XXIII Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Computacao]

Extensibility Analysis of Game Engines for Building
Simplified Game Development Interfaces

Joana Gabriela R. de Souza, Marcos Vinicius C. Pacheco, Raquel Oliveira Prates

!Computer Science Department — Federal University of Minas Gerais (UFMG)
Av. Antonio Carlos, 6627 — 31270-901 — Belo Horizonte — MG — Brazil

{joana.souza, rprates}@dcc.ufmg.br, vinipacheco08@gmail.com

Abstract. Creating video games requires a multidisciplinary team and
specialized tools for graphics and interaction mechanisms. While games are
valuable educational tools, game engines are often too complex for non-
programmers. Simplified design tools democratize game development for
educators. This study aims to support Brazilian elementary school teachers
by analyzing game engines for customization possibilities and developing a
prototype authoring tool to create digital educational games quickly.

Keywords End-user Programming, Game engines, Human-Computer
Interaction.

1. Introduction

Creating video games is a complex process requiring a multidisciplinary team and
specialized tools for content production. Developers must create engaging experiences
while managing the technical demands of modern games, including sophisticated
graphics, interaction mechanisms, and behavior definitions [Kanode e Haddad 2009,
Gregory 2018]. They face the dual challenge of designing games that resonate with the
target audience and handling the intricate technical aspects of digital game programming
[Kanode e Haddad 2009].

In education, electronic games have become valuable teaching tools, but the
complexity of game engines designed for professional developers hinders the creation
of personalized educational games by educators [De Gloria et al. 2014]. Simplified game
design tools aim to democratize this process, making it accessible to non-professionals
[Gazis e Katsiri 2023, Barianos 2021, Chover et al. 2020], but it still is a challenge. This
study, part of a project to aid Brazilian elementary school teachers, explores game engines
to identify customization possibilities, aiming to develop a simplified authoring tool for
teachers to create educational games. The analysis focuses on the flexibility and ease of
extending game engines to support this goal.

2. Related Works

Several studies compare game engines, providing a basis for understanding their
features and limitations, aiding in selection based on specific needs [Gazis e Katsiri 2023,
Ullmann et al. 2022, Barczak e WoZniak 2019]. Game engines are tools that support
game creation by simulating physical forces, lighting effects, and other necessary
elements. They make game development easier, faster, and cheaper [Gazis e Katsiri 2023,
Politowski et al. 2021]. Understanding these tools’ characteristics helps identify the best
options for various goals. This work aims not only to evaluate and select a game engine

joser
Retângulo

XXIII Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Computacao]

but also to simplify it so that non-professional developers can create their games. To this
end, we highlighted works focusing on customization or extension of game engines.

Kupiainen’s work [Kupiainen 2018] examines extending the Unity game engine
through editor scripting, comparing Unity with Unreal Engine, and includes a practical
project on creating a game with editor extensions. Barianos’ research [Barianos 2021]
proposes a framework for involving educators in content creation and customization of
educational games, demonstrated through a pilot implementation. Chover et al. present
a game engine for simplified 2D game development and tested with individuals having
some programming knowledge [Chover et al. 2020].

Our study aims to create a simplified authoring tool for educational games by
analyzing various game engines, focusing on implementing user-friendly constructs for
teachers as game creators. Based on the literature, we did not find any work that compared
game engines and game creation frameworks with a focus on their ability to serve as the
basis for a simplified educational game authoring tool for educators.

3. Methodology

To identify the optimal platform for our project, we searched through game engines via
internet searches and academic literature in October 2023. The goal was to evaluate
engines that allow code or interface modifications or support plugin development. This
evaluation aimed to inform the creation of a simplified authoring tool prototype for
educators.

We filtered the engines based on language, cost, and storage requirements,
favoring those with lower resource demands. As we aim to make the modified version
available to elementary school teachers, we prioritized tools requiring less space and
computer processing. At the end of this stage, we selected two tools to analyze in
more detail. We then conducted an in-depth analysis of the selected game engines,
understanding their specific aspects, how they work, and possible challenges that could
arise when developing the prototype.

In previous works, we investigated how teachers interact with games and
technology [Souza e Prates 2022] and conducted a workshop to observe their impressions
using an authoring tool aimed at non-programmers creating games [Souza e Prates 2023].
As a result, these studies generated a set of constructs and requirements for an authoring
tool for teachers to create educational games. Some of the constructs identified in those
studies are: scenes, feedback elements, characters, barriers, questions, buttons, windows,
and so forth. Based on these results, we defined a basic set of requirements necessary for
the prototype.

Focusing on web games, we aimed to facilitate access for students in Brazilian
computer labs and educators at home (to create games). The capacity to export to the
web and other platforms was a key evaluation criterion. We conceived three development
approaches: modifying an existing engine’s interface, dividing the prototype into separate
environments for development and gameplay, and creating a single application with dual
internal environments. Evaluation criteria also included the engine’s capacity to integrate
with a database for login and game session creation via HTTP requests. Additionally, ease
of use, including user interface creation, native interactive components, game previewing,
and structural organization, were considered essential in selecting the game engine.

joser
Retângulo

XXIII Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Computacao]

We then used this set as a guide to analyze each engine and its suitability to
develop the intended prototype. Finally, we compared the final results of analyzing the
two engines to assess their main differences and select one of them to continue our work.

4. Game Engine Analyses

Our initial search for available game engines that could be adapted for elementary school
teachers to create educational games, took into consideration its language, cost, and
storage space. From the initial eight candidates — Unity, Unreal, Godot, GDevelop,
Game Maker, Construct, Cocos, and Phaser — we focused on free engines with a size
under 100 MB to ensure accessibility and minimal resource consumption'. As a result, we
selected Godot and Phaser? as the best candidates to develop the prototype. We analyzed
Godot 4.1 and Phaser 3.60.0, considering their suitability for adaptation and ease of use
for educators. The following subsections present our detailed analysis of these engines.

4.1. Godot

The Godot Engine is an open-source game development tool that supports the creation
of 2D and 3D games. Its popularity among independent developers is attributed to its
extensive documentation, active online community support, and MIT licensing, which
allows unrestricted software use, modification, and distribution.

Godot is optimized for its native programming language, GDScript, which is
object-oriented and features dynamic typing. Its signal system enables communication
between objects within scenes, facilitating code compartmentalization. The integrated
editor provides a comprehensive interface for game development, including scene editing,
object manipulation, scene preview, and error detection in the code editor. Godot supports
exporting games to various platforms, including Windows, macOS, Linux, Android, 10S,
and HTMLS. This versatility allows developers to target a wide range of devices and
platforms?.

4.2. Phaser

Phaser is an open-source framework for developing 2D web games. It simplifies game
development by providing pre-built functionalities such as physics simulation, sprite
manipulation, and user input handling. It is commonly used by developers who want
to create interactive games for web applications. It can be integrated to coexist with other
front-end development frameworks such as Vue* and Vuetify®. Phaser supports multiple
rendering engines, including WebGL and Canvas, and utilizes HTMLS and JavaScript,
with optional TypeScript support (Phaser documentation®).

Phaser lacks an Integrated Development Environment (IDE), necessitating an
external development environment for code organization and typing, particularly when
using TypeScript. Additionally, it relies on a local server to host game execution during

I'See the summarization of information about tools in: https://bit.ly/45cU90s
Zhttps://godotengine.org/ and https://phaser.io/ respectively
3https://docs.godotengine.org/en/4.1/

“https://vuejs.org/

Shttps://vuetifyjs.com/

“https://newdocs.phaser.io/docs/3.60.0

joser
Retângulo

XXIII Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Computacao]

development. Phaser’s ease of use, cross-platform support, and extensive documentation
make it suitable for developing 2D web games. While it lacks an IDE, this can be
addressed through the use of external development tools.

Despite being categorized as a framework, Phaser shares similarities with game
engines, providing reusable components and software tools for game development
[Politowski et al. 2021]. In this context, Phaser is considered a game engine for this
research.

5. Results

Regarding our comparative analysis between the two tools to determine the best option
for continuing the project, we identified essential elements for implementation in the final
prototype and analyzed the implementation process for each engine. First, both engines
supported connecting to a database via HTTP requests. Godot employs a specific node,
‘HTTPRequest,” to handle HTTP requests, including downloading or sending files or web
content. On the other hand, Phaser utilizes standard libraries such as Axios or Ajax for
these requests.

Regarding game export capabilities, both engines support web and mobile
platforms. However, Godot offers an additional advantage by allowing game exports
to Linux and Windows (executable). This feature is particularly beneficial given that
these operating systems are prevalent in Brazilian public schools, enabling offline
gameplay, which is crucial due to frequent internet unavailability in these schools
[Souza et al. 2017].

When analyzing the ease of use of the platforms, we observed that Godot’s
integrated development environment offers numerous features to facilitate development.
These include a visual area for connecting nodes, a scene preview window, a drag-
and-drop interface, and control of project files. Phaser lacks a native IDE, requiring
external software like Visual Studio or the deprecated Intel XDK for type checking, class
control, and game export settings. Thus, Godot provides simpler integration between code
development and tool usage than Phaser.

We also analyzed the difficulty of implementing essential elements in the final
prototype. Most elements, such as interface buttons, physics-affected characters,
platforms with collision, dialog interfaces, and timers, have similar implementations
in both Godot and Phaser. However, Godot offers pre-implemented nodes for some
elements, like progress bars or color selection inputs, facilitating development.

The engines’ ability to provide different approaches to implementing the prototype
was a critical aspect of our decision. The engines can create separate environments for
development and execution, but only Godot allows interface customization using plugins.
Implementing an application with two internal environments is easier with Godot due to
its user-friendly interface manipulation and extensive native User Interface components.
Table 1 summarize our comparison between the game engines.

From our comparative analysis, we concluded that both engines could implement
the prototype, but Godot’s own IDE, ease of use, flexibility, and additional native
resources make it the more appropriate choice. This flexibility ensures greater freedom
for potential changes in the prototype’s scope.

joser
Retângulo

XXIII Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Computacao]

GODOT PHASER

It has its own IDE. Download the software (~52 | It has no IDE. It needs a separate IDE (Visual

MB) or use the web version. Studio Code, for example).

Several export options. such as Android and Create only web applications (HTML +

10s. javaseript/typescript).

Code in GDSeript (similar to Python). Javaseript or Typescript code.

Drag and drop system for editing the interface. Interface elements must be defined inside the
code.

Natural partitioning due to the native structure Partitioning should be done using classes in the

of nodes and scenes. code.

Native support for Tilemaps It is necessary to use an external Tilemaps editor
to be able to use it.

Figura 1. Comparison Godot x Phaser.

6. Final remarks

This research aimed to analyze game engines and frameworks suitable for developing a
prototype educational game authoring tool for elementary school teachers. We compared
tools based on financial costs, interface flexibility, computational requirements, and
support for implementing constructs that allow teachers to create games without game
design or programming knowledge.

We conducted an in-depth analysis of Godot and Phaser, focusing on features
facilitating implementing our project’s functionalities. Godot was selected as the most
suitable tool due to its flexibility and ease of use. A limitation of our study is that we
should have evaluated all available tools, and the analysis was conducted by one author
but mitigated with weekly discussions with the others. This article presents a partial result
of our detailed analysis. Future work would include evaluating more tools and conducting
further tests to refine our prototype using Godot and Phaser to determine which offers
greater ease and adaptability.

7. Acknowledges

Joana de Souza would like to thank CAPES for the partial support received for her
research.

Referéncias

Barczak, A. M. e Wozniak, H. (2019). @ Comparative study on game engines.
Studia Informatica. Systems and Information Technology. Systemy i Technologie
Informacyjne, (1-2).

Barianos, K.-A. (2021). Thimel-content: an inclusive content creation, game

customization and gameplay personalization tool.

Chover, M., Marin, C., Rebollo, C., e Remolar, 1. (2020). A game engine designed
to simplify 2d video game development. Multimedia Tools and Applications,
79(17):12307-12328.

joser
Retângulo

XXIII Simpésio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: [Computacao]

De Gloria, A., Bellotti, F., e Berta, R. (2014). Serious games for education and training.
International Journal of Serious Games, 1(1).

Gazis, A. e Katsiri, E. (2023). Serious games in digital gaming: A comprehensive review
of applications, game engines and advancements. arXiv preprint arXiv:2311.03384.

Gregory, J. (2018). Game engine architecture. AK Peters/CRC Press.

Kanode, C. M. e Haddad, H. M. (2009). Software engineering challenges in game
development. In 2009 Sixth International Conference on Information Technology: New
Generations, pages 260-265. IEEE.

Kupiainen, H. (2018). Extending unity game engine through editor scripting.

Politowski, C., Petrillo, F., Montandon, J. E., Valente, M. T., e Guéhéneuc, Y.-G. (2021).
Are game engines software frameworks? a three-perspective study. Journal of Systems
and Software, 171:110846.

Souza, E. A., Garcia, L. G., Silva, J. C. N., Garcia, L. G., e Moreira, P. L. (2017). A
review of the use of information technology in brazilian schools from 2010 to 2014.
International Journal of Information and Education Technology, 7(4):284.

Souza, J. G. R. e Prates, R. O. (2022). Professores do ensino fundamental brasileiro:
contexto social em que estdo inseridos e a relagdo com jogos educacionais. In Anais
Estendidos do XXI Simpdsio Brasileiro de Jogos e Entretenimento Digital, pages 846—
855. SBC.

Souza, J. G. R. d. e Prates, R. O. (2023). Desafios para a construgao de jogos digitais por
professores do ensino fundamental-relato de uma oficina. In Anais do XXXI Workshop
sobre Educagcdo em Computacdo, pages 167-177. SBC.

Ullmann, G. C., Politowski, C., Guéhéneuc, Y.-G., e Petrillo, F. (2022). Game engine
comparative anatomy. In International Conference on Entertainment Computing,
pages 103—111. Springer.

joser
Retângulo

