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Abstract. Computer vision methods based on convolutional neural networks
(CNNs) have presented promising results on image-based fruit detection at
ground-level for different crops. However, the integration of the detections found
in different images, allowing accurate fruit counting and yield prediction, have
received less attention. This work presents a methodology for automated fruit
counting employing aerial-images. It includes algorithms based on multiple
view geometry to perform fruits tracking, not just avoiding double counting but
also locating the fruits in the 3-D space. Preliminary assessments show correla-
tions above 0.8 between fruit counting and true yield for apples. The annotated
dataset employed on CNN training is publicly available.

1. Introduction

Crop monitoring is essential for anomaly detection, yield prediction and risk as-
sessment in agriculture, basing the farmer’s interventions. A continuous data col-
lection during the fruits’ growth cycle would allow an accurate modeling of its
development, identifying anomalies and bottlenecks. Recently, convolutional neu-
ral networks [LeCun et al. 2015] have been employed for ground-level, image-based
detection for different fruits [Sa et al. 2016], as apples [Häni et al. 2020] and man-
goes [Bargoti and Underwood 2017]. However, just a few works [Liu et al. 2019,
Häni et al. 2020, Santos et al. 2020] have addressed the data association problem in fruit
counting: how to properly integrate the detections found in multiple images for accurate,
row-level fruit tracking.

The present work describes a methodology for detecting and locating apples in
orchards from aerial images sequences. This methodology allows not only the detection of



fruits in the images, but also their association between images, identifying apples already
observed previously, an essential requirement for fruit counting. The identified apples are
properly mapped in the three-dimensional space, enabling the analysis of the variability
in the field. The present methodology was able to produce promising results from aerial
images of about 1 cm per pixel, thus being an alternative for autonomous monitoring of
entire plots in orchards by unmanned aerial vehicles (UAVs).

2. Materials and methods
The data employed in the development of the methodology came from a plot located
at the Embrapa’s Temperate Climate Fruit Growing Experimental Station at Vacaria-RS
(28°30’58.2”S, 50°52’52.2”W). The plot, seen in Figure 1 (a), is composed of 10 rows
of apple trees, of which the 8 inner rows contain the plants of interest (the first and last
rows are border ones). The rows contain plants of the varieties Fuji (west facing) and
Gala (east facing). The images were taken during December 13, 2018. For aerial shots,
an UAV (DJI Phantom 4 Pro) performed a 12 m height flight over the orchard’s rows,
capturing imagery data in the form of a 4K resolution video (3840 × 2160 pixels). The
camera tilt is not nadir, allowing a more extensive view of the canopy if compared to a
top/nadir one. The terms frame and image will be employed interchangeably in this text.

2.1. Methodology

The methodology consists of three steps. The first one is apple detection performed on
each image, using a deep convolutional neural network [LeCun et al. 2015]. The second
step estimates the camera position and orientation at each frame, using the structure-from-
motion framework from multiple view computer vision [Hartley and Zisserman 2003,
Schönberger and Frahm 2016]. The last step, the main contribution in this work, uses
projective geometry and directed graphs to represent multiple alternative associations be-
tween fruits observed in different frames. Each path in the graph represents an association
hypothesis, determining the location of the same fruit in different images, and a greedy
algorithm is used to choose the paths.

2.1.1. Apple detection

To this task, we have built an annotated dataset, formed by random selected 256 × 256
pixels samples from the frames extracted from the UAV video sequences. The dataset was
split in training and test subsets for supervised machine learning, as shown in Table 1.
This dataset is publicly available1.

Table 1. Dataset for image-based apple detection training and evaluation.

Number of images Number annotated apples
Training 1025 2204
Test 114 267

For apple detection, we have employed a Faster R-CNN network
[Ren et al. 2017], using a ResNet-50 backbone [He et al. 2016]. We employed the

1Available at https://doi.org/10.5281/zenodo.5586329.
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Figure 1. The orchard. (a) The plot presenting 10 rows. (b) Structure-from-motion
performed by COLMAP - the UAV pose at capture time for each image is
shown by the red frustums.

implementation available in PyTorch [Paszke et al. 2019] (see the torchvision
library). The details of the training process, including data augmentations techniques,
optimizer, batch sizes, number of epochs and hyperparameters can be seen in the publicly
available code2 and, due to text size restrictions, they will not be described here.

2.1.2. Relative camera pose estimation

To estimate the camera position at the time of capture for each video
frame, we have employed the Structure-from-Motion (SfM) system COLMAP
[Schönberger and Frahm 2016]. A SfM system estimates the projection matrix Pi,
a 3 × 4 matrix, for each image i: for each three-dimensional point X = (X, Y, Z, 1)ᵀ

in the field, its 2-D projection xi = (xi, yi, 1)
ᵀ on the image plane of frame i can be

computed3 by the product
xi = PiX. (1)

The matrices Pi also allow the computation of the relative position Ci between cameras in
the 3-D space by the property PiCi = 0. Figure 1 (b) illustrates the position of the UAV
camera at the time of each frame capture in the flight over the plot.

2.1.3. Data association: tracking apples in the frames sequence

Projections matrices Pi and Pj allow the computation of the fundamental matrix Fi,j
[Hartley and Zisserman 2003]. Suppose that a point X in the 3-D space is mapped to
the 2-D points xi and xj on the i-th and the j-th frames of the video sequence, respec-
tively. The fundamental matrix maps xi on frame i to a epipolar line li,j on frame j that
contains xj . In our apple tracking problem, we have x

(m)
i , the centroid of the m-th apple

detected by the neural network on frame i. We can employ the fundamental matrix linking
frames i and j to aid us in choosing the most suitable detections to correspond to x

(m)
i , as

seen in Figure 2.

2Available at https://github.com/thsant/add256-fastercnn.
3Points X and xi are in homogenous coordinates, what explains the 1 in their last dimension.



Consider the centroids of the N apples detected by the neural network on the j-th
frame, x(n)

j , n = 1..N . The detection corresponding to apple x
(m)
i should be close4 to the

line l
(m)
i,j in frame j, given by

l
(m)
i,j = Fi,j · x(m)

i . (2)

The fundamental matrix can be computed from the projection matrices by

Fi,j = [ej]×PjP
+
i , (3)

where P+i is the pseudo-inverse of Pi, and ej = PjCi is the epipole, with PiCi = 0, i.e.,
Ci is projection center for the camera in frame i [Hartley and Zisserman 2003].

Figure 2. Epipolar restriction. Detected apples are shown as magenta ’x’ mark-
ers. The point corresponding to the apple marked in red on Frame 350
defines the red epipolar line seen in Frame 351. The same apple should be
observed near this line, limiting the number of options for apple tracking.

Our proposed apple tracking algorithm employs a graph, G, to represent multiple
fruit associations hypothesis. Each node v(m)

i ∈ G corresponds to the centroid x
(m)
i of the

m-th apple detected on a frame i. We add an edge v(m)
i → v

(n)
j iif

dist(x
(n)
j , l

(m)
i,j ) =

x
(n)
j · l

(m)
i,j√

a2 + b2
≤ τepipolar, (4)

being l
(m)
i,j = (a, b, c)ᵀ = Fi,j ·x(m)

i . In other words, we are testing if the distance between
the point and the epipolar line is below a threshold τepipolar. This procedure is performed
by the lines 4–9 in Algorithm 1, FRUITASSOCIATION. So, an edge in G represents a
possible association between two detections in different frames. As seen in line 5, for each
frame i, the following k frames are evaluated for associations, what provides robustness
to momentaneous misdetections of a fruit by the neural network.

A sequence of edges v(m)
i → v

(n)
j → . . . → v

(o)
k is a path. Each path represents

a possible association hypothesis for a fruit detected in frame i and the fruits detected
in the following frames. Lines 10-16 in Algorithm 1 implement a path selection process,
employing a second algorithm, FRUITESTIMATION3D (Algorithm 2).

Algorithm 2 starts performing a depth-first search (DFS) from node v(m)
i , get-

ting all possible paths starting at v(m)
i . An algorithm based on random sample consensus

4Ideally, in a noisy-free, perfect detection scenario, x(n)
j ∈ l

(m)
i,j , i.e., x(n)

j · l(m)
i,j = 0.



Data: The detected apples’ centroids x(m)
i for each frame i, i = 1..F

Result: A set of 3-D points (apples centers) X = {X1,X2, . . .XL} and their
tracks

1 begin
2 for i← 1 to F do
3 foreach detected apple x

(m)
i in i do Add node v(m)

i to G

4 for i← 1 to F do
5 for j ← i+ 1 to min(i+ k, F ) do
6 for all x(m)

i and x
(n)
j do

7 if dist(x(n)
j , l

(m)
i,j ) ≤ τepipolar then

8 Add the edge v(m)
i → v

(n)
j to G

9 X ← ∅
10 for i← 1 to F do
11 for each v(m)

i do
12 X, I, rI ← FRUITESTIMATION3D(G, v(m)

i )
13 if X 6= NIL then
14 Add X to X
15 Remove from G all edges v(m)

i → v
(n)
j such that v(m)

i , v
(n)
j ∈ I

16 return X

Algorithm 1: FRUITASSOCIATION.



(RANSAC) [Fischler and Bolles 1981] is employed to estimate the tridimensional point
X corresponding to a path (an apple’s 3-D position in space). At each iteration, the TRI-
ANGULATIONRANSAC algorithm pick three 2-D points, x(m)

i , x(n)
j and x

(o)
k (correspond-

ing to nodes v(m)
i , v(n)j and v(o)k in a path T ) and estimates the 3-D point X. The estimation

of X is performed by a least-squares minimization algorithm [Hartley and Sturm 1997].
Next, X is projected on each frame i in the path, defining the points x̂(m)

i = PiX and their
corresponding geometrical errors, i.e., the Euclidean distance between x̂

(m)
i and x

(m)
i .

Nodes in the path T whose geometrical error is below the threshold τgeom are considered
inliers. At each iteration, the RANSAC procedure keeps the point X that delivered the
largest number of inliers. Algorithm 2 looks for the path presenting the largest rate of
inliers I, keeping the longest path presenting the largest inlier rate. In other words, the
inlier ratio acts as a quality measure for the inter-frame association hypothesis regarding
fruit x(m)

i , represented by a path starting from v
(m)
i . Once a path is selected, the algorithm

remove its edges from G (line 16 in Algorithm 1), avoiding those associations to be em-
ployed again. However, the nodes are preserved in the graph, allowing fruits occlusions
to be considered: fruits that occlude each other can create crossing paths in G, i.e., paths
sharing nodes.

Data: An association graph G and a initial node v(m)
i .

Result: The 3-D apple position X, a set of inliers nodes I, and the inlier ratio
rI .

1 begin
2 T ← DFS(G, v(m)

i )
3 X← NIL
4 I ← ∅
5 rI ← 0

6 for each track T = 〈v(m)
i → v

(n)
j → . . .〉 ∈ T , from the longest to the

shortest do
7 XT , IT ← TRIANGULATIONRANSAC(T )
8 if IT 6= ∅ then
9 rT ← ‖IT ‖

‖T‖
10 if rT > rI then
11 rI ← rT
12 X← XT

13 I ← IT

14 return X, I, rI
Algorithm 2: FRUITESTIMATION3D.

3. Results and discussion
Figure 3 displays the tracks determined by Algorithm 2 for two different apples. Each
line in the figure corresponds to an apple’s track (only the inliers). Note how the look
of the fruit and its surroundings varies slightly as the pose (the UAV position) changes
from frame to frame. Each track determines the three-dimensional position of an apple:



all inliers are used in the final estimation of the fruit’s position X in the 3-D space, again
by employing the least-squares algorithm [Hartley and Sturm 1997]. Figure 4 displays a
total of 9,237 apples found in the plot. Fruits were automatically divided into the ten rows
of the field by K-means clustering.

Disregarding two rows out of the UAV’s field of view, caused by imprecision in the
vehicle positioning system5, the observed linear correlation between the counted apples
in each row and the row’s yield was 0.11 for Fuji and 0.80 for Gala, considering six rows.
However, one of the rows (row 8) looks like a severe outlier: considering just the other
five rows, linear correlation is 0.93 for Fuji and 0.88 for Gala. Although promising, the
results should be viewed with caution, given that few rows were evaluated, at a single plot.
More extensive experiments are yet necessary for a full characterization of uncertainty in
yield prediction and the proportion of the fruits that is visible in imagery. It should also
be noted that the images were captured in December and the harvest was carried out in
February of the following year, which indicates that the methodology has the potential
to provide yield estimated in early stages. Indeed, the presented methodology can be
employed as a component of a more sophisticated yield prediction system.

Figure 3. Two inter-frame fruit association examples found by Algorithm 1. Each
row corresponds to an apple, observed in a few frames. Note the inter-
frame variations, caused by UAV’s pose changes during recording.

4. Conclusions
Fruit detection and tracking can be, in short term, applied to yield prediction and crop
monitoring. In the long term, precise detection and 3-D localization can be employed
on harvesting by autonomous agents. Detection and tracking allow autonomous agents
to estimate their position relative to the fruit, so that accurate handling planning can be
performed by the machine. The three-dimensional localization can also characterize the
spatial variability of the fruits in the plots, helping on growing management according to
precision agriculture practices.

The presented methodology is not restricted to aerial images: the same algorithms
could be adapted to images obtained by ground vehicles with embedded cameras. Au-
tonomous aerial vehicles with precise positioning control, such as devices equipped with

5Precise flights, able to keep the plants in the UAV’s field of view, can be performed by vehicles pre-
senting a precise position control, as a Real-Time Kinematic (RTK) Global Navigation Satellite System
(GNSS). Unfortunately, the vehicle used in this work presented an ordinary GNSS system, without the
positioning corrections provided by RTK.



Figure 4. Fruit automatic localization. Each point represents the three-
dimensional location determined for an apple. Colors represent different
lines in the field, automatically identified using the K-means algorithm.

RTK GNSS, could be used as a row-scanning system able to perform automated field
monitoring. New experiments, with a greater variability of plants, management regimes
and plant architectures, should be carried out to validate and adapt the methodology for
operation in different scenarios, and provide a better characterization of the estimation
errors in yield prediction.
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