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Abstract. Data augmentation (DA) allows increasing datasets for training ma-
chine learning models that demands large amounts of data. In real-world ap-
plications in which data may not be abundant enough and data acquisition is
not easy, DA enables increasing diversity and introducing model generalization.
In this work we evaluate several DA techniques and combining approaches to
extend image datasets used to train plant species recognition models. We exper-
imentally validated Deep Convolutional Neural Networks (DCNN) with several
datasets obtained from common augmentation techniques and combinations.
The results allowed the identification of the Translate + Crop augmentation pol-
icy as the most effective within the scope of evaluation.

1. Introduction

For a long time, machine learning algorithms for computer vision tasks were not effective
or efficient enough for real-world applications, especially in the plant domain. Although
innovative, these technologies mostly involved hand-craft designed solutions for single-
organ detection (e.g., flower or leaves), recognition or segmentation from images. There-
with, ineffective models that were highly expensive to design and with low generalization
power were a common reality. Hence, the use of those methods in critical systems (i.e.,
agriculture, pharmacology) was out of question. In turn, with the exploitation of high-
end parallel architectures, those traditional solutions were considerably outperformed by
Deep Learning (DL) models, specially the ones based on Deep Convolutional Neural
Networks (DCNN) [Mehdipour Ghazi et al. 2017]]. These advances allowed large-scale
experiments and even the construction of models that surpassed human performance in
some plant recognition tasks [Goé&au et al. 2018]].

The emergence of effective models and efficient models allowed the exploration of
real-world experiments and the proposal of solutions for increasing and automatizing field
production through DCNN-based systems in plant recognition tasks [Khan et al. 2018,



Brahimi et al. 2018}, Zhao et al. 2020]]. Despite that, the predictive models commonly in-
clude millions of parameters, demanding massive amounts of data for proper optimiza-
tion, which still make the learning process unfeasible in some contexts. Besides that, ad-
ditional challenges emerge from datasets with imbalanced class distributions or from the
high cost for large-scale data acquisition. Such circumstances motivate researchers to use
Data Augmentation (DA) for training DCNNs. DA allows to artificially extend a dataset
through label-preserving transformations for the generation of novel samples from real
ones. Indeed, DA has been reported as promising in overcoming dataset imbalance, reduc-
ing overfitting and introducing invariance in DL models [Shorten e Khoshgoftaar 2019].

In this context, recent works on automatic plant recognition through DCNN have
commonly relied on DA [Sulc et al. 2018, |[Haupt et al. 2018]], which shows a crucial role
for achieving state-of-the-art classification. However, DA techniques have been used in an
ad-hoc way, given the lack of a consensus regarding the suitability of the alternatives with
respect to each context of application (i.e., organ type, photo type, background, herbarium
sheet, etc). Besides, arbitrary costful heuristics can lead to performance bottlenecks and
effectiveness decrease. Therefore, this work proposes a performance analysis of DA tech-
niques commonly used for the optimization of plant species recognition models based on
DL. Additionally, we assessed three heuristics for the combination of augmentation tech-
niques, which allowed demonstrating the most effective techniques as well as the most
suitable to perform plant species recognition.

2. Related Work

Data Augmentation enables to increase a dataset quantity in an artificial
way [Buda et al. 2018]]. The motivation behind that is to improve the DCNNs general-
ization power, through a invariance hardcoding procedure [Mehdipour Ghazi et al. 2017
that happens behind the process of training with images that presents variations
of angle, position, light, brightness, simultaneously with the original correspond-
ing versions.  Consequently, the models become more invariant to these ad-
versities and consequently, increase their capacity of performing well for unseen
data [Shorten e Khoshgoftaar 2019, Mehdipour Ghazi et al. 2017].
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Figure 1. lllustration of geometric augmentation techniques.

Basically, augmentation techniques can be classified as geometric when they alter
the geometric constitution of the images (Figure[I)), or photometric when they only cause



changes over the color space [Taylor e Nitschke 2018]|]. Traditional geometric techniques
includes: Crop, Flip (horizontally, vertically), Translate, Rotate, whereas photometric
transformations mainly involves changes in brightness, light, color or saturation for ex-
ample [Shorten e Khoshgoftaar 2019]. In terms of heuristics, these techniques (geometric
or photometric) are usually applied individually or combined through sequential or par-
allel application heuristics to yield augmentation policies. In the Sequential modality,
for example, samples are obtained from the chained application of multiple augmentation
techniques over the same image. Figure [1]illustrates the sequential heuristic with a Flip x
Rotate example. This process generates two rotated and vertically-flipped images, arising
from the application of Flip followed by Rotate. In turn, the Parallel approach yields aug-
mentation policies from the individual (parallel) application of two or more techniques
and addition of the obtained images to a unique set. Besides that, some researchers have
also proposed to use more complex heuristics, such as through Deep Learning based
methods [Wang et al. 2017]].

In the plant recognition context, the work in [Pawara et al. 2017] conducted an
evaluation of augmentation techniques including Rotation, Blur, Contrast, Scaling, Illu-
mination and Projection combined through a parallel approach. For that, three datasets
were used: Folio (600 leaf images from 32 species), Swedish (1.000 images on a plain
background of 15 Swedish tree species) and Agril Plant (3.000 images of 10 fruit species).
Although promising results were achieved, it was not possible to draw generalizable
techniques, possibly due to the low complexity of the datasets, with perfectly balanced
classes, high background homogeneity (except for Agril Plant) and the small number of
species/specimens.

In [Zhang et al. 2015]] the authors proposed a CNN architecture for leaf classifi-
cation and used Flavia dataset (1907 images of 32 species). The model was trained with
traditional DA techniques (Translate, Scale, Rotate, Contrast and Sharpening) randomly
selected according to a desired augmentation factor (5x, 10x or 20x). In a similar way, the
authors observed a reasonable effectiveness improvement with DA, although, no expres-
sive difference was observed for the techniques assessed and the low complexity of the
dataset weakens the conclusion regarding the general effectiveness of the augmentation
approaches. Similarly, in [Pandian et al. 2019] the authors assessed many traditional DA
techniques, including Flip, Rotate, Crop, color transformation, PCA and noise injection,
as well as DL-based techniques (WGAN, DCGAN, neural style transfer). An imbalanced
plant dataset was used with around 54 thousand specimens from 38 classes including
healthy and diseased leaves. The authors demonstrated that using all augmentation tech-
niques (WGAN, DCGAN, neural style transfer and traditional techniques) at once lead
to higher performance in relation to the use in isolation. Despite its complexity, higher
costs and need for optimization, the DL-based augmentations applied in parallel allowed
slightly superior results in contrast to the traditional techniques also combined in parallel.

As reported in [Mehdipour Ghazi et al. 2017], the combination by sequential and
parallel application of vertical flip, rotation, and scaling augmentation techniques through
a image patch extraction pipeline, allowed to achieve state-of-the-art performance in a
multi-organ, large-scale plant classification task involving about 1,000 species. The au-
thors observed a decrease of overfitting and the improvement of the benefits of fine-tuning.
They also showed that an 80-fold augmentation outperformed a 10-fold by roughly 6% in



accuracy. This illustrates by how much the authors needed to increase the augmentation
factor (no. of generated images) in order to obtain satisfactory results as well as how some
augmentation heuristics can generate large datasets that increase training costs.

In general, large-scale studies that relied on DA demonstrated its important role
towards developing real-world plant recognition systems. Nevertheless, most studies were
not successful on determining general techniques or combining heuristics, mainly due to
the low complexity of the data or the limited amount of combinations of DA techniques
assessed. Hence, this work aims at assessing several DA techniques through different
combination heuristics and a representative scenario of large-scale plant recognition in
terms of class imbalance, visual image heterogeneity (multiple plant organs), number of
species and specimens. Therefore, we believe to provide augmentation policies that are
more suitable to the development of plant species recognition systems based on DCNN.

3. Experimental Setup

As discussed in [Pawara et al. 2017]], the characteristics of the classification task and
data used are decisive for robust DA studies involving DCNN. On the one hand, smaller
datasets makes it difficult to conduct in-depth analysis of real-world challenges given the
limited amount of samples and/or classes and its irregular distribution. On the other hand,
datasets of larger scale/complexity makes comprehensive systematic analysis infeasible,
specially considering the multiple possible combinations of DA techniques.

Considering the mentioned constraints, this work was conducted over the Plant-
CLEF2013 (PC2013) dataset [Goéau et al. 2013]]. It presents 26,077 images of 250 plant
species from the French flora, from which 5092 ( 20%) images are used for testing. Intro-
ducing additional complexity, the dataset includes images acquired with different methods
and of multiple plant organs, resulting in two image types and 6 sub-types as illustrated
in Figure 2| The two main types are: Sheet as Background (a homogeneous surface of
uniform white background) representing 42% of the total images (11,031 samples) and
Natural Background, with 15,046 samples representing 58% of total images, composed
of natural photographs captured outdoors from different perspectives of different organs.
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Figure 2. Samples of images with multiple organs of different species divided by
the categories “Sheet as Background” and “Natural Background”.



For species recognition task we relied on transfer learning based on the
ResNet [He et al. 2016] DCNN architectureﬂ In the preliminary experiments, ResNet50,
ResNet101 and ResNet152 were fine-tuned with the individual application of each geo-
metric augmentation technique: Translate, Crop, Flip and Rotate. The main goal of this
phase was to assess the impact of the depth and the number of pre-adjusted (non-trainable)
ImageNet weights over the results in order to select the most promising architecture for
further analyzes. For that, we compared the performance of the baseline (training without
augmentation) versus training also with the images generated by the DA technique. The
preliminary experiments enabled selecting the better performing architecture to conduct
the extended analysis. In this further analysis, we assessed 10 additional DA policies
obtained through the sequential and parallel heuristics.

For an strict effectiveness assessment, the performance comparison relied on an
independent test dataset. For test images, the same data augmentation policies were ap-
plied. Considering recognition is performed for 1+N images (1 original + N augmented
versions), the class prediction is performed according to average Softmax scores. A sum-
mary of the DA policies assessed and the resulting amount images and augmentation
factor are presented in Table [Il For these techniques, the following configurations were
considered: Translate (4 different directions with offsets equivalent to 20% of the image
width over the horizontal axis and 20% of the height over the vertical axis with black
pixel padding); Rotate (30 degrees clockwise and counterclockwise); Crop (four corner
patches and a central crop with 50% of the image size).

Table 1. Augmentation policies and resulting humber of images. Bold values
indicates the size in relation to the original dataset. *Augmentation factor
in relation to the original dataset.

Dataset Train+Validation | Test Set (*) || Dataset Train+Validation | Test Set (*)
Original Dataset 20.985 5092 Flip + Translate 125.910 30.552 (6x)
Flip 41.970 10.184 (2x) || Flip + Crop 146.895 35.644 (7x)
Rotate 62.955 15.276 (3x) || Translate + Rotate 146.895 35.644 (7x)
Flip x Rotate 62.955 15.276 (3x) || Crop + Rotate 167.880 40.736 (8x)
Flip + Rotate 83.940 20.368 (4x) || Translate x Rotate 188.865 45.828 (9x)
Translate 104.925 25.460 (5%) || Translate + Crop 209.850 50.920 (10x)
Crop 125.910 30.552 (6%) || Translate x Crop 440.685 106.932 (20x)
Flip x Crop 125.910 30.552 (6x)

The evaluation was conducted with a stratified random sampling protocol to keep
class proportion in training and validation sets. More specifically, we considered 80% of
the training data for model construction and the 20% for validation, followed by the test-
ing with a an independent held-out test set. To ensure comparability, instead of performing
individualized optimizations, all models were trained with the same configurations, for a
fixed number of epochs (75) and amount of trainable weights. The Categorical Crossen-
tropy loss function and the Accuracy measure were considered. On the test phase, the
Micro-F1 measure was also computed to account for class imbalance. The weight update
strategy used was the SGD with the Adam optimizer [Kingma e Ba 2017]] and a Batch
size of 64. First and Second Moment exponential decays and Epsilon were set to default
(0.9, 0.99 and 1077, respectively), and the learning rate was set to 2 x 1075,

ResNet is a recognized effective network, having achieved the first place at the ILSVRC 2015 classifi-
cation task with 3.57% error on the ImageNet test set [Russakovsky et al. 2015].



4. Results And Discussions

At the preliminary step, we tested the models trained over the individual application of
Crop, Translate, Flip and Rotate techniques. The results are presented in Table [2| The
models trained over the augmented datasets yielded expressively superior results in com-
parison to the baseline. It demonstrates how promising these techniques are, with empha-
sis to the Crop and Translate techniques, allowing Micro-F1 over 0.46 with the ResNet152
model. Considering the network depths (50, 101 and 152 layers), increasing the number
of pre-trained weights did not demonstrated to significantly affect the results. Despite the
ResNet152 presented overall higher performance, it was not expressive enough in relation
to the 50 and 101 variations. Therefore, the ResNet50 was chosen for the further analysis,
since it presents significantly lower computational burden in comparison to ResNet101
and ResNet152 [He et al. 2016]).

Table 2. Preliminary Results (Micro-F1 on test set).

Network | Baseline | Crop | Translate | Flip | Rotate
ResNet50 | 03177 | 0.4636 | 0.4550 | 0.4094 | 0.4049
ResNet101 | 0.3157 | 0.4693 | 0.4705 | 0.4108 | 0.4065
ResNet152 | 0.3189 | 0.4738 | 0.4652 | 0.4049 | 0.4102

For a deeper analysis with the ResNet50, we assessed 10 extra combinations of
augmentation policies considering the parallel and sequential heuristics. The results pre-
sented in Table [3|demonstrates that DA led to equivalent or superior performance in rela-
tion to the baseline. In terms of heuristics, the parallel application policies demonstrated
superiority in relation to the sequential and individual approaches. Regarding the sequen-
tial application, for example, the overall worst performing policy (Flip + Rotate, Micro-
F1=0.4255) enabled similar results to the best performing Sequential policy (Flip x Crop,
Micro-F1=0.4271). Considering that the chained (sequential) application of multiple ge-
ometric augmentation policies increases the chances of violating the label-preservation
principle of data augmentation, we believe that this effect degraded the performance of
the models trained with data generated with that heuristic.

Table 3. ResNet50 results: Combination heuristics, Augmentation Policies and
performance (Micro-F1 on test set).

Baseline
Augmentation Micro-F1
None (O.rlfgmal data) | (?.3177 Parallel Application
Individual Application . -
Augmentation Micro-F1
Crop 0.4636
Translate + Crop 0.4919
Translate 0.4550 :
- Flip + Crop 0.4672
Flip 0.4094
Crop + Rotate 0.4573
Rotate 0.4049
Sequential Application Translate + Rotate | 0.4522
> PP Flip + Translate 04518
Flip x Crop 0.4271 Flio + Rofat 0.4755
Translate x Rotate 0.4010 1p + Rotate y
Flip x Rotate 0.3800
Translate x Crop 0.3189




Considering the number of resulting images (Table [I)), our findings demonstrate
that the DA policies that yielded better results not necessarily were the ones that presented
higher augmentation factor. The Translate x Crop policy, for example, increased the orig-
inal dataset to over 440.000 images (20x factor) and yet presented only 0.37% gain in
relation to the Baseline. In contrast to that, the single application of Flip (2x factor) en-
abled improving classification performance by roughly 28%. In general, the combination
of techniques that presented reasonable individual performance through parallel heuristics
allowed superior results in comparison to the individual and sequential.

5. Conclusions

Data augmentation was investigated in this work for leveraging DCNN models for plant
species recognition from images. It included a broad assessment of data augmentation
policies and combination heuristics for the mostly frequent techniques in the literature.
Despite the difficulties behind the process of classification from imbalanced, heteroge-
neous multi-organ plant datasets, the most effective augmentation policies evaluated al-
lowed expressive results with significant performance gains.

Our results can guide future development of DCNN-based plant recognition sys-
tems from imbalanced datasets. We believe that systems like these can play an important
role in the development of novel production models, capable of improving precision and
automatizing several tasks in fields such as agriculture, pharmacology, ecology, environ-
mental engineering, etc. Finally, we believe novel experiments can be conducted to more
deeply analyze the DA potential on overcoming class imbalance.
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