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Abstract. In poultry farming, the systematic choice, update, and enpnta-
tion of periodic {) action plans define the feed conversion raf€(R"), which
is an acceptable measure for successful production. Ap@@paction plans
provide tailored resources for broilers, allowing them togy within the so-
called comfort zone, without waste or lack of resourcesh@lgh the implemen-
tation of an action plan is automatic, its configuration deg@e on a specialist,
which tends to be inefficient and result in variatfl€’ R%. In this project, the
specialist’s perception is reproduced, to some extent,dmypuitational intelli-
gence. By combining deep learning and genetic algorithinrtieges, we show
how action plans can adapt their performance over the tinageld on previous
well succeeded plans. We also implement a network infretstrel to replicate
our method over distributed poultry houses, for their smiaterconnected, and
adaptive control. A supervision system is provided as faterto users. Exper-
iments using real data suggest an improvement of 5% on tHermpeance of the
most productive specialist, staying close to the optim@lRr .

1. Introduction

Poultry farmingis the agro-industrial sector focused on producing braiieat for con-
sumption. Worldwide, the activity has attracted attentioue to its economic and social
role, aligned with the continuously increasing world dech&or broilers. Only in 2019
the USA was responsible for producing 19.941 million tonsnefat, followed by Brazil
and China with 13.245 and 13.750 million tons, respectifABPA 2021).

Technically, broilers raise withipoultry house$PHs), that are automatically con-
trolled by electronic devices. The daily recipe, presagpihe parameters for the auto-
matic controller, is called aaction plan(Acres 2020). The quality of an action plan
reflects the general welfare for broilers, allowing themrowgup under appropriate con-
ditions of feeding, housing, and health. In this paper, irtipalar, an action plan is



exploited in terms of its environment-related variableg $&ek for combined indoor cli-
mate conditions that allow broilers to grow up untermal comfortachieved within the
so-calledcomfort zongBotreau et al. 2007). The comfort zone directly affectsdpim
tivity, which is acceptably measured by periodioH N) feed conversion rateg’C' R{")
estimations. The more accurate the action plan, the loveeatoumulated”C R, and
the greater it tends to be the production.

Advances on improving'C' R focus on health, nutrition, genetics, thermal com-
fort (Henriksen et al. 2016; Ribeiro et al. 2019), etc. A re@mray barrier is, however, the
lack of expert systems to help humans with the choice, up@aig implementation of
daily action plans. This leads specialists to use their owpegence to set up action
plans, which tends to be complex, inefficient, and prone torgy besides to cause con-
flicting opinions. As a consequence of unsystematic intgrgas, eactPH may return a
distinct FC' R, which makes unclear the overall performance estimation.

The literature provides alternatives to estimate intehigaction plans. For exam-
ple, (Ribeiro et al. 2019) uses a bio-inspired model basedrtficial Neural Networks
(ANNSs) to suggest action plans according to climatic variatidt@wever, this approach
is not integrated with the process controller, so that incameconfigure its actions dy-
namically according to thA NN suggestion. Furthermore, (Ribeiro et al. 2019) does not
consider the dynamic adaptation of its estimations ovetithe, which is an important
feature when scenarios of production are variable.

In this project, the specialist perception is reproducedsdme extent, by com-
putational intelligence. Differently from (Ribeiro et #019), we use a more suitable
memory-aware model based dong short-term memorf.STM) networks, instead of
ANNs. We also show how estimated action plans can be combinedsaalgorithms that
artificially emulate genetic mutations. This results in noyed action plans that are capa-
ble of adapting themselves over the time based on previcusigessful action plans. By
replicating our method over a set Bis, we solidify a new foundation to support smart,
cooperative, distributed, and interconnected poultrnfag.

Experiments conducted using real data indicate that ouroapp estimates an
FCRM" of 1.5610 by the end of a flock. In comparison, tfh& R resulting from the
progressive application of empiric action plans, chosethbyspecialist who had the best
performance among all others in the evaluated group, uhéesame setup, was 0640,
therefore0.079 or 5% worse than ours. Our method also shows proximity with the bes
performance achievable Rossbroilers strain, which ig"C R? = 1.558 (Ross 2019).

2. Aninteligent solution for poultry management

A usual measure to quantify the efficiency in transformingdfénto animal protein, is
based on periodic sampleskeded Conversion Ratéormalised as:

FCO®

¢ -~
FOR™ = LB® . MW’

1)
wheret is an integer associated with the day of observatiofi{*) is the amount ofeed
consumptioruntil day¢; LB is the number ofiving birds at dayt; and MW is the
mean weiglat day:.



An effective action plan is achieved when the’R® is improved, i.e., when it ap-
proximates to zero. The more accurate the action plan, therlthe conversion rate, and
the greater the production tends to be. However, obtainisatiafactoryFC R™, at the
end of a flock (usually = 40), requires enormous ability from the specialist to conduct
the daily management. It depends, basically, on how thg gaitameters are informed
to the controller so that, in combination, they could resula reasonable accumulated
FC R for the entire flock.

In general, poultry farmers handle more than &€ within a shared infrastruc-
ture, called goultry condominiun{PC), shown in Fig[]l and formalised as a finite set
Cond = {PH,,-- -, PH,} of poultry houses’H;, for 1 < i < n.

Figure 1. Structure poultry house condominium Cond = {PHy,---, PH,}.

EachPH has automated feed and drinking systems working continydusn 6
AM until 10 PM. It also includes electronic devices to infothe dailyfeed consumption
(FC®), and themean weigh{M W) captured by automatic scales. Each flock takes
about40 days to be produced (= 1,---,40), and the final weight (i.ep W) is
expected to be of approximately8 Kg per bird. TemperatureMin(T)®, Avg(T)®,
and Maz(T)™®), and relative humidity {Zin(H)", Avg(H)®, andMax(H)®), inside
the PH are collect by sensors and stored into a database, whichrtiofpthe control
system infrastructure. The specialist also recordsrtheality on the dayt (M), which
alternatively can be exposed as the numbeéivoig broilers by:

p
LBY =|F = MY, 2
t=1

i.e., as the difference between tindial amount of birdsn a flock ( F]), and the accumu-
lated mortality recorded by the specialist during a pefiod

2.1. Dataset acquisition

For the purpose of this paper, the real dataset was obtayedbserving aPC com-
posed of thre@Hs, which were used for collecting daily data sampling. Thed#i#Hs
contained only maleRossstrain broilers.The data acquisition was conducted batwee
August 2019 and March 2020, alternating therefore diffesmasonal features. A to-
tal of 12 flocks were observed (i.e., 12 samples), the sameexdin related literature
(Johansen et al. 2017), which has shown to be sufficient éointiended analysis.

Table[1 shows the variables collected and used in the expetsthat follow.
Only input and output variables have been formalised somaile normalised variables
will be introduced in section Sectidn 2.Bput variablescorrespond to the action plan for
the dayt, while output variablesare those influenced by this action plan. The selection
algorithmGreedy Stepwis@evrey et al. 2003) has been applied to confirm the relevance
of the input variables over the output.



Input variables Unit Notation

day | t=1,---,40 t

minimum temperature [°cl | Min(T)®

mean temperaturg [°C] Avg(T)®

maximum temperature [°C] | Max(T)®
minimum humidity %] | Min(H)®

mean humidity %] | Avg(H)®

maximum humidity %] | Maz(H)®

Output variables Notation

mean daily weigh Lg] MW

daily feed consumption [Kg] FC®
number of living birds [birds] LB

daily mortality [birds] Mt

Output variables normalized Notation
daily feed consumption per birg [Kg/bird] FCb{®
number of living birds per ares [bird/m?2] LBalt)
daily mortality per area|  [bird/m?] Malt)

Table 1. Variables to be considered in our experiments.

A daily measurement was collected for each of Theput variables in Tablel1,
totalling 280 records { x 40 days of the flock) in one sample. For teutput variables,
the daily measurement faz W ®, FC, and LB corresponds t620 records § x 40),
also for one sample. Therefore, by observingHs, each one providing samples, we
obtained the total of2 samples, corresponding to an input data matrikok 280, while
the corresponding output data form a matrix sizeck 120.

2.2. Data normalisation

The 3 observedPHs occupy two different areasApy, is 150 m long by 16 m wide,
totalling 2400 m?, and it can host aboau800 birds. Apy, is 150 m long by 12 m wide,
with a floor area ofl800 m? that accommodatex$500 birds. Thus M and LB® can
be normalised by the are#py,, such that:

M@ LB®
. and LBal" =

Malt = =
App, App,

: 3)

Also FC™® can be normalised by B, given thefeed consumption per bird

FC®
LB®

FCbt = (4)

In this way, FCR® can result from Eql1, additionally pondering: (i) the numbe
of living birds per areal p;, (LBa'); and (i) the daily feed consumption by the number
of living birds (FCb®). Eq[5 formalises this idea:

FCb®

® —
FORY = 1000 +—rry

LBa't (5)

wherel000 compensates the weight conversion fréimto g. As Mean(u:) andstandard
deviation(c) are essential measures, they are detailed for the 12 flodkig i2.
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Figure 2. Statistical view of the collected variables.

2.3. Proposed LSTM Neural Network

Now, we feed the.STM neural network shown in Fid] 3 with: the day under analy-
sis ¢t); the measured temperatur®/ {n(7)", Avg(T)®, andMaz(T)*) and humidity
(Min(H)®, Avg(H)®, andMax(H)®); and the previous day mean weigh' (¥ —1),
feed consumption per bird(Cb%~1), and number of living birds per areaBa‘~1).

/| N =

Min(D)®) | 2 MWD
D_ﬁi Avg(T)® & (<] I
c |Maz(m)®| || Z
S : — FCb{t)
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Figure 3. Proposed LSTM network architecture.

From now forward, inputs and outputs are referred to as vectal?) =
t, Min(T)®, - Maz(H)®]; h*Y = [MWED FCLED LB V]; h =
[MW®, FCb® | LBalt)]. Vectorx® carries the input action plan for dayh~! is the
input vector with the previous days outputs; 4rid is the output vector for day By con-
catenating«”? andh®~? (denoteck ~ h'*=1), and by applying it as the neural network
input, we obtain a prediction fdr'"). The data pre-processing step and associated hyper-
parameters settings for training th6TM model can be found in (Klotz et al. 2020).

2.4. LSTM Implementation
The proposed.STM-based architecture can be implemented as in Algorithmd ttzen
it is taken as a fitness function of@A in Algorithm[2.

After 1400 iterations the proposed algorithm starts to stabilises Téads search
to stop by the timeout criterion with no changes in the fitrfesgtion. The FC R0



Algorithm 1: LSTM implementation.

1 Procedure: LSTMCalc(wm, max, min, te);
2 Input: wm, max, min, te;

3 Output: h(ws);

4 begin

5 te = A(te, max, min);

6 for t=1to 1do

7 x 8 = te'[1,7]7;

8 h -1 = te'[s,10]T;

9 h {8 = p(x @ E=1 wm);

10 Update theLSTM state

1 end

12 for t=2 to wg do

13 x (&) =te'[7t — 3,7t + 3],

14 h () = ¢ ® =D wm);

15 Update theLSTM state

16 end

17 return (h(ws) = A=1(A(h'{*s) max, min)));
18 end

Algorithm 2: GA andLSTM Network Integration

1 Input: wme, max,, ming, w=1,---,6;

2 Output: FAP, ic;

3 begin

4 Gsw=6 = 38;

5 GSzu:5,4,---,1 = 52;

6 setPgs = 200, 8 = 0.6;

7 for w=6t01do

8 setA = [2Gsw X Gswl;

9 setx = [Ggw X 1];

10 setb = [2 Ggw X 1];

11 setP = [Ps X Gswl;

12 P = P;(A,x,b);

13 while Some stopping criterion is not mad
14 for i=1to Pg do

15 hiws) = LSTMCalc(wmqy, maxy,, ming, P (i, :)7T;
16 if w==6 then

17 | ff = FCRLS,

18 else

19 | sf = |nl —nlE)
20 end

21 end

22 for j=1to Ps do

23 p1,p2 = SU(ff);

24 child = HC(p1, p2,8);
2 G = AM/(child);

2 P(, ) =G;

27 end

28 end

2 hs ™Y = G(8: 10);

30 FAP(w, :) = G;

31 end

32 ic = hS_D;

33 return (i_c, FAP);

34 end

upon stabilisation i$.5602. However, this value is exclusively linked tang, i.e., as the
Algorithm[2 searches frommg to wm, the value ofl.5602 is guaranteed if and only if
the progressive error between the differencdaf}‘;ﬁG> (estimated by thevm,, model) and



hi'.” (of the modekwm,, 1) is null (see Algorithni2, lin€19). The following Také 2
shows step-by-step these errors.

|h1(‘wg) _ h<1_1>‘
) w41

Error Relative Error (%)
MW  FCb®  LBa® | MwW®  FCb®  LBa®
17.4840 0.0066 0.1448 0.8335 0.2230 1.0269
32.7932 0.0011 0.0092] 2.3440 0.1960 0.0639
15.7567 0.0070 0.1289] 1.7667 0.7056 0.9059
0.0000 0.0080 0.0765 0 2.2396 0.5358
1.6142 0.0015 0.1461| 1.0338 1.4681 1.0176

g

P NDWhAO

Table 2. Errors and relative erros comparison.

We present in Fig.]4 the action pldAP returned by the Algorithra]2 after it
iterates recurrently through the 6 weeks, leading'tR‘*) = 1.5602. The abscissa axis
shows the input of the LSTM network (see Figl3). The ordinate axis shows the inputs
Min(T)®, Avg(T)®, andMax(T)" (Fig.[4(@)); and the inputd/in(H )", Avg(H)®,
andMax(H) (Fig.[4(b)) that were discovered by theA to reachFC R = 1.5602.
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Figure 4. Action plan suggested by our approach.

Now, we apply the Algorithnil progressively fromm,, = 1 to wm, = 6,
havingFAP andi_c as input for each respective model. Upon termination of Atgm
[, we capture the 3 outputs from the last dayuofis (i.e., hﬁuwjg) and apply EQL to
obtain FC R, It is expected a very close relationship betwd&fi R and FC R,
considering the statistical correctness of Table 2. Foptréicular datasett’ C R =
1.5610 was found for the 40-day flock, therefore very clos¢ G R{") = 1.5602.

2.4.1. Quantitative analysis

In order to assess how competitive our estimations are, \wgace the model perfor-
mance £CR{®) against: (i) the optimal performance (denét€ R'??) theoretically ex-
pected for theRossbroiler strain; (ii) the performance resulting from realmagements

applied by human specialists; (iii) the performance résglfrom 1000 other candidate,
artificially created, action plans.

The optimal performance fdossbroiler strain after 40 days BC'R(©) = 1.558
(Ross 2019). Therefore, theC R = 1.5610, resulting from our method, suggests an
approximation only).192% worse thanF'C R{°). The best specialist (denofeC' R\X?),
among all others, returneBCRX) = 1.640, therefore0.0790 (or 5%) worse than
FCR™ = 15610. Although the difference seems to be minor, our model alltovs



save0.0790 Kg (or 79 g) of feed per bird, for each Kg of produced meat. For a slaugh-
tering weight of2.8 Kg, each broiler require221.20 g less feed to be produced. FoP&
with about34000 broilers, this mean®520, 8 Kg of feed saving during a single flock.

We further construct 1000 more synthetic action plans takate different spe-
cialists handling a flock. The best possible performancedovasFC RS = 1.5614,
therefore still worse thad'C' R = 1.5610.

3. Conclusion

In this paper, deep learning and genetic algorithms are owdlio estimate action plans
for poultry farming. We exploit a production model that irdennects multiple poultry
houses and allows us to both, collect distributed data, aodagate optimised action
plans throughout a network infrastructure, commanded Bné&al supervision system.

We show that the specialist perception about the procesbeaaptured and re-
produced, to some extent, by using a bio-inspired methati{léis may increase produc-
tivity. A software solution is also provided and fits with anymber of poultry houses,
including one, when this is a particular case.

Ongoing researches focus on technology transfer and teseali scale. Other
results are expected from the observation of a more compédtef events related to
poultry business, such a®st profit, and market demand Environment forecasts and
energy consumption are also subjects to be approachedire fexxtensions.
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