
Use of a generative chatbot as a middleman to improve User
Experience in Interactive Fiction games

Adriano Tolfo Dotta1, Marcelo Resende Thielo1, Jean Felipe Patikowski Cheiran1

1Campus Alegrete - Universidade Federal do Pampa (UNIPAMPA)
Av. Tiarajú, 810 – 97546-550 – Alegrete – RS – Brazil

{adrianodotta.aluno,marcelothielo,jeancheiran}@unipampa.edu.br

Abstract. In the 1970s and 1980s, interactive fiction games emerged and
changed the gaming world by enabling players to talk to the machine, make
their own decisions, choose their paths, and decide what to collect and do. This
freedom captivated players, but at the time, games were limited by programmed
scripts that only accepted words present in the game’s code dictionary in a lim-
ited format, usually two or three keywords by phrase. However, technological
advances have paved the way for improvements in this regard, replacing scripts
with artificial intelligence using APIs, such as ChatGPT, for example. Thus, it
may be possible to offer players an even more natural and customized experi-
ence, where each decision is more flexible with the player’s writing style. In
this work, we carried out a communication experiment with the ChatGPT as
an intermediary for interactive fiction games and the Frotz game interpreter (a
modified version of the Z-Machine interpreter) to assess the feasibility of the
approach.

1. Introduction
In recent years, the emergence of ChatGPT as an intelligent tool has opened up sig-
nificant possibilities for improvement in various areas of knowledge [Wu et al. 2023].
One of these areas is digital gaming, where this technology has proven to be a valu-
able ally in pursuing an increasingly immersive and personalized experience for players
[Biswas 2023]. A specific game genre that closely relates to natural language processing
(NLP) and its technologies, whose user interface is frequently based exclusively on text,
is the one known as interactive fiction [Montfort 2011]. In this context, an aspect that has
garnered attention is that interactive fiction games often offer limited player interaction
with the virtual environment, requiring phrases limited on containing just a pair of words
in the format <verb subject>. Even though, they are still venerated by players that
consider them imagination-stimulant and challenging. To overcome this limitation, Chat-
GPT emerges as an excellent tool for use as an intermediary input parser, allowing players
to type commands with much more flexibility without being restricted by predetermined
rules of very limited parsers and assisting them in more complex situations. In this regard,
exploring the possibilities of using ChatGPT as an interpreter of user inputs in interactive
fiction games is relevant, aiming to provide an even richer and more interactive experience
for players and maybe give this game genre a revamp.

The main objective of this study is to examine the feasibility of using the ChatGPT
API as an interface to enhance the user experience of interactive fiction games, thereby
simplifying gameplay and providing players with greater freedom.

2. Related work
Even though ChatGPT is considered a promising test bed for studying language-based au-
tonomous agents [Hausknecht et al. 2020], few references describe the use of ChatGPT
in the context of interactive fiction games. In addition to guides and tutorials to cre-
ate text-based adventure games by connecting ChatGPT API to programming languages
[Trivedi 2023], some work-in-progress reports detail the use of ChatGPT and other large
language models to play text-based games.

Tan and colleagues carried out experiments using FLAN-T5, Turing, and OPT
language models to solve puzzles from the Detective game [Tan et al. 2023]. The results
show a significantly lower performance of the three language models compared to the
human and deep reinforcement learning model performances.

Also, Tsai et al. used ChatGPT to play the Zork I game using a human as an
interface [Tsai et al. 2023]. While the authors state that the performance of ChatGPT is
promising, the model was unable to keep a consistent world model of the game (ChatGPT
has even hallucinated when asked to recall previous locations) or infer the goals of the
game by itself.

3. Proposal
Using the Frotz interpreter demands a specific procedure: after installation, a command
line specifying the desired game’s name must be executed in the terminal that starts the
game and displays the initial text describing the environment. Additionally, a text input
field is provided for player interactions. The proposed solution involves integrating the
OpenAI Chat API into this text input field, allowing the entered text to be analyzed and
converted into game script commands.

3.1. Technological overview

Initially, we assessed the availability of the API [OpenAI 2020], along with associated
costs. Among the options, our primary focus for this study is the exclusive “Chat” feature
(gpt-3.5-turbo) to be used in a client-server implementation between C and Python pro-
gramming languages. Regarding availability and cost, this choice proves to be feasible
with minimal expenses, amounting to $0.0015 per 1000 input tokens and $0.002 per 1000
output tokens. Additionally, for interpreting these games and integrating the ChatGPT
API into the interpreter’s code, we used the Frotz interpreter [Griffith and Jokisch 2016],
which is compatible with several platforms, e.g., Windows, Linux, DOS, and others.
While a first implementation attempt was made with the Windows version of the soft-
ware, we could not get it working because, although we have followed the step-by-step
guide provided by the author strictly, many compiling errors for the open-source version
were still obtained. As a result, we opted to build the Linux version of the engine named
“Dumb Frotz”, which is a stripped-down variant of Frotz interpreter that preserves the
original user experience without WIMP interfaces, colors, and sounds. This command-
line interface was the most suitable option for carrying out our tests.

3.2. Model overview

To facilitate this integration, we opted for a client-server architecture, where the Frotz
code (written in the C programming language) communicates with a Python codebase

containing the ChatGPT integration. Python was chosen for its simplicity of implementa-
tion and better compatibility with API calls compared to the efforts of integrating and in-
voking APIs in the C programming language. Upon launching the selected game, a com-
munication socket is established to transmit the text input field information to the Python
code, where the received text is analyzed concerning the relevant game code. It is impor-
tant to acknowledge that this procedure may encounter challenges due to the ChatGPT’s
response pattern, which often includes additional contextual information or explanations.
To mitigate this issue, we implemented a message format rule in the code to ensure that
the returned response consistently follows a command in the <verb subject> pattern.
An example of an implemented rule is structured as follows1:

If the following sentence contains the words ‘pick, get,
collect or hold’ (verb list), and also the word ‘helmet’
(target) at any point, return to me directly only the
phrase ‘get helmet’ (verb + target), without any additional
words, explanations, or anything else, just as requested
within quotation marks. The sentence is: [text input]

Following the analysis, the sentence provided by the user to the Frotz text interface
will be sent to GPT that, already knowing our parsing rules, will return the formatted
command (verb and subject) to Frotz that will deliver the game output to the user interface.
As a result, even if multiple words are entered in the input field, only the crucial keywords
to the command will be considered, minimizing the occurrence of ”I don’t understand that
sentence.” from the game engine. This specific command returned to the interpreter will
provide a more natural, dynamic and adaptive text input without extensive modifications
to the source code. The preliminary system architecture and the execution flowchart are
both shown in Figure 1.

Figure 1. (a) Preliminary system architecture (darker arrows indicate data ex-
changing through socket connection; lighter arrows consist in original un-
modified relations of the system), and (b) Execution flowchart.

1The original pattern was written in Brazilian Portuguese but translated into English for this paper.

4. Early results
This section presents some of the results we obtained in our experiments so far. We set
up the environment with the Frotz interpreter compiled with the socket library and the
Python code with the ChatGPT API running to enable client-server communication and
message parsing.

Figure 2 presents the Zorkian game loading and running in the modified Z-
Machine interpreter (Frotz).

Figure 2. Zorkian game running in the Frotz interpreter.

Figure 3 shows the communication ongoing in our prototype: (1) the user input
message (green) is intercepted by our client feature added to Frotz source code and sent
to the ChatGPT API server running in Python; (2) the socket connection log information
(yellow) is visible for debugging; and (3) the translated string (red) received and processed
with game unfolding (white).

Figure 3. Communication sample between Frotz (client) and ChatGPT API.

Finally, Figure 4 demonstrates the server-side Python software showing connec-
tion messages, the received string from Frotz (green), the returned message (red), and the
connection closed.

Figure 4. Communication sample on the server-side.

5. Conclusions
The results of the early experiments we conducted suggest that it is feasible to integrate an
interactive fiction interpreter with a generative chatbot API such as ChatGPT to improve
the user experience. Since many players demand more flexible and error-tolerant games,
this improvement could increase the game genre’s popularity and also foster new reading
habits among young players. We expect to incorporate more vocabulary and features in
the prototype in the next few weeks and investigate the possibility of using GPT also for
transforming the messages of the engine output.

References
Biswas, S. (2023). Role of chatgpt in gaming: According to chatgpt. https:
//papers.ssrn.com/sol3/papers.cfm?abstract_id=4375510.

Griffith, D. and Jokisch, S. (2016). Frotz - a portable z-machine interpreter. https:
//davidgriffith.gitlab.io/frotz/.

Hausknecht, M., Ammanabrolu, P., Côté, M.-A., and Yuan, X. (2020). Interactive fic-
tion games: A colossal adventure. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):7903–7910.

Montfort, N. (2011). Twisty Little Passages: An Approach to Interactive Fiction. MIT
Press, Cambridge, MA, USA.

OpenAI (2020). OpenAI API. https://platform.openai.com/docs/
introduction.

Tan, Q., Kazemi, A., and Mihalcea, R. (2023). Text-based games as a challenging
benchmark for large language models. https://openreview.net/forum?
id=2g4m5S_knF.

Trivedi, K. (2023). Creating a personalized text-based adventure game with chatgpt api:
A step-by-step guide to crafting dynamic narratives.

Tsai, C. F., Zhou, X., Liu, S. S., Li, J., Yu, M., and Mei, H. (2023). Can Large Lan-
guage Models Play Text Games Well? Current State-of-the-Art and Open Questions.
https://arxiv.org/abs/2304.02868.

Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., and Tang, Y. (2023). A brief overview
of chatgpt: The history, status quo and potential future development. IEEE/CAA Jour-
nal of Automatica Sinica, 10(5):1122–1136.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4375510
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4375510
https://davidgriffith.gitlab.io/frotz/
https://davidgriffith.gitlab.io/frotz/
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://openreview.net/forum?id=2g4m5S_knF
https://openreview.net/forum?id=2g4m5S_knF
https://arxiv.org/abs/2304.02868

	Introduction
	Related work
	Proposal
	Technological overview
	Model overview

	Early results
	Conclusions

