
DSSAT-Lite: a web-based application for running crop models
and analyzing results from DSSAT-CSM

Jonas de Abreu Resenes1, Gerrit Hoogenboom2,
Alexandre Lazaretti Zanatta1, Willingthon Pavan1,3, Carlos Amaral Holbig1

1Graduate Program in Applied Computing (PPGCA)
University of Passo Fundo (UPF)

Campus 1 – 99.052-900 – Passo Fundo – RS – Brazil

2University of Florida
Gainesville – FL – United States of America

3International Fertilizer Development Center (IFDC)
Muscle Shoals – AL – United States of America

jabreu.ar@gmail.com, gerrit@ufl.edu

zanatta@upf.br, wpavan@ifdc.org, holbig@upf.br

Abstract. DSSAT is a set of tools that facilitate the creation and management of
experiment, soil, and weather files. Its tools were built using programming lan-
guages like Visual Basic and Delphi, which are difficult to run remotely or in the
cloud. In this work, we present DSSAT-Lite, a web-based application designed
to facilitate the simulation of DSSAT-CSM models over HTTP. It provides simu-
lation and visualization tools and integration with highly optimized third-party
software for processing DSSAT files. Abstraction layers allow for a standard-
ized methodology for reading multiple DSSAT files into a beautifully formatted
data structure. These features allowed DSSAT-Lite to run remote simulations,
specifically using mobile devices and web browsers.

Resumo. DSSAT é um conjunto de ferramentas que facilita a criação e geren-
ciamento de arquivos de experimentos, solo e clima. Suas ferramentas foram
construı́das utilizando linguagens de programação como Visual Basic e Del-
phi, que se tornam difı́ceis de serem executadas remotamente ou na nuvem.
Neste trabalho, apresentamos o DSSAT-Lite, uma aplicação baseada na web,
projetada para facilitar a simulação de modelos DSSAT-CSM sobre HTTP. Ele



fornece ferramentas de simulação e visualização e integração com software de
terceiros altamente otimizado para o processamento de arquivos DSSAT. As ca-
madas de abstração permitem uma metodologia padronizada para ler vários
arquivos DSSAT em uma estrutura de dados muito bem formatada. Estas car-
acterı́sticas permitiram ao DSSAT-Lite executar simulações remotas, especifi-
camente usando dispositivos móveis e navegadores web.

1. Introduction
With each technological advance and with the spread of the use of computer programs,
new computational challenges arise. The replacement of the command line interface with
the graphical interface facilitated the increasing use of programs by users. However,
this transformation caused another problem for software developers: code reuse across
different platforms and integration with different programming languages.

In recent years, several innovations in web technology have allowed designers and
software engineers to develop responsive web applications [Shahzad 2017]. The web-
based approach also reduces the complexity of software distribution, which is a challenge
for any development team. However, many tools created before the 2000s use technolo-
gies that today are hard to maintain and integrate with modern computational tools.

The tool that drives this work is the Decision Support System for Agrotechnology
Transfer (DSSAT), a software package that integrates soil effects, genetic coefficients,
climate data, and management options. DSSAT is a collection of databases, crop models,
and different applications that are operated by software to help the user select and compare
different options and predict the final results [Hoogenboom et al. 2019a].

The DSSAT development was done using different programming languages and
with little attention to the structure of the software. It has been redesigned to facilitate
the incorporation of new scientific advances, applications, documentation, and mainte-
nance. The principle of this remodeling is a modular structure, called CSM (cropping
system model), in which the components are separated along scientific discipline lines
and structured to allow easy replacement or addition of new modules in the DSSAT-
CSM [Jones et al. 2003]. Figure 1, shows that DSSAT-CSM is made up of four different
components: a) a database collection, used to organize and store a minimum set of input
data required to run crop models; (b) a series of crop models; c) applications to analyze
and display the simulated experiments; d) a user interface [Verhagen et al. 2001].

Each DSSAT module has six operational steps, as shown in Figure 1, which are
responsible for structuring and organizing a simulation, such as: initialization, crop in-
stallation, rate calculations, integration, daily outputs and summary of outputs. The Main
Program controls when each of these steps is triggered and when each module should
perform a task.

The DSSAT functions have been developed primarily to support the use of crop
simulation models in decision making [Jones et al. 1998]. The following crop models are
currently accessible in the DSSAT environment:

• CERES for cereal models, which include corn, wheat, rice, barley and sorghum..
• CROPGRO de models for legumes such as soybeans and peanuts.
• CROPSIM for root crops such as cassava and potato.



Figure 1. Diagram of database, application, and support software
components and their use with crop models for applications in
DSSAT [Jones et al. 2003].

• CROPGRO allows users to modify values in a model culture file without changing
any code.

One of DSSAT’s strengths is the ability to analyze many management strategies.
Several years of simulation are run using climate data generated to simulate the effects
of the climate in the future [Jones et al. 2003]. In addition, DSSAT is suitable for long-
term studies, which assists in the evaluation of efficient crop management strategies and
optimize production [Faria and Bowen 2003].

Among the limitations of the DSSAT, the restriction to homogeneous field-scale
analyzes stands out [Jones et al. 2003]. Also, the fact that crop models are written using
the FORTRAN programming language makes it difficult to integrate with new compo-
nents. The DSSAT user interface, Figure 1, is supported on Windows only and uses
technologies in the end of life support.

The DSSAT models are executed through the command-line interpreter that re-
quires a particular experience in computer science. Most of the operations in DSSAT
are made over a command-line interpreter, which requires a piece of good computational
knowledge. Since the DSSAT community is interdisciplinary, not only computer science
or others are related, the use of command-line becomes a challenge for most users. Many
times, it is a challenge for researchers in the computer science area as well.

There is one alternative for the command-line, which is the DSSAT Shell program
(Figure 2). It provides a working environment where various stand-alone tools and ap-
plications are seamlessly integrated with the DSSAT crop models. Within the shell, the
user can launch applications for creating and modifying data files, running the crop mod-
els, and analyzing the results [Hoogenboom et al. 2019b]. However, the current DSSAT
Shell is a desktop application that runs on Windows Operation System only, and it was
written using Delphi and many tools in Visual Basic language. Like any other desktop
application, it requires installing in a local machine, and simulation and data visualization
are accessed offline.



Figure 2. Screenshot from the main DSSAT-Shell window, available under DSSAT
version 4.7.5 installation package.

This study intent to help the DSSAT community which contains approximately
14, 000 researchers, educators, consultants, extension agents, growers and decision mak-
ers in over 179 countries worldwide. This work aims to build a solution that allows the
DSSAT community to run and visualize DSSAT crop models over HTTP, to run simu-
lations and visualize results from anywhere in the globe, through a mobile device or via
browser using World Wide Web.

2. Software description
Some functional requirements and functionalities have guided our implementation. The
main functionalities from DSSAT Shell that DSSAT-Lite will support are 1) Responsive:
DSSAT-Lite pages should render well on a variety of devices and window or screen sizes.
It also must support mobile devices; 2) Parallelism: it must support multiple simulations
at once. Simulations should not impact each other; 3) Performance: slow sites have a
negative impact for the users. DSSAT should be able to run simulations and visualize
result quickly; and 4) User-friendly: DSSAT-Lite must provide an user-friendly interface
to the users; even users that are starting with DSSAT should be able to find the path to run
a simulation and to visualize results easily.

3. Technical Implementation
Many frameworks and libraries were used during DSSAT-Lite development. These frame-
works are jDSSAT [Resenes et al. 2019], Express.js, Angular, Bootstrap and Jasmine.

The DSSAT-Lite application design is based on an architecture
that follows the Client/Server approach via Representational State Transfer
(REST) [Fielding and Taylor 2000]. All the components of the architecture are



shown in Figure 3. The client, a web application, handles the DSSAT-Lite user interface
with responses to user events such as selecting experiments for a given crop and running
DSSAT model simulation. The server-side provides the data for the user’s events, which
runs on a remote computer. It has a DSSAT-CSM version installed that will run the
DSSAT models when requested from the client. The server-side is a NodeJs REST API
that is accessible through HTTP from the client. Since the DSSAT folder structure is
shared in the remote computer, every user has a temporary folder for experiments and
simulation outputs. There is a service installed on the remote computer to clean up the
temporary folder every seven days.

Figure 3. The DSSAT-Lite follows client-server architecture.

Once the user accesses the DSSAT-Lite Uniform Resource Locator (URL), a re-
quest is made to the Middleware REST API, specifically to the authentication service, in
order to generate a token. We keep the token in the browser local storage. This token
is used later to create a temporary crop folder to avoid concurrence issues. The simula-
tion from user A won’t impact a simulation from user B. Both users will have different
temporary folders.

After the token is generated and stored, we can now use the DSSAT resource
available in the Middleware API. The DSSAT resource has a different path in the URL.
For instance, to retrieve experiments for a given crop, the URL 1 path will contain the
crop name. The HTTP method, in this case, will be a GET. The result of this request
will be a JSON Array [Crockford 2006], and it will be handle by the client-side before
displaying it to the user.

DSSAT-Lite allows any user to run a DSSAT-CSM simulation model remotely.
In this case, a temporary folder with the results is created. For example, the user A
accesses the DSSAT-Lite URL; at this moment, a token is generated by the middleware

1https://fqdn/api/dssat/treatments:crop



API (for instance 9f5IEN7BWP). The user then will select what: the crop, experiments,
and treatments to be simulated, in this order, and push Run Model button in the DSSAT-
Lite page, and a request is made to the Middleware API to run the simulation.

In the DSSAT-Lite interface (Figure 4), there are four menus on the left: Sim-
ulation, Graph Builder, Version Info, and Contact. The simulation contains information
about the experiments and treatments. Graph Builder is used to plotting graphs and visual-
ize simulation results. The other two menus are version info, including the current release
note and contacts used to report issues. At the top of the Simulation page, a dropdown
with the available crops to be selected. This means that the users can choose different
crops to run a simulation. Next, the button Run Simulation is used to run a simulation in
the remote server after selecting Experiments and treatments.

Figure 4. DSSAT-Lite simulation page. The data card displays all experiments
based on the crop selected, Maize, in this case. The treatments displayed
on the right card are loaded based on the experiment file the user selected.
There is also a File Preview card of the experiment file

4. Illustrative example

DSSAT-Lite has been implemented over HTTP with the integration of ploty.js library for
graphical results. Furthermore, this solution enables multiple simulations simultaneously
using APIs.

Our example, depicted in Figure 4, represents the Maize crop selection by the
DSSAT-Lite user. Whenever an event occurs in the Web interface, a request is made to the
server where the DSSAT-Lite backend is hosted. Once the server receives the request, it
looks at experiments files available from the Maize crop folder. The treatments available
for selection are based on the experiment selected. After treatments and experiments
are selected, the user can now run a simulation. A graphical representation of running
simulation steps is shown in Figure 5.



Figure 5. Flow diagram showing the steps to run a simulation. Step 1 is for
the DSSAT-Lite to load the crops, experiments ad treatments using jDSSAT
server API (step 1.1). Step 2 represents DSSAT-Lite displaying the data.
Step 3 represents experiment and treatments selection by the user. Finally,
the user runs a simulation. The jDSSAT server processes the simulation
request and creates a temporary folder to save the simulation results and
retrieve them later (steps 4 and 4.1).

After a simulation is completed, the user can visualize the results. Crop simulation
models are process-based and provide very detailed outputs of the simulated crop and soil
processes [Yang et al. 2014]. However, analyzing the outputs is a challenge, and the
existing tools such Easy Grapher [Yang et al. 2014] do not run through the web. The
DSSAT-Lite is responsive, and it automatically resizes, hides, shrinks, or enlarges its
content to make its user interface fit in all devices (desktops, tablets, and phones). Figure
7, shows how the DSSAT-Lite layout fits in a mobile device. The DSSAT-Lite provides a
page to visualize simulation results, shown in Figure 6.

5. Final Considerations

The philosophy of abstracting complexity from software execution should enable the evo-
lution of DSSAT as software. DSSAT-Lite combines APIs and third-party tools to allow
the DSSAT community to run experiments remotely. In the current DSSAT-Lite version,
the users meet limited usage features compared with the current DSSAT-Shell. However,
running applications through the web opens up the possibility to run multiple simulations
at once. The APIs used by DSSAT-Lite is versatile and extensible. These APIs can be
used to build other solutions, such as the R package, to run simulations using R language,
leveraging its power of data visualization.



Figure 6. Graph builder page. It displays the values of the variables from a
simulation. It has options to download the graph, zoom in and out and
show/hide variables.

Figure 7. DSSAT-Lite running in a mobile device.

References

Crockford, D. (2006). The application/json media type for javascript object notation
(json). RFC, 4627:1–10. https://doi.org/10.17487/RFC4627.

Faria, R. T. d. and Bowen, W. T. (2003). Evaluation of dssat soil-water balance module
under cropped and bare soil conditions. Brazilian Archives of Biology and Technology,
46(4):489–498.

Fielding, R. T. and Taylor, R. N. (2000). Architectural styles and the design of network-
based software architectures, volume 7. University of California, Irvine Doctoral dis-
sertation.

Hoogenboom, G., Porter, C., Boote, K., Shelia, V., Wilkens, P., Singh, U., White, J., As-
seng, S., Lizaso, J., Moreno, L., Pavan, W., Ogoshi, R., Hunt, L., Tsuji, G., , and Jones,
J. (2019a). The dssat crop modeling ecosystem. In Boote, K., editor, Advances in Crop



Modeling for a Sustainable Agriculture, pages 173–216. Burleigh Dodds Science Pub-
lishing. http://dx.doi.org/10.19103/AS.2019.0061.10.

Hoogenboom, G., Porter, C., Boote, K., Shelia, V., Wilkens, P., Singh, U., White, J., As-
seng, S., Lizaso, J., Moreno, L., Pavan, W., Ogoshi, R., Hunt, L., Tsuji, G., and Jones,
J. (2019b). The dssat crop modeling ecosystem. In Boote, K., editor, Advances in Crop
Modeling for a Sustainable Agriculture, pages 173–216. Burleigh Dodds Science Pub-
lishing. http://dx.doi.org/10.19103/AS.2019.0061.10.

Jones, J., Hoogenboom, G., Porter, C., Boote, K., Batchelor, W., Hunt, L., Wilkens, P.,
Singh, U., Gijsman, A., and Ritchie, J. (2003). The DSSAT cropping system model.
European Journal of Agronomy, 18(3):235–265. https://doi.org/10.1016/
S1161-0301(02)00107-7.

Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens,
P. W., Imamura, D. T., Bowen, W. T., and Singh, U. (1998). Decision support sys-
tem for agrotechnology transfer: DSSAT v3. In Tsuji, G. Y., Hoogenboom, G.,
and Thornton, P. K., editors, Understanding Options for Agricultural Production,
pages 157–177. Springer Netherlands, Dordrecht. https://doi.org/10.1007/
978-94-017-3624-4_8.

Resenes, J. A., Pavan, W., Hölbig, C. A., Fernandes, J. M. C., Shelia, V., Porter, C., and
Hoogenboom, G. (2019). jDSSAT: A javascript module for dssat-csm integration. Soft-
wareX, 10:100271. https://doi.org/10.1016/j.softx.2019.100271.

Shahzad, F. (2017). Modern and responsive mobile-enabled web applications. Procedia
Computer Science, 110:410 – 415. 14th International Conference on Mobile Systems
and Pervasive Computing (MobiSPC 2017) / 12th International Conference on Future
Networks and Communications (FNC 2017) / Affiliated Workshops. https://doi.
org/10.1016/j.procs.2017.06.105.

Verhagen, A., Conijn, J., and Schapendonk, A. (2001). Quickscan of simulation mod-
els. Technical report, Plant Research International BV. Scientific report, Nota 130.
Available at: https://edepot.wur.nl/26948.

Yang, J., Drury, C., Yang, J., Li, Z., and Hoogenboom, G. (2014). Easygrapher: software
for data visualization and statistical evaluation of dssat cropping system model and the
canb model. International Journal of Computer Theory and Engineering, 6(3):210.
https://doi.org/10.7763/IJCTE.2014.V6.864.


