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Abstract. In poultry farming, the systematic choice, update, and implementa-
tion of periodic (t) action plans define the feed conversion rate (FCR〈t〉), which
is an acceptable measure for successful production. Appropriate action plans
provide tailored resources for broilers, allowing them to grow within the so-
called comfort zone, without waste or lack of resources. Although the implemen-
tation of an action plan is automatic, its configuration depends on a specialist,
which tends to be inefficient and result in variableFCR〈t〉. In this project, the
specialist’s perception is reproduced, to some extent, by computational intelli-
gence. By combining deep learning and genetic algorithm techniques, we show
how action plans can adapt their performance over the time, based on previous
well succeeded plans. We also implement a network infrastructure to replicate
our method over distributed poultry houses, for their smart, interconnected, and
adaptive control. A supervision system is provided as interface to users. Exper-
iments using real data suggest an improvement of 5% on the performance of the
most productive specialist, staying close to the optimalFCR〈t〉.

1. Introduction
Poultry farmingis the agro-industrial sector focused on producing broilermeat for con-
sumption. Worldwide, the activity has attracted attentiondue to its economic and social
role, aligned with the continuously increasing world demand for broilers. Only in 2019
the USA was responsible for producing 19.941 million tons ofmeat, followed by Brazil
and China with 13.245 and 13.750 million tons, respectively(ABPA 2021).

Technically, broilers raise withinpoultry houses(PHs), that are automatically con-
trolled by electronic devices. The daily recipe, prescribing the parameters for the auto-
matic controller, is called anaction plan(Acres 2020). The quality of an action plan
reflects the general welfare for broilers, allowing them to grow up under appropriate con-
ditions of feeding, housing, and health. In this paper, in particular, an action plan is



exploited in terms of its environment-related variables. We seek for combined indoor cli-
mate conditions that allow broilers to grow up underthermal comfort, achieved within the
so-calledcomfort zone(Botreau et al. 2007). The comfort zone directly affects produc-
tivity, which is acceptably measured by periodic (t ∈ N) feed conversion rates(FCR〈t〉)
estimations. The more accurate the action plan, the lower the accumulatedFCR〈t〉, and
the greater it tends to be the production.

Advances on improvingFCR〈t〉 focus on health, nutrition, genetics, thermal com-
fort (Henriksen et al. 2016; Ribeiro et al. 2019), etc. A remaining barrier is, however, the
lack of expert systems to help humans with the choice, update, and implementation of
daily action plans. This leads specialists to use their own experience to set up action
plans, which tends to be complex, inefficient, and prone to errors, besides to cause con-
flicting opinions. As a consequence of unsystematic interventions, eachPH may return a
distinctFCR〈t〉, which makes unclear the overall performance estimation.

The literature provides alternatives to estimate intelligent action plans. For exam-
ple, (Ribeiro et al. 2019) uses a bio-inspired model based onArtificial Neural Networks
(ANNs) to suggest action plans according to climatic variations.However, this approach
is not integrated with the process controller, so that it cannot reconfigure its actions dy-
namically according to theANN suggestion. Furthermore, (Ribeiro et al. 2019) does not
consider the dynamic adaptation of its estimations over thetime, which is an important
feature when scenarios of production are variable.

In this project, the specialist perception is reproduced, to some extent, by com-
putational intelligence. Differently from (Ribeiro et al.2019), we use a more suitable
memory-aware model based onLong short-term memory(LSTM) networks, instead of
ANNs. We also show how estimated action plans can be combined across algorithms that
artificially emulate genetic mutations. This results in improved action plans that are capa-
ble of adapting themselves over the time based on previouslysuccessful action plans. By
replicating our method over a set ofPHs, we solidify a new foundation to support smart,
cooperative, distributed, and interconnected poultry farming.

Experiments conducted using real data indicate that our approach estimates an
FCR〈40〉 of 1.5610 by the end of a flock. In comparison, theFCR〈40〉 resulting from the
progressive application of empiric action plans, chosen bythe specialist who had the best
performance among all others in the evaluated group, under the same setup, was of1.640,
therefore0.079 or 5% worse than ours. Our method also shows proximity with the best
performance achievable byRossbroilers strain, which isFCR〈40〉 = 1.558 (Ross 2019).

2. An intelligent solution for poultry management

A usual measure to quantify the efficiency in transforming feed into animal protein, is
based on periodic samples ofFeed Conversion Rate, formalised as:

FCR〈t〉 =
FC〈t〉

LB〈t〉 ·MW 〈t〉
, (1)

wheret is an integer associated with the day of observation;FC〈t〉 is the amount offeed
consumptionuntil day t; LB〈t〉 is the number ofliving birds at dayt; andMW 〈t〉 is the
mean weighat dayt.



An effective action plan is achieved when theFCR〈t〉 is improved, i.e., when it ap-
proximates to zero. The more accurate the action plan, the lower the conversion rate, and
the greater the production tends to be. However, obtaining asatisfactoryFCR〈t〉, at the
end of a flock (usuallyt = 40), requires enormous ability from the specialist to conduct
the daily management. It depends, basically, on how the daily parameters are informed
to the controller so that, in combination, they could resultin a reasonable accumulated
FCR〈40〉 for the entire flock.

In general, poultry farmers handle more than onePH within a shared infrastruc-
ture, called apoultry condominium(PC), shown in Fig. 1 and formalised as a finite set
Cond = {PH1, · · · , PHn} of poultry housesPHi, for 1 ≤ i ≤ n.

PH1 PH2 PHn

· · ·

Figure 1. Structure poultry house condominium Cond = {PH1, · · · , PHn}.

EachPH has automated feed and drinking systems working continuously from 6
AM until 10 PM. It also includes electronic devices to informthe dailyfeed consumption
(FC〈t〉), and themean weight(MW 〈t〉) captured by automatic scales. Each flock takes
about40 days to be produced (t = 1, · · · , 40), and the final weight (i.e,MW 〈40〉) is
expected to be of approximately2.8 Kg per bird. Temperature (Min(T )〈t〉, Avg(T )〈t〉,
andMax(T )〈t〉), and relative humidity (Min(H)〈t〉, Avg(H)〈t〉, andMax(H)〈t〉), inside
thePH are collect by sensors and stored into a database, which is part of the control
system infrastructure. The specialist also records themortalityon the dayt (M 〈t〉), which
alternatively can be exposed as the number ofliving broilersby:

LB〈t〉 = |F| −

p∑

t=1

M 〈t〉 , (2)

i.e., as the difference between theinitial amount of birdsin a flock (|F|), and the accumu-
lated mortality recorded by the specialist during a periodp.

2.1. Dataset acquisition

For the purpose of this paper, the real dataset was obtained by observing aPC com-
posed of threePHs, which were used for collecting daily data sampling. The threePHs
contained only male,Rossstrain broilers.The data acquisition was conducted between
August 2019 and March 2020, alternating therefore different seasonal features. A to-
tal of 12 flocks were observed (i.e., 12 samples), the same as used in related literature
(Johansen et al. 2017), which has shown to be sufficient for the intended analysis.

Table 1 shows the variables collected and used in the experiments that follow.
Only input and output variables have been formalised so far,while normalised variables
will be introduced in section Section 2.2.Input variablescorrespond to the action plan for
the dayt, while output variablesare those influenced by this action plan. The selection
algorithmGreedy Stepwise(Gevrey et al. 2003) has been applied to confirm the relevance
of the input variables over the output.



Input variables Unit Notation
day t = 1, · · · , 40 t

minimum temperature [◦C] Min(T )〈t〉

mean temperature [◦C] Avg(T )〈t〉

maximum temperature [◦C] Max(T )〈t〉

minimum humidity [%] Min(H)〈t〉

mean humidity [%] Avg(H)〈t〉

maximum humidity [%] Max(H)〈t〉

Output variables Notation
mean daily weigh [g] MW 〈t〉

daily feed consumption [Kg] FC〈t〉

number of living birds [birds] LB〈t〉

daily mortality [birds] M〈t〉

Output variables normalized Notation
daily feed consumption per bird [Kg/bird] FCb〈t〉

number of living birds per area [bird/m2] LBa〈t〉

daily mortality per area [bird/m2] Ma〈t〉

Table 1. Variables to be considered in our experiments.

A daily measurement was collected for each of the7 input variables in Table 1,
totalling280 records (7× 40 days of the flock) in one sample. For the3 output variables,
the daily measurement forMW 〈t〉, FC〈t〉, andLB〈t〉 corresponds to120 records (3×40),
also for one sample. Therefore, by observing3 PHs, each one providing4 samples, we
obtained the total of12 samples, corresponding to an input data matrix of12×280, while
the corresponding output data form a matrix sized12× 120.

2.2. Data normalisation

The 3 observedPHs occupy two different areas.APH1
is 150 m long by 16 m wide,

totalling2400 m2, and it can host about34800 birds.APH2
is 150 m long by12 m wide,

with a floor area of1800 m2 that accommodates26500 birds. Thus,M 〈t〉 andLB〈t〉 can
be normalised by the areaAPHi

, such that:

Ma〈t〉 =
M 〈t〉

APHi

; and LBa〈t〉 =
LB〈t〉

APHi

· (3)

AlsoFC〈t〉 can be normalised byLB〈t〉, given thefeed consumption per bird:

FCb〈t〉 =
FC〈t〉

LB〈t〉
· (4)

In this way,FCR〈t〉 can result from Eq.1, additionally pondering: (i) the number
of living birds per areaAPHi

(LBa〈t〉); and (ii) the daily feed consumption by the number
of living birds (FCb〈t〉). Eq.5 formalises this idea:

FCR〈t〉 = 1000
FCb〈t〉

LBa〈t〉 MW 〈t〉
LBa〈t〉 , (5)

where1000 compensates the weight conversion fromKg to g. As Mean(µ) andstandard
deviation(σ) are essential measures, they are detailed for the 12 flocks in Fig. 2.
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Figure 2. Statistical view of the collected variables.

2.3. Proposed LSTM Neural Network

Now, we feed theLSTM neural network shown in Fig. 3 with: the day under analy-
sis (t); the measured temperature (Min(T )〈t〉, Avg(T )〈t〉, andMax(T )〈t〉) and humidity
(Min(H)〈t〉, Avg(H)〈t〉, andMax(H)〈t〉); and the previous day mean weigh (MW 〈t−1〉),
feed consumption per bird (FCb〈t−1〉), and number of living birds per area (LBa〈t−1〉).
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Figure 3. Proposed LSTM network architecture.

From now forward, inputs and outputs are referred to as vectors: x〈t〉 =
[t,Min(T )〈t〉, · · · ,Max(H)〈t〉]; h〈t−1〉 = [MW 〈t−1〉, FCb〈t−1〉, LBa〈t−1〉]; h〈t〉 =
[MW 〈t〉, FCb〈t〉, LBa〈t〉]. Vectorx〈t〉 carries the input action plan for dayt; h〈t−1〉 is the
input vector with the previous days outputs; andh〈t〉 is the output vector for dayt. By con-
catenatingx〈t〉 andh〈t−1〉 (denotedx〈t〉 ⌢ h〈t−1〉), and by applying it as the neural network
input, we obtain a prediction forh〈t〉. The data pre-processing step and associated hyper-
parameters settings for training theLSTM model can be found in (Klotz et al. 2020).

2.4. LSTM Implementation

The proposedLSTM-based architecture can be implemented as in Algorithm 1, and then
it is taken as a fitness function of aGA in Algorithm 2.

After 1400 iterations the proposed algorithm starts to stabilise. This leads search
to stop by the timeout criterion with no changes in the fitnessfunction. TheFCR〈40〉



Algorithm 1: LSTM implementation.
1 Procedure: LSTMCalc(wm,max,min, te);
2 Input: wm, max, min, te;

3 Output: h〈wS〉;
4 begin
5 te

′

= Λ(te, max, min);
6 for t=1 to 1 do
7 x’〈t〉 = te

′

[1, 7]T ;

8 h’〈t−1〉 = te
′

[8, 10]T ;

9 h’〈t〉 = φ(x’〈t〉, h’〈t−1〉, wm);
10 Update theLSTM state;
11 end
12 for t=2 to wS do
13 x’〈t〉 = te

′

[7t− 3, 7t + 3]T ;

14 h’〈t〉 = φ(x’〈t〉, h’〈t−1〉, wm);
15 Update theLSTM state;
16 end
17 return (h〈wS〉 = Λ−1(Λ(h’〈wS〉,max,min)));

18 end

Algorithm 2: GA andLSTM Network Integration
1 Input: wmw, maxw, minw, w = 1, · · · , 6;
2 Output: FAP, i c;
3 begin
4 GSw=6 = 38;
5 GSw=5,4,···,1 = 52;
6 setPS = 200, β = 0.6;
7 for w = 6 to 1 do
8 setA = [2GSw x GSw];
9 setx = [GSw x 1];

10 setb = [2GSw x 1];
11 setP = [PS x GSw];
12 P = PI(A,x,b);
13 while Some stopping criterion is not metdo
14 for i=1 to PS do

15 h〈wS〉
w = LSTMCalc(wmw,maxw,minw,P(i, :)T ;

16 if w == 6 then

17 ff = FCR
〈wS〉
w ;

18 else

19 ff = µ
∣

∣

∣
h〈wS〉
w − h〈1−1〉

w+1

∣

∣

∣

20 end
21 end
22 for j=1 to PS do
23 p1,p2 = SU(ff);
24 child = HC(p1, p2, β );
25 G = AM(child);
26 P(j, :) = G;
27 end
28 end

29 h〈1−1〉
w = G(8 : 10);

30 FAP(w, :) = G;

31 end

32 i c = h〈1−1〉
w ;

33 return (i c, FAP);

34 end

upon stabilisation is1.5602. However, this value is exclusively linked towm6, i.e., as the
Algorithm 2 searches fromwm6 to wm1, the value of1.5602 is guaranteed if and only if
the progressive error between the difference ofh〈wS〉

w (estimated by thewmw model) and



h〈1−1〉
w+1 (of the modelwmw+1) is null (see Algorithm 2, line 19). The following Table 2

shows step-by-step these errors.

|h〈wS〉
w − h〈1−1〉

w+1
|

w Error Relative Error (%)
MW 〈t〉 FCb〈t〉 LBa〈t〉 MW 〈t〉 FCb〈t〉 LBa〈t〉

5 17.4840 0.0066 0.1448 0.8335 0.2230 1.0269
4 32.7932 0.0011 0.0092 2.3440 0.1960 0.0639
3 15.7567 0.0070 0.1289 1.7667 0.7056 0.9059
2 0.0000 0.0080 0.0765 0 2.2396 0.5358
1 1.6142 0.0015 0.1461 1.0338 1.4681 1.0176

Table 2. Errors and relative erros comparison.

We present in Fig. 4 the action planFAP returned by the Algorithm 2 after it
iterates recurrently through the 6 weeks, leading toFCR〈E〉 = 1.5602. The abscissa axis
shows the inputt of theLSTM network (see Fig.3). The ordinate axis shows the inputs
Min(T )〈t〉, Avg(T )〈t〉, andMax(T )〈t〉 (Fig. 4(a)); and the inputsMin(H)〈t〉, Avg(H)〈t〉,
andMax(H)〈t〉 (Fig. 4(b)) that were discovered by theGA to reachFCR〈E〉 = 1.5602.
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Figure 4. Action plan suggested by our approach.

Now, we apply the Algorithm 1 progressively fromwmw = 1 to wmw = 6,
havingFAP andi c as input for each respective model. Upon termination of Algorithm
1, we capture the 3 outputs from the last day ofwm6 (i.e., h〈wS〉

w=6 ) and apply Eq.5 to
obtainFCR〈R〉. It is expected a very close relationship betweenFCR〈R〉 andFCR〈E〉,
considering the statistical correctness of Table 2. For theparticular dataset,FCR〈R〉 =
1.5610 was found for the 40-day flock, therefore very close toFCR〈E〉 = 1.5602.

2.4.1. Quantitative analysis

In order to assess how competitive our estimations are, we compare the model perfor-
mance (FCR〈R〉) against: (i) the optimal performance (denoteFCR〈O〉) theoretically ex-
pected for theRossbroiler strain; (ii) the performance resulting from real managements
applied by human specialists; (iii) the performance resulting from 1000 other candidate,
artificially created, action plans.

The optimal performance forRossbroiler strain after 40 days isFCR〈O〉 = 1.558
(Ross 2019). Therefore, theFCR〈R〉 = 1.5610, resulting from our method, suggests an
approximation only0.192% worse thanFCR〈O〉. The best specialist (denoteFCR〈X〉),
among all others, returnedFCR〈X〉 = 1.640, therefore0.0790 (or 5%) worse than
FCR〈R〉 = 1.5610. Although the difference seems to be minor, our model allowsto



save0.0790Kg (or 79 g) of feed per bird, for each1 Kg of produced meat. For a slaugh-
tering weight of2.8Kg, each broiler requires221.20 g less feed to be produced. For aPH
with about34000 broilers, this means7520, 8Kg of feed saving during a single flock.

We further construct 1000 more synthetic action plans to simulate different spe-
cialists handling a flock. The best possible performance found wasFCR〈S〉 = 1.5614,
therefore still worse thanFCR〈R〉 = 1.5610.

3. Conclusion

In this paper, deep learning and genetic algorithms are combined to estimate action plans
for poultry farming. We exploit a production model that interconnects multiple poultry
houses and allows us to both, collect distributed data, and propagate optimised action
plans throughout a network infrastructure, commanded by a central supervision system.

We show that the specialist perception about the process canbe captured and re-
produced, to some extent, by using a bio-inspired method, and this may increase produc-
tivity. A software solution is also provided and fits with anynumber of poultry houses,
including one, when this is a particular case.

Ongoing researches focus on technology transfer and tests in real scale. Other
results are expected from the observation of a more completeset of events related to
poultry business, such ascost, profit, andmarket demand. Environment forecasts and
energy consumption are also subjects to be approached in future extensions.
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