
XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024)-Manaus/AM.
Anais Estendidos do XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital

Trilha:Computação

I Choose You, Reinforcement Learning!

Trained RL Agents For Pokémon Battles

Leonardo de Lellis Rossi1,3,4, Bruno Souza2,3,5, Maurício Pereira Lopes2,3,

Ricardo Ribeiro Gudwin1,3,4, Esther Luna Colombini2,3,4

1Faculty of Electrical and Computer Engineering (FEEC)
2Institute of Computing (IC)

3Universidade Estadual de Campinas (Unicamp)
4Hub of Artificial Intelligence and Cognitive Architectures (H.IAAC)

5Reasoning for Complex Data (Recod.ai)

Campinas/SP – Brazil
{l261900, b234837}@dac.unicamp.br

Abstract. Pokémon battles present a valuable training environment for

Reinforcement Learning (RL) agents due to their inherent stochastic

nature and adaptability to deterministic settings. However, this

environment currently lacks a comprehensive benchmark of basic RL agent

implementations suitable for training purposes. This project aims to fill

this gap with an open-source benchmark of trained agents with classic RL

methods and Deep Reinforcement Learning (DRL) techniques, to foster the

development in the field and facilitate the entry of new researchers. We also

propose a Markov Decision Process (MDP) environment, in which agents

are trained and validated. The agents demonstrated effective learning and

achieved robust performance during training.

Keywords Reinforcement Learning, Deep Learning, Tabular Methods,

Pokémon, Benchmark.

1. Introduction

Pokémon is a renowned franchise that involves capturing and training fictional
creatures, battling in turns of attack [Nintendo. 2024]. The environment serves
as an ideal testbed for RL, a machine learning technique that optimizes actions
for rewards in dynamic environments [Sutton and Barto 2018]. In RL domain,
tabular methods use tables to store and update values for state-action pairs to
iteratively learn optimal policies in MDPs. While effective for small state spaces,
they struggle with scalability in larger environments [Watkins 1989]. DRL methods
address high-dimensional state spaces and complex decision-making problems
[Arulkumaran et al. 2017]. This work focuses on applying diverse RL techniques
within a Pokémon battle simulation framework. It serves both as a case study
for understanding and applying RL in complex, dynamic environments and as a
benchmarking platform of trained agents for future RL developments.1 The proposed
MDP is also available to be used for training and validation of RL agents.

1Open-Source Repository: github.com/leolellisr/poke_RL

https://github.com/leolellisr/poke_RL
joser
Retângulo



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024)-Manaus/AM.
Anais Estendidos do XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital

Trilha:Computação

2. Materials and Methods

This section outlines the formulation of the Pokémon Battle approach, the Pokémon
Battle settings employed in the experiments, and the RL agents utilized.

2.1. MDP Formulation and Discretization Model

The Pokémon battle system operates within an MDP framework, including states
(S), actions (A), a transition function (ϕ), and rewards (R). In our deterministic
adaptation, moves have 100% accuracy, and no critical hits, removing stochastic
transition function (ϕ) and randomness. For convenience, in this subsection, we use
some abbreviations. 2

(S) States represent six battle elements concatenated: player’s AP Index [0-5],
opponent’s AP Index [0-5], player’s AM BP (if NA, default to -1), player’s AM

DM, number of player’s RmP[0-6], number of opponent RmP [0-6].
(A) Actions involve the available moves and Pokémon switches.
(R) Rewards: A reward r is acquired at the end of each turn in state (s) by taking
the action (a). At each step, r is defined by: Player’s AP HP + Number of agent’s

RmP - Opponent’s AP HP - Number of opponent’s RmP - 2 (if player’s AP fainted)
- 1 (if player’s AP have a NSC) + 2 (if opponent’s AP fainted) + 1 (if opponent’s
AP have a NSC) + 15 (if player won the CB) - 15 (if player lost the CB).

2.2. Pokémon Teams and Environment

The selections aim to balance the Pokémon types between the player’s teams and
the opponent’s teams. The Pokémon, their abilities, items, natures, moves (with
effect, base power and accuracy) and possible switches are available on teams folder
of the repository.3 Deterministic teams have been configured to have no effects
related to randomness and to have 100% accuracy. We use Pokémon Showdown, an
open-source Pokémon simulator. 4 Figure 1 demonstrates a Pokémon Battle.

2.3. Agents

Our RL agents were trained against a MaxDamagePlayer (MP), which selects the
move that will cause the most damage, and against a RandomPlayer (RP), which
selects a random move. The RL agents we trained are divided into Tabular Agents
and DRL Agents. In this subsection, we list the algorithms and their specificities in
our implementations. The agents were implemented in Python language.
2.3.1 Tabular Agents: We carry out all implementation of all tabular algorithms.
In each algorithm, we implemented two versions, the classic one and one with
Function Approximation (FA). Classical tabular methods offer exact solutions, ideal
for small state spaces. FA methods provide approximate solutions, fitter for larger
state spaces. Each tabular agent has been trained for 10,000 battles.

2Abbreviations. AP: Active Pokémon, AM: Active Moves, BP: Base Power, NA: Not

Applicable, DM: Damage Multipliers, RmP: Remaining Pokémon, HP: Health Points, NSC:

Negative Status Condition and CB: Current Battle.
3Teams folder link: github.com/leolellisr/poke_RL/tree/master/teams
4Pokémon Showdown! battle simulator: play.pokemonshowdown.com

https://github.com/leolellisr/poke_RL/tree/master/teams
https://play.pokemonshowdown.com
joser
Retângulo



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024)-Manaus/AM.
Anais Estendidos do XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital

Trilha:Computação

Figure 1. Example of one battle in Pokémon Showdown.

2.3.1.1 - Monte Carlo Control First-Visit (MCC): For exploration, ε-greedy
strategy with ε = N0

N0+N(s) . Classical: employs a learning rate of α = 1
N(s,a) and

N0 with three values: 10−4, 10−3, and 10−2; FA: first, weights w and N(s, a) are
set to zero. The end of the battle triggers the first-time update for w and N(s, a),
integrating α · δ · x(s, a) for w updates, where δ is calculated with qapprox_fn(s, a, w).
The policies are updated with the new w and N(s, a) values.
2.3.1.2 - Q-Learning: Exploration employs an ϵ-greedy strategy, where ϵ is
N0/(N0 + N(s)). Three distinct N0 values are evaluated: 10−4, 10−3, and
10−2. Classical: The foundational TD update rule: Qnew(St) ← Q(St) +
α (Rt+1 + γ ∗max(Q(St+1))−Q(St)), where α operates promptly at the transition
to St+1 and receipt of reward Rt+1; FA: initialization sets a weight array w to
random values and N(s, a) to zero, with keys representing states s and values as
arrays reflecting the action space size (9 in our case)
2.3.1.3 - SARSA(λ): Learning rate α = 1

N [s,a] , and γ = 0.75. An ϵ-greedy strategy
is employed with ϵ = N0

N0+N(s) , exploring three N0 values and six λ values. Validation
focuses on specific N0 values 10−4, 10−3, 10−2. Classical: updates considering
reward (R), next state (s′), and (E(s, a)) and iteratively refined (Q(s, a)) during
each turn of the battle episode; FA: a defaultDict N(s, a) is initialized with weight
storage w random, and eligibility trace e at zero.
2.3.2 DRL Agents: We implement all DRL algorithms with adaptations based
on the original code of each one. DQN, Double DQN, and PPO were trained with
10k steps per epoch, totaling approximately 333 battles. Training spanned two
durations, of 300,000 steps (30 epochs, approximately 10,000 battles) and 900,000
steps (90 epochs, approximately 30,000 battles). REINFORCE was trained with
10,000 and 30,000 battles. Throughout the process, the best models were saved. We
conducted training over 900k steps / 30k battles to verify the continuous learning
progress of the agents. We used the Adam optimizer with a Learning Rate of
2.5× 10−4 and a discount factor (γ) of 0.75. For DQN and DDQN we use a linear
annealing ϵ-greedy exploration strategy with ϵ = 0.1. DQN and DDQN models
include 128 neurons in the first hidden layer.

joser
Retângulo



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024)-Manaus/AM.
Anais Estendidos do XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital

Trilha:Computação

2.3.2.1 - Deep Q-Learning (DQN) [Mnih et al. 2013, Osband et al. 2016,
Arulkumaran et al. 2017]: Operated "Off-Policy", the DQN agent updates Q-Values
under the assumption that the best action was chosen, regardless of the action taken.
The Q-Value calculation incorporates both the immediate reward and the maximum
Q-Value of the next state.
2.3.2.2 - Double Deep Q-Learning (DDQN) [Osband et al. 2016,
Arulkumaran et al. 2017]: If action a in state s has a higher value than action b,
the secondary model is employed for Q-Value calculation. Double DQN dynamically
selects between the models based on their respective action values. Our "Off-Policy"
method updates Q-Values assuming the best action was chosen.
2.3.2.3 - Proximal Policy Optimization (PPO) [Schulman et al. 2017]: We
use a Neural Network consisting of a two-layered multi-layer perceptron (MLP) with
each layer containing 64 neurons.
2.3.2.4 - REINFORCE [Williams 1992, Zhang et al. 2021]: Updates parameters
by stochastic gradient ascent. The goal is to compute ∇θJ(θ) = ∇θEd [vπθ

(S)].
Applying the Policy Gradient Theorem on MCC Policy Gradient, computing above
equal is equivalent to iteratively update θ as follows: θ ← θ + α∇θ log πθ (st, at) vt.

3. Results and Discussion

The graphical results are available on Neptune for Tabular and DRL methods.5
The results of PPO are available in Github.6 Graphical results are also available in
folder images/report of the repository.7 Trained models are available on a Google
Drive repository.8 We provide guidance on how we save models and how they can
be loaded in the README file of our repository. Table 1 presents a performance
comparison in the validation set across the Tabular and DRL agents, along some
approaches found in the literature.
Tabular methods (IDs 1-18): Classical MCC (1-3) performed poorly against
MP, struggling to adapt to aggressive strategies caused by end-of-episode reward
sampling and table updating. MCC FA (4-6) performed better, with broad
generalization and strategic Pokémon switches; Q-Learning (7-9) excelled
effectively using Pokémon abilities. Q-Learning FA outperformed the tabular
version, showing a deeper understanding of rewards and optimal state generalization;
SARSA(λ) (13-15) was successful in both forms but performed slightly worse than
SARSA(λ) FA (16-18) against stochastic RP, due to its bootstrapped nature.
DRL methods (IDs 19-26): DQN (21-22) performance varied with learning rate
and environments; DDQN (19-20) improved upon the DQN in both environments;
PPO (23-24) had high performance, showcasing strategic switches and a nuanced
understanding of the reward structure; REINFORCE (25-26) displayed behavior
similar to the PPO agent.

5Results Tabular (MC Control, Q-Learning, SARSA) and DRL (DQN, Double-DQN) -

Neptune: acesse.dev/nepPkRL, Results SARSA - Neptune: acesse.dev/nepPkRL2 and

Results REINFORCE - Neptune: acesse.dev/nepPkRL3
6Results PPO - Github: acesse.dev/git-PPO
7Graphic results - Github: encr.pw/git-imgs
8Trained models - Google Drive: acesse.one/svdMdls

https://app.neptune.ai/leolellisr/rl-pokeenv
https://app.neptune.ai/leolellisr/rl-pokeenv
https://app.neptune.ai/mauricioplopes/poke-env
https://app.neptune.ai/henriqueoliveira/rl-pokeenv
https://github.com/leolellisr/poke_RL/tree/master/images/report/ppo_results
https://github.com/leolellisr/poke_RL/tree/master/images/report
https://drive.google.com/drive/folders/1GwNQSsOR0PPtPKlbIy9NzWvTnTtMOD8_
joser
Retângulo



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024)-Manaus/AM.
Anais Estendidos do XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital

Trilha:Computação

Table 1. Results for 15 methods and 31 agents. Each agent faces as opponents
a MaxDamagePlayer (MP) and a RandomPlayer (RP). FA is Function
Approximation. Values found in the literature are also presented. Win rates
shown in percentages. Results above 80% are highlighted in green. Results
below 50% are highlighted in red. Each Tabular agent was trained for 10k
epochs and validated by 2k epochs. Each DRL agent was trained for 10k /
30k epochs and validated by 2k / 6k epochs.

ID N0 Stochastic Deterministic

- γ vs. MP [%] vs. RP [%] γ vs. MP [%] vs. RP [%]

1 0.0001 - 37.86 90.79 - 41.40 91.57
2

Monte Carlo Control
0.001 - 31.89 93.40 - 40.77 90.22

3 0.01 - 34.98 93.91 - 36.03 89.92
4 0.0001 - 83.14 99.37 - 60.67 99.37
5

Monte Carlo Control FA
0.001 - 83.89 99.1 - 59.47 99.19

6 0.01 - 83.35 99.2 - 60 99.31
7 0.0001 - 45.3 93.7 - 43.38 84.04
8

Q-Learning
0.001 - 34.68 85.78 - 32.31 84.01

9 0.01 - 45.09 90.64 - 43.83 88.03
10 0.0001 - 83.98 99.37 - 57.76 99.37
11

Q-Learning FA
0.001 - 84.37 99.1 - 59.2 99.25

12 0.01 - 83.17 99.2 - 59.23 99.4
13 0.0001 0.2 56.17 94.54 0.2 52.18 89.17
14

SARSA(λ)
0.001 0 54.13 89.68 0.2 54.13 89.02

15 0.01 0 54.07 88.6 0.2 52.48 90.25
16 0.0001 1 83.53 57.43 0.8 61.9 98.95
17

SARSA(λ) FA
0.001 0.6 83.2 57.37 0.4 60.82 98.95

18 0.01 1 83.65 57.13 0.8 60.91 99.49
19 Double DQN - 300k steps - 0.75 67 98 0.75 77.08 99.37
20 Double DQN - 900k steps - 0.75 83.94 99.24 0.75 77.92 98.98
21 DQN - 300k steps - 0.75 69.57 98.59 0.75 71.71 98.5
22 DQN - 900k steps - 0.75 60.97 99.28 0.75 74.62 98.89
23 PPO - 300k steps - 0.75 88.93 99.94 0.75 74.86 99.73

24 PPO - 900k steps - 0.75 88.21 99.67 0.75 82.75 99.49
25 REINFORCE - 10k battles - 0.75 87.52 99.43 0.75 60.16 99.13
26 REINFORCE - 30k battles - 0.75 85.07 99.14 0.75 75.97 99.55
27 [Rill-Garcıa 2018] 0.1 - - 58 - - -
28 [Kalose et al. 2018] softmax - - - 68 - - -
29 [Kalose et al. 2018] ϵ-greedy - - - 60 - - -
30 [Huang and Lee 2019] - - 85.07 99.14 - 75.97 99.55
31 GIGAΘ [Simoes et al. 2020] - - - 99.9 - - -

4. Conclusion

This project establishes an open-source benchmark for RL agents trained for
Pokémon battles, with classical tabular RL methods and DRL methods. By
implementing it with stochastic and deterministic adaptive environments, we aim
to improve accessibility and promote collaborative progress in the field. However,
we acknowledge some limitations, such as potential bias introduced by fixed team
compositions. The work will continue with the refine of DRL algorithms and
experiments using variations in team compositions and strategies. We thank
H.IAAC, MCTI/Softex, CNPq and CEPID/BRAINN. 9 We also thank our colleague
Henrique L. C. Oliveira for his help in developing and training the algorithms.

9This project was supported by the brazilian Ministry of Science, Technology and Innovations,

with resources from Law nº 8,248, of October 23, 1991, within the scope of PPI-SOFTEX,

coordinated by Softex and published Arquitetura Cognitiva (Phase 3), DOU 01245.003479/2024

-10. E. L. Colombini is partially funded by CNPq PQ-2 grant (315468/2021-1), R.R. Gudwin is

partially funded by CEPID/BRAINN (Proc. FAPESP 2013/07559-3), L. L. Rossi is funded by

MCTI/Softex.

joser
Retângulo



XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024)-Manaus/AM.
Anais Estendidos do XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital

Trilha:Computação

References

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017).
Deep Reinforcement Learning: A brief survey. IEEE Signal Processing Magazine,
34(6):26–38.

Huang, D. and Lee, S. (2019). A self-play policy optimization approach to battling
Pokémon. In Proceedings of the 2019 IEEE Conference on Games (CoG), pages
1–4.

Kalose, A., Kaya, K., and Kim, A. (2018). Optimal Battle Strategy in Pokémon
using Reinforcement Learning. Stanford University.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. (2013). Playing atari with Deep Reinforcement Learning.
DeepMind Technologies.

Nintendo. (2024). Pokémon official site. https://www.pokemon.com.
Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. (2016). Deep exploration

via bootstrapped DQN. In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc.

Rill-Garcıa, R. (2018). Reinforcement Learning for a Turn-Based Small Scale
Attrition Game.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal Policy Optimization algorithms.

Simoes, D., Reis, S., Lau, N., and Reis, L. P. (2020). Competitive Deep
Reinforcement Learning over a Pokémon battling simulator. In 2020 IEEE

International Conference on Autonomous Robot Systems and Competitions

(ICARSC), pages 40–45. IEEE.
Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An introduction.

MIT press, Cambridge, MA.
Watkins, C. (1989). Learning From Delayed Rewards. British Library. Thesis (Ph.

D.).
Williams, R. J. (1992). Simple statistical gradient-following algorithms for

connectionist Reinforcement Learning. Machine learning, 8:229–256.
Zhang, J., Kim, J., O’Donoghue, B., and Boyd, S. (2021). Sample efficient

Reinforcement Learning with REINFORCE. In Proceedings of the AAAI

conference on artificial intelligence, volume 35, pages 10887–10895.

https://www.pokemon.com
joser
Retângulo


	Introduction
	Materials and Methods
	MDP Formulation and Discretization Model
	Pokémon Teams and Environment
	Agents

	Results and Discussion
	Conclusion

