensively studied in various domains of software de-
velopment (for a literature review, we refer to [Wedyan 2020]). However, in the con-
text of game development, the subject has been underexplored. Recent work has
investigated some of benefits that DPs may achieve in the development of digital
games [Nystrom 2014, Figueiredo 2015, Barakat 2019, Paschali et al. 2021]. In spite of
such efforts, to the best of our knowledge, there has not been a study that investigated
how the implementation of game mechanics with DPs impact code maintainability.

Therefore, the objective of this work is to investigate how the use of DPs to imple-
ment game mechanics can impact code maintainability. To achieve this goal, we tackled
the following specific objectives: (i) map how (and which) DPs can be used to implement
game mechanics; (ii) refactor two open source games considering the application of the
chosen DPs to some of the games’ mechanics; and (iii) measure the refactorings’ impact
on maintainability through automated static analysis.

2. Background and Related Work
Game mechanics are the various actions, behaviors and control mechanisms afforded
to a player within a game context [Hunicke et al. 2004]. As game mechanics are of-
ten reoccurring among different games, recent studies [Nystrom 2014, Figueiredo 2015,
Paschali et al. 2021] attempt to relate game mechanics to DPs, in order to introduce tem-
plate instantiations of game mechanics (for a summary, see Table 1).

The book Game Programming Patterns [Nystrom 2014] reviews the GoF design
patterns in the context of games. The author highlights a subset of the Gof DPs as having
the most potential in game development: Observer, Command, State, Prototype and Fly-
weight. In a different work, [Figueiredo 2015] relates DPs to different game mechanics.
After an experiment with six teams, the results indicate the teams instructed about DPs
produced code in less time and with better quality. In a recent study, [Paschali et al. 2021]
presents “GAME-DP Repository”, an online repository of mappings between DPs and
game mechanics. However, the repository is no longer available for consultation.

3. Case Study
To investigate the impact in code maintainability caused by the usage of design patterns,
we conducted a case study composed of three steps: (i) selecting and analysing games to
serve as the study’s subjects; (ii) refactoring some of the games’ mechanics to use DPs;
and (iii) employing static code analysis in the games’ versions before and after refactoring
to compare code maintainability.

3.1. Games Selection and Analysis
We selected two small and open-source Unity games. Game 1, 2d Roguelike1, is a survivor
turn-based game in which the player must avoid enemies and collect resources while
advancing the levels. Game 2, Tanks2, is a two player competitive game in which the

1https://assetstore.unity.com/packages/templates/tutorials/2d-roguelike-29825
2https://assetstore.unity.com/packages/essentials/tutorial-projects/tanks-tutorial-46209

https://assetstore.unity.com/packages/templates/tutorials/2d-roguelike-29825
https://assetstore.unity.com/packages/essentials/tutorial-projects/tanks-tutorial-46209


Table 1. Mapping between Design Patterns (DP) and Game Mechanics

Mechanic Pattern Game Mechanic Definition and DP relationship

Achievements and Quests Observer Setting and tracking player goals [Nystrom 2014]

UI Elements Observer Synchronizing game instances and interface components
[Barakat 2019, Paschali et al. 2021]

Entities Control Command Encapsulating, storing and manipulating entities’ executed
actions [Nystrom 2014]

Undo Actions Command Storing and Reversing the executed actions [Nystrom 2014]

Character Animations State Managing and executing the animation of characters and
other game instances [Barakat 2019]

Behavior Variation State Varying the behavior of entities according to their state
[Nystrom 2014, Barakat 2019, Figueiredo 2015]

Entities Replication Prototype Spawning new game instances [Nystrom 2014,
Barakat 2019, Figueiredo 2015, Paschali et al. 2021]

Resources Repetition Flyweight Sharing computing resources between game instances
[Nystrom 2014, Figueiredo 2015, Paschali et al. 2021]

players control tanks that can move and fire, looking to defeat the opponent. The code
of both games was analyzed to identify the presence of the game mechanics defined in
Table 1. The analyses indicated:

• Game 1: UI Elements, Entities Control, Entities Replication and Resources Rep-
etition;

• Game 2: UI Elements, Entities Control and Entities Replication

3.2. Mechanics Refactoring

In both games, the UI Elements and Entities Control mechanics were implemented with-
out a proper separation of concerns, where the code for both mechanics was entangled.
Hence, we refactored both mechanics to use the Observer and Command patterns, respec-
tively. As for the Entities Replication mechanic, we noticed that the Prototype pattern was
already employed as part of Unity’s instantiation function. Thus, nothing had to be done
regarding this mechanic. Finally, for Game 1 only, we refactored the Resource Repetition
mechanic to use static attributes as a way to implement the Flyweight pattern.

All the refactorings consisted in structural changes to the games’ classes, where
no behavior to the games was modified. This was validated by functional tests before
and after the refactorings. A summary of the changes to the games’ code is presented in
Table 2. The refactored codes are available on Github3,4 for consultation and replication.

3https://github.com/VitorEstevam/2d-roguelike
4https://github.com/VitorEstevam/tanks

https://github.com/VitorEstevam/2d-roguelike
https://github.com/VitorEstevam/tanks


Table 2. Summary of changes to games’ code caused by the refactorings5

Game 1 Game 2

Code lines before refactoring 934 922

Changed Files 22 17

Line Additions 358 241

Line Deletions 278 58

3.3. Measuring Maintainability

To measure the code maintainability before and after the refactorings, we employed the
Microsoft Code Analysis tool [Jones 2022]. The maintainability metrics generated by the
tool are: maintainability index, number of source code lines, inheritance depth, and class
coupling.

The maintainability index is value between 0 and 100 that represents the relative
ease of maintaining the code [Jones 2022] in which higher values mean better maintain-
ability. This metric is calculated in terms of number of source code lines and cyclomatic
complexity. The cyclomatic complexity measures the amount of decision logic in a source
code function. Higher cyclomatic complexity means lower maintainability index. In turn,
the inheritance depth represents the number of classes that inherit attributes from other
classes. Finally, class coupling refers to the interdependence between classes in the code.

Table 3 depicts the values for each of the maintainability metrics for the original
and refactored code.

Table 3. Maintainability metrics for the original and refactored subject games

Metric
Game 1 Game 2

Original Refactored Original Refactored

Maintainability Index 76 81 75 81

Number of Source Code Lines 934 1039 922 1010

Inheritance Depth 6 6 5 5

Class Coupling 44 50 38 44

4. Discussion
Table 3 indicates the maintainability index improved in 5% (76 to 81) and 6% (75 to 81),
for Games 1 and 2, respectively. In addition, the inheritance depth remained the same
in spite of the new classes being added to the refactored code. On the other hand, class

5The Changed Files, Line Additions and Line Deletions were taken from GitHub’s comparison tool



coupling increased for both games. We argue that this is due to the Command pattern,
which introduces shared responsibilities between classes, as detailed in Figure 1.

Tank

TankMovement

TankHealth

TankShooting

Tank

TankMovement

TankHealth

TankShooting

CommandMove

CommandTurn

CommandShot

A) B)

Figure 1. Simplified diagram for the class coupling of game 2’s Tank class.
A) Original and B) Refactored

The impact on the maintainability metrics caused by the Command pattern is an
interesting case. On the one hand, it improved the maintainability index, but on the other
hand, it also increased coupling, which may be considered detrimental to code maintain-
ability. However, the application of the Command pattern allows for a better separation
of concerns, which is depicted in the diagram in Figure 1. As pointed out in the litera-
ture [Borrelli et al. 2020], a clear separation of concerns contributes for a better overall
maintainability in spite of the coupling increase.

5. Conclusion

This work investigated the impact of design patterns in the code maintainability of games.
Even though this was a preliminary study, we believe the work showcased two important
contributions. First, based on previous literature, we mapped which design patterns are
more adequate to be used in the implementation of certain game mechanics. Second,
through a case study with two small open-source games, we showed how the application
of design patterns have the potential to improve the games’ maintainability. We believe
these initial results contribute to the game maintainability literature.

It is important to highlight that the scope of the experiment was limited, includ-
ing only two small-sized games in which similar mechanics were refactored to use the
same design patterns. An important limitation of the experiment is the fact that all the
refactorings were performed by a single developer, which may bias the implementation.
Nevertheless, the games’ features were validated through functional tests.

Because of the limited scope of the experiment, we believe that for future work,
the mapping between design patterns and game mechanics could be expanded with devel-
oper interviews. Furthermore, by reusing our methodology, a larger-scale empirical study
could be conducted to enhance the observations we reported, by using more games and
leveraging developers with different levels of experience for the refactorings.



References
[Ampatzoglou et al. 2013] Ampatzoglou, A., Charalampidou, S., and Stamelos, I. (2013).

Research state of the art on gof design patterns: A mapping study. Journal of Systems
and Software, 86:1945–1964.

[Ampatzoglou and Stamelos 2010] Ampatzoglou, A. and Stamelos, I. (2010). Software en-
gineering research for computer games: A systematic review. Information and Soft-
ware Technology, 52(9):888–901.

[Barakat 2019] Barakat, N. (2019). A framework for integrating software design patterns
with game design framework. Faculty of Informatics and Computer science,.

[Borrelli et al. 2020] Borrelli, A., Nardone, V., Di Lucca, G. A., Canfora, G., and Di Penta,
M. (2020). Detecting Video Game-Specific Bad Smells in Unity Projects, page
198–208. Association for Computing Machinery, New York NY USA.

[Figueiredo 2015] Figueiredo, R. (2015). Gof design patterns applied to the development of
digital games. In Proceedings of SBGames 2015, Teresina PI Brazil. XIV SBGames.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R., Johnson, R. E., Vlissides, J., et al.
(1995). Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH.

[Hunicke et al. 2004] Hunicke, R., LeBlanc, M., Zubek, R., et al. (2004). Mda: A formal
approach to game design and game research. In Proceedings of the AAAI Workshop on
Challenges in Game AI, volume 4, page 1722. San Jose, CA.

[IEEE/ISO 2011] IEEE/ISO (2011). Systems and software engineering – Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) – System and software quality
models. IEEE Computer Society.

[Jones 2022] Jones, M. (2022). Code metrics values. https://shorturl.at/dkowE.

[Kanode and Haddad 2009] Kanode, C. M. and Haddad, H. M. (2009). Software engineer-
ing challenges in game development. In 2009 Sixth International Conference on Infor-
mation Technology: New Generations, pages 260–265. IEEE.

[Nystrom 2014] Nystrom, R. (2014). Game Programming Patterns. Genever Benning.

[Paschali et al. 2021] Paschali, M.-E., Volioti, C., Ampatzoglou, A., Gkagkas, A., Stamelos,
I., and Chatzigeorgiou, A. (2021). Implementing game requirements using design
patterns. Journal of Software: Evolution and Process, 33(12):e2399.

[Wedyan 2020] Wedyan, F. (2020). Impact of design patterns on software quality: a sys-
tematic literature review. IET Software, 14(1):1–17.


	Introduction
	Background and Related Work
	Case Study
	Games Selection and Analysis
	Mechanics Refactoring
	Measuring Maintainability

	Discussion
	Conclusion

