
XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Informe o nome da Trilha

Automating Dungeon Level Design using Search-based
Procedural Generation

Arthur R. Pinheiro So1, Alinne C. Corrêa Souza1, Lincoln M. Costa2,
Rafael G. Mantovani3, Francisco Carlos M. Souz1

1Federal University of Technology – Paraná – Dois Vizinhos, PR, Brasil

2Federal University of Rio de Janeiro (UFRJ) – Rio de janeiro, RJ – Brasil

3Federal University of Technology – Paraná – Apucarana, PR, Brasil

arthurriuiti@alunos.utfpr.edu.br, costa@cos.ufrj.br, rgmantovani@gmail.com,

{alinnesouza, franciscosouza}@utfpr.edu.br

Abstract. The adoption of procedural content generation in electronic games is
increasing, allowing for the quick and cost-effective creation of game artifacts
like music, scenarios, and art, which aids or replaces manual content creation.
Metaheuristics, such as Genetic Algorithms are effective in solving complex
problems by exploring the solution space. This study implemented and analyzed
this algorithm for generating procedural content in dungeon games, focusing
on scenarios and enemies. Experimental evaluations demonstrated efficient
optimization of room layouts and enemy distributions, with smaller room sizes
producing better fitness results.
Keywords procedural content generation, genetic algorithm, 2d game design

1. Introduction

As games get increasingly complex, the time and effort required to produce content
manually increases (Adams 2009), and the estimated time to produce is, on average,
three years or more. A significant part of this time is dedicated to creating item
models, maps, and avatars, among other artifacts. Not only is it hard work, but
also a time-consuming and costly process. In this context, solutions are needed to
minimize the cost and time of production of these artifacts. A method to reduce costs
is Procedural Content Generation (PCG), which automatically creates content using
different algorithms (TOGELIUS et al. 2011). The application of procedural generation
techniques quickly allows the creation of a large volume of content that can be used
within the game, i.e., this content is randomly generated several times, serving as a
starting point for the developer. It is important to note that in addition to PCG techniques,
it is possible to employ Artificial Intelligence (AI) such as meta-heuristics to assist in
this process. Meta-heuristics are search algorithms that aim to find optimal solutions to
complex problems; among the various techniques, it is possible to highlight the Genetic
Algorithm (GA) (Russel e Norvig 2013).

In this context, this paper contributes to the area PCG with a level generator that
uses two GAs to create dungeons and to allocate and balance enemies within based on
their attributes such as strength and health points. The remainder of this paper is organized
as follows: Section 2 provides related works. Section 3 describes the proposed methods.

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Informe o nome da Trilha

Section 4 presents and discuss the results. Section 5 concludes this research paper and
suggests future work.

2. Related Work
The literature on Procedural Content Generation (PCG) in games shows diverse
approaches and focuses. De Lima (de Lima et al. 2019) uses genetic algorithms (GA)
to generate game quests, combining planning with an evolutionary search strategy guided
by story arcs, producing quests comparable to those by professional designers. Brown’s
work (Brown et al. 2017) focuses on the action game Hotline Miami, which requires
quick reflexes and features more minor, frantic levels. The study highlights the use
of algorithms in the game’s level editor, integrating PCG within the commercial game.
Ruela and Guimarães(Ruela e Guimarães 2014) use PCG to enhance strategies in the
MMORTS game Call of Roma. The game involves allocating various soldiers under
Heroes, each with specific attributes. They employ a cooperative co-evolution algorithm,
where multiple genetic algorithms evolve their populations in parallel and cooperatively.
In their experiments, each of the N Heroes has a corresponding sub-population that
evolves independently until evaluated together during cooperative intervals.

3. PROPOSED METHODS
In this section, we detail the experimental methodology adopted in this article. An
overview of the flow of experiments, including sub-steps, is shown in Figure 1. The
following sub-sections give additional details regarding them.

Figure 1. Pipeline defined for the PCG using meta-heuristics.

Dungeon Generation. The GA implementation for room positioning is the
same as in Brown et al.’s study (Brown et al. 2017), which showed accurate results for
positioning rooms in the game Hotline Miami. This layout can also be used for generic
dungeons, making it suitable for the proposed game scenarios. In the GA chromosome,
the dungeon layout is represented by a vector of rooms, each with attributes of position,
width, height, and placement type. The placement type can be “T” for rooms that override
other room areas or “U” for rooms that only occupy empty spaces in the grid.

The algorithm takes as input Nrooms, representing the number of rooms it will
attempt to place in the grid and the grid’s size (width and height). Initially, the rooms
have their attributes randomly defined. The algorithm then sequentially allocates these
rooms within the grid according to width, height, and position. The placement type
attribute determines whether a room is placed above or below other previously placed
rooms. A room will be excluded from placement if it ends up disconnected from different
rooms or overlaps or splits any previously placed room. An equation proposed by Brown

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Informe o nome da Trilha

et al. (Brown et al. 2017) was adopted to measure the fitness of the GA individuals.
This equation considers the attributes of the information and assigns a fitness value to
indicate the development level of the generated scenario. Equation enhances fitness based
on the number of rooms positioned, avoiding narrow corridors and tiny quadrants. It
also positively favors a large graph diameter and an average graph degree close to 2,
promoting sequentially interconnected rooms and avoiding excessive interconnections.
After creating the initial population, the GA combines individuals with the highest
fitness, with even rooms inherited from one parent and odd rooms from another. Some
individuals may undergo mutation to introduce variation. The GA results in a dungeon
with maximized fitness, which will be used in the game.

Enemies Generation. After generating the dungeon layout, the second task is to
create the enemies, which are essential for gameplay as they provide the main opposition
for the player. A well-designed dungeon features enemies dispersed throughout its
rooms, each with a balanced mix of enemy attributes. Powerful enemies can deter less
experienced players, while weak enemies might need to provide more challenge. The
dungeon generation is based on balancing enemies’ attributes, with each enemy having
values from 0 to 100. Powerful enemies have higher attribute values and more significant
weight in the dungeon’s balance. Enemies in the same room must be balanced to avoid
having the most robust set of enemies in one room. The challenge is distributing randomly
generated enemies among dungeon rooms, with enemy values corresponding to the sum
of their attributes.

Initially, a list of N enemies with random attributes (Health, Damage, Velocity,
and Attack Cooldown) is generated, forming the EnemyPool for allocation inside dungeon
rooms. The chromosome of an individual is a list representing the room allocation for
each enemy. The size of the N list represents the maximum number of enemies in the
layout. Initially, some values are set to random rooms, with the rest null, meaning those
enemies are not allocated. Mutations alter some genes to allocate or de-allocate enemies,
while the crossover operator randomly exchanges genes between two individuals. The
fitness calculation favors approximating the room totals to a specific value called target:
in this study, this value is set to 400. It was calculated based on the ideal balanced room in
which all enemies are balanced with 50 out of 4 attributes, with the total sum of attributes
being 200 per enemy, and each room in this context has 2 enemies, totaling 400 points in
the total of a room’s attributes. The variable target = 400 is applied in equations (1):

Fitness =
|(Nroom ∗ target)− totDiffSum|

Nroom ∗ target
(1)

Where the total difference sum (totDiffSum) is calculated as the sum of the absolute
differences between the target value and each accumulated sum (attSum) for all rooms,
from room 0 to room Nroom and attSumn is the sum of attributes of room n and Nroom

corresponds to the number of rooms in the dungeon.

4. RESULTS

Expressiveness of Layout Generation. The results of the experiment carried out with
the setup defined by 20 rooms and a 10x10 grid are presented in Figure 2. A behavior
observed in the experiments is the rapid optimization of the number of rooms since the

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Informe o nome da Trilha

variable Nrooms is the one that most positively impacts the final fitness. We observed a
prominence in the experiment performed with ten rooms and 20 grid sizes. The diameter
of the graph and expDegree variable are optimized next. The expDegree tends to reach
1, after which it stops increasing, and the diameter significantly impacts the final fitness.
We also observed that during the initial generations of some experiments, there is a
decrease in values that positively impact fitness, prioritizing the reduction of Nnarrow

and Ntiny (narrow and small rooms). These values have a very negative impact on the
construction of the dungeon. This behavior is particularly evident in the experiment with
20 rooms and ten sizes (as shown in Figure 2), where the parameters significantly limit
the positioning of the rooms.

((a)) Fitness and other attributes
evolution

((b)) Layout before and after the
optimization

Figure 2. Level generated with 20 rooms in a 10x10 grid

Enemy Generation Expressiveness. Figure 3 shows the average results for the
standard and double EnemyPool sizes. Through GA executions, we verified that the
solution converges after 500 generations with 500 individuals in the population, regardless
of the parameters. We executed the experiments 100 times using these exact quantities of
generations, and we observed that most experiments with larger EnemyPool sizes initially
achieved better fitness, likely due to the greater variety of enemies positioned in the early
generations. By the end of the experiment, both sizes converged to similar results. For
experiments with Nrooms = 5 it is possible to notice an advantage in fitness when using
the larger EnemyPool, resulting in 0.98 for size 20 and 0.91 for 10. In the experiment of
Nrooms = 10 there is an advantage in using size 20, resulting in the better fitness of 0.95
compared to 0.92 achieved by a larger EnemyPool, this could indicate that the larger the
number of rooms the less effective EnemyPool is in improving the overall fitness. The last
experiment with Nrooms = 20 presents an insignificant difference for both sizes, obtaining
the result 0.85 for the EnemyPool of size 40 and 0.83 for size 80. Finally, the final fitness
is lower than in previous experiments because of the increased effort required to balance a
more significant number of rooms, making the GA inefficient for managing large rooms.

5. CONCLUSIONS
This work introduced the development of three algorithms, which endeavor to generate
levels procedurally, thereby replacing or at least alleviating the burden on game designers
to create levels manually. Alongside the two genetic algorithms employed for dungeon
and enemy generation, a third algorithm was devised to control NPCs within the

XXIII Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2024) - Manaus/AM Trilha: Informe o nome da Trilha

((a)) EnemyPool: 10 20 and 40 ((b)) Twice the size for the
EnemyPool: 20, 40 and
80

Figure 3. Results for creating enemies.

game, presenting an intriguing alternative to traditional AI methods. The two GAs,
for room generation and enemies, were evaluated through experiments to analyze their
expressiveness and efficiency and the impact of different parameters on their performance.
For the room generation GA, tests with varying grid sizes and room numbers showed
a rapid increase in room count, followed by optimization of the diameter and average
degree. There was a higher penalty rate for tiny rooms and narrow corridors in scenarios
with limited space and many rooms. The algorithm ultimately succeeded in optimizing all
scenarios, with greater ease observed for smaller numbers of rooms. The GA for creating
enemies also yielded good results. We tested different numbers of rooms and sizes for the
EnemyPool. There was significant fitness maximization for smaller room sizes, whereas
the algorithm did not converge to values greater than 0.90 (with a maximum of 1) for
more substantial numbers of rooms. Initially, a larger EnemyPool size sped up fitness
optimization. Still, different sizes produced similar results over time, indicating that this
parameter only significantly benefits the search for a solution after the initial generations.

References
[Adams 2009] Adams, E. (2009). Fundamentals of Game Design 2nd Edition. New Riders, 2

edition.
[Brown et al. 2017] Brown, J. A., Lutfullin, B., e Oreshin, P. (2017). Procedural content

generation of level layouts for hotline miami. In 2017 9th Computer Science and Electronic
Engineering (CEEC).

[de Lima et al. 2019] de Lima, E. S., Feijó, B., e Furtado, A. L. (2019). Procedural generation
of quests for games using genetic algorithms and automated planning. In SBGames, pages
144–153.

[Ruela e Guimarães 2014] Ruela, A. S. e Guimarães, F. G. (2014). Coevolutionary procedural
generation of battle formations in massively multiplayer online strategy games. In 2014
Brazilian Symposium on Computer Games and Digital Entertainment.

[Russel e Norvig 2013] Russel, S. e Norvig, P. (2013). Inteligência Artificial 3a.ed. Elsevier
Editora Ltda, Rio de Janeiro, Rio de Janeiro.

[TOGELIUS et al. 2011] TOGELIUS, J., YANNAKAKIS, G. N., STANLEY, K. O., e BROWNE,
C. (2011). Search-based procedural content generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in Games, 3(3):172–186.

